CHAPTER 6

SUGGESTION FOR FURTHER WORK

(1) The flexibility and stress of single mitered
pipe bend is obtained hereto under combined in-plane bending
and dinternal pressure. If possible, a study of single
mitered pipe bend wunder combined out-of-plane bending with
internal pressure should have been attempted to observe

further phenomena.

(2) The experiment ought to be duplicated with the
pipe of larger diameter, thinner pipe wall with longer pipe
length. In addition, it is interesting to investigate the
variation of stress around the inside surface and compare

it with the result obtained herein.

(3) If high pressure equipment is available, it is
constructive +to conduct +the experiment on single mitered
pipe bend with higher internal pressure than this in order

to extend the experimental study.

(4) In this experiment, +the sepecimen ies tested
within the range of elastic limit. If condition prevails,
the specimen should be loaded until the stress is beyond

elastic limit to yield further information.



Appendix I

Basic Equations and Theoretical Development
Assumptions of Theory

l. The theory is that of thin shells, wherein the
wall thickness is assumed small compared to the
radius of curvature.

2. The theory assumes that the ratio 3/& is large
compared to unity.

3. 1t is assumed that +the curved pipe or elbow

cross-section is initially round.

The effect of internal pressure. can be obtained by
a relatively simple extension of the energy methods used
by von Karman and Vigness (21). Accordingly, we start with

the basic energy equations developed by these authors.
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Equation (1) gives the elastic energy stored in a
unit center - line length of curved pipe due to tangential
dieplacements wy and radial displacements Wy The assump-

tion made for in-plane bending is

Wy | ansinEnﬁ {2)
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Fig., I~1 Details of the analysis

With the further assumption of inextensibility in the
transverse direction, which implies that W, = -dwt 2 dﬁ, and
substituting the trigonometric series expressions for Wi s
Equation (1) becomes
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The first integral in ZEquation (3) may be put in
Fourier series form by use of trigonometric equivalents of
the type

oo oo :
cosf 2 a sin2nff = 31nﬁ + —-z (o ray v
n=1 n_l
sin(2n+1)g
Performing the indicated integrations in Equation

(3), it follows that Equation (3) becomes

0 = ﬁ%ﬁ{ rz'f] 3 31‘1’[0 + c% f 121(1-211)2
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where ¢ = a ='b_; 1] = Ao/t for in-plane bending.

When internal pressure is considered, the additional
work represented by the internal pressure p acting against
the change in volume must be considered, per unit length of

centerline, this is

U2 = pdA (5)

where AA the increase in area of the curved

pipe cross-section
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The relation Wi o -dwt/dﬁ is derived from the
condition of inextensibility, dropping second and higher-
order terms. In the case of determining 4A, however, this
is not sufficiently accurate, since the work done by the
pressure.is iteelf dependent upon second and higher-order
terms in GLA. Considering second-order terms, it can be

shown that

iy = -21 % n?(4n°-1)c2 (7)
n
n=1
In order to determine the values of the coefficients
c,» We may differentiate U = Ul—U2 with respect to each ¢
and, by the principle of least work, each of the resulting

expressions may be set equal to zero, thereby obtaining
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Equations (8) give a set of n linear equations with

(n+1) unknown c¢'s. B3y assuming that c%

S = 0, all constants
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may be evaluated. Since the c¢'s all contain a factor of m,
it is convenient to introduce the relation 4 = cn/rq.
The minimized energy U is then equated to work done

by the bending moment
1M
Umin = 5 % (9)

Flexibility Factor
substituting the values of dn = cn/rq from Equations
(8) in Equation (9) and solving for M

M= I%IEI{ 1+3a1+4c11+— Z a2(1-2n)*
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The factor in brackets in Equation (10) is the
generalized formula for +the flexibility factor K for

in-plane bending. 1t may be simplified to the form

K = —d— (11)

p 1+ zd

2" 1

In the first approximation, for example, with Co and

higher c assumed zero, Equation (8) gives

< = - 2 (12)
™ 5 + 67° 4 24
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and from Equation (11)

1 . 5+6?\2+;3L4‘JJ (13)
p 1 - % ( 3 ) O.5+6h?+24w
5 + 6N + 24y

When p = 0, Equation (13) reduces to the egquations
derived by von Karman (in-plane bending). Equation (13),
when p £ 0, is confirmed by the work of Kafka and Dunn (10)

for in-plane bending by substituting\’:O in their equations.

