CHAPTER 2

THEORY

24l General

A pulse-width modulation control system is shown in Figure -
The desired angular position is set, there by controlling the sampllng
time of the sampler. In effect, the sampler generates a pulse of width
Tre called cémmanding pulse, which is proportional to the angular
position being sets The feedback pulée, Tf, is also generated in
the same manner. The two pulses are compared and an error pulse of
width Te = Tr - Tf is generated, The error pulse is fed to a data.
reconstruction circuit and followed by an on-off switcher which switches
on the amplifier to drive the motor. The motor is coupled to a load and
a sampler by which the feedback pulse is generated. :

202 The System ’
The pulse-width meodulation control\system shown in Figure 2.1
can be rearranged and shown in Figuré 2.2« The signal flow graph may be

represented as shown in Figure 2.3. Then we have2

E*(s) = Ksi R*(S) - Ksf c*(sl) - (2.1)
c(s)y - XA N (S)Cho(S)Cm(S) £ (S) (2.2)
Equation 2.2 can be 3riten as _
E(s) = KA N (s) Gho Cm (8) B (5) : . s {Re3)
n £
Substitute (S) in equation 2,2 we have :
c'(s) = xa N (s) m (sy[ks1 B (8) - kst G (s)] (2.4)
n
and ¢'(s) = KeiKA N (S) Gho Gm (5) (245)
| R (8) B ) 4 Ksf KA N (S) Gho Gm (S)
‘ § ) :
Hence . ' C(Z) = KsiXKA N (Z) GhoGm (2) . b g
R (2) B 1+Kef KA N (Z) Gho Gu (Z) |

n
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Figure 2.1 A pulse-width - modulation control system
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FIGURE 2.2 THE BLOCK DIAGRAM OF THE PULSE WIDTH

MODULATION  CONTROL. SYSTEM
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- The Characteristic eéuation is

<

1+ Ksf XA N(Z) Gho Gm (2) = © | (2.7)
= gk ,
. then  Ksf KA GhoGm (Z) = -1 (2.8)
n ¥ N(Z) -

The open loop transfer function of the system without nonlinear element is

Co(z) = Kef KA ‘GhoGm (2) « ¢ i (2;9)
n ‘ :

If equation 2.8 is satisfied, then the system is unstable - and
exhibit a limit cycle., This situation corresponds to the case where the

KA Xsf Gho Gm(Z) locus passes through the critical point,
n

In conventional fregquency response analysis of linear control system,
the critical point is the (=1, +j0) point, *
In the describing function analysis, - 1 locus becomes a locus

. : N(Z)
of critical points.

To determine the stability of the system the = 1 locus and the
h N(z) _ .

open loop transfer function are plotted the criterion for stability is 276

l. The open - loop system is stable if the Nyquist plot of the
 open loop transfer function does not enclose the { = 1, + jO ) point to

ensure that the closed loops system is also stable,
, b
2o The plot of the open loop transfer function does not encircle

the - 1 locus,
N(Z)



203 The Discrete Describing Function N(Z)

<

In the conventional nonlinear continuous-data control systenm,
the describing function of a nonlinear element is defined to be the
complex ratio of the fundamental harmonic component of the output .

to the sinusoidal input

For nonlinear sampled-data system,vthe discrete describing
function is used which based on tﬁe assumption that the input signal
to the nonlinear eleﬁent‘is a sinusoidally modulated impulse traine
The desérete describing function2 is defined as the ratio of the
Z - transform of the output v.*(t) to the Z - transfbnm of the input

. ,
_e (t)e That is

N (z2) =V (Z)/B(2) (2.10)

Figure 2.4 shows the input and output characteristic curve

for an on off nonlinearity, where as their waveforms are shown in

Filure 2.5.

Consider Figure 2.5 (a)

e(t) =E sin wt , AR edl)
Taking T transformationz, we have
E(2) =_E (Z sin wl) |  (212)

7%~ 2ZcoswT + 1
S

11
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If the system is unstable, it will start oscillating. Since
the period of self sustained oscillation2 is an integrsl multiple of
sampling period T, Let

To = -Period of oscillation
m = jinteger
Then To = T (2.13)

Consider Figure 2.5 (b), we may write

_v_‘(,i) = U(t-tl)-U(t-tz)-;vU(t-tB)+U(t—th)+--- oo (Redh)

The output may be expressed as a Fourier series as follow:s:6

00
v(t) =4 +» ' (A cos nwt+B_ sin nwt) (2.15)
=T n :

It is very complicated to derive the Z-transformation for
equation (2.14) and (2.15). For approximation we assume that only the .
fundamental harmonic component of the output is significant. Since the
output is an odd function, hence the fundemental harmonic component is

vl(t) =B, sin wt ' (2.16)
2T ‘

Where Bl =1 f v(t) sin wt d(wt) (2.17)

f’r v

()
= LV cos wtl 4' (2.18)
o

Since sinwh, = /E | | (2.19)

isunc . SIS

therefore B < Y 1=
T

i
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Then we have

" = 4.

a {2.23)
E
Taking Z-transformation, we have
v(2) g_ 1 gz sin w'r) T 2422)
E 2°-2ZcosW+l e
From equation (2.10), we have
iy N%Z) R __(_) _ (2023)
v(z) e
Substitute for E(Z) and V(Z), equation (2.,23) becomes
- L4 g (R a?) R (2.24)
N(Z)
LV
We can find that the N%Z) term will have a minimum
absolute value at ;
| g ( min.) = J/2°d (2.25)
N(Z)
and
B (% =00) = 4d,00 : (2.26)
N(z) ~
Then we have

for V = E = maximum error,

2 . :

3 nin, =

N(Z)

AT

x-d—
E

i

I _ ( % dead-zone) - (2.27)
5 X

{
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