Stresses

The longitudinal strains on which Equations (1) are

based are as follows:
e, = Q8. sind + w,cosf + w_sind) (14)
1 7 =0 = t r =

Circumferential strains at the outer and inner-wall

surfaces, are given by
3
t S
c - % EN i ( 3
2(1=-Y%)r ag

dwt
+ jﬁg) (15)

@
I

The plus sign applies to the outside - wall surface;
minus to inside-wall surface.
Strains may be converted to stresses by the usual

formulas
T flamas
S'l = 1-42 (el+1}ec) \1(3)

S, = Ifﬁ? (ec+V%l) (17)

R T,
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Combining Equations (14) through (17) along with
Equation (2) and noting that 7 = RMK/IE, the following

equations for the stresses are obtained
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Stress - intensification factore are obtained by
dividing Lguations (18) and (19) by Mr/I, since these
factors are +the ratios of the curved - pipe streses to the
calcﬁlated gtress by the ordinary beam theory; which strces

is simply Mr/I

Therefore, the longitudinal stress - intensification
factor for in-plane bending by a first approximation, from
Equation (18), is

S K 3d
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The circumferential stress - intensification factor
for in-plane bending by a firet approximation,from Equation

(19)! is

Sc K 5d, ;
/T o 1:_3’2 F 3d17\coszﬁ +1)[(1+-—§-) sind
d
- 3} sinBﬁ]} (21)

It will be apparent, in writing out Lquations (11),
or (18) and (19), that expressions for the third or fourth-
order approximation become guite lengthy and time-consuming
to apply. In the case of 2zero pressure, it was found
graphically by Beskin (12) and later shown analytically
by Clark and Reissner (3) that, for values of 2\ less than
about O3, the flexibility and maximum stress-intensification

factors can be expressed by the following simple formulas

K

Il

1.73/~ (22)

i

1.95/p2/3 (23)

The existence of simple asymptotic formulas for the
flexibility and stress - intensification factors without
pressure suggested the poseibility of similar formulas for
these factors with pressure. Values of Kp and i were

p
calculated by the serieg formulas over an appropriate range
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of the variables S/E, r/t, and R/r. It was found that by
plotting the feollowing

§ - 1 and % - 1
P o

against the variables $/BE, r/t, and k/r on logarithuic
co-ordinates, that suvetamtially etraight-line relations
held over the range of these wvariables 1likely to be
encountered in piping practice; i.e., S/8 corresponding to
stresses up to 2,800 ksc in steel pipe;r/t up to 50 and &/r

-

from 2 tooo. ‘ihese plots then led to the approximate formu-

las
- K K
K = o i S e e (24)
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where /
AT e 3L
X, = function of v/t and R/r = 6(%) (3)
3/ w5273
Xi = function of r/t and R/r = 3.25(%) (%)

Note Subtracted from "iffect of Internal Pressure on Flexibility
and Strees-Intensification Factors of
Curved Pipe or Welding Elbows" by
Rodabaugh, E.C. and George, H,H,; ASIE
Transactions, 1957; Collected papers

on Pressure Vessel and Piping Design,



APPENDIX II

STRAIN GAGE TECHNIQUE

Strain gages are used for either of two purposes:-

1. To determine the state of strain existing at a
point on a loaded member, for the purpose of
stress analysis.

2. To act as a strain-sensitive transducer element
calibrated in terms of quantities such as force,
pressure displacement, acceleration, etc., for
the purpose of measuring the magnitude of the

input quantity.

The electrical resistance strain gage is used in this
experiment. Theory of operation of this type of gage will
be explained herewith. The resistance of an electrical

conductor varies according to the following relation

B . (1)

If +the conductor is in the state of strain, each
variable in Eq. (1) may change. Differentiating Eq. (1)
yields

R = —L5 (Igo + pdl) - 201 2 (2)

cp@
Dividing Eq. (2) by Eq. (1) resulte in

F-F-+ 8 (3)
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which may be arranged in another form as

aR/R aD/D
/b = 1'2dL§i % dﬁéL (4)

Let e, = dL/L = 1longitudinal strain cm./cm.
Gl 7 db/D = circumferential strain cm./cm.
M = Poisson's ratio = 'gg E
P .= %%;% = gage factor

Therefore

Il

E‘i

gl am
el e,

L+20 =+ %%é% (5)

Rewriting Eq. (5) and replacing the differential by

an increuental resistance change, the following equation is
obtained

CLpu ©

Thies is the fundamental procedure for using resistance
strain gages. In practical application, wvalues of F and R
are supplied by the gage manufacturer, and we determine AR
corresponding to +the input situation intended to measure.
In this experiment Tinsley Telcon strain gages type W8/120/
G/K/2 are used. The gage factor is 1.92 and gage resistance

is in the ranges between 120,7 ~ 121.7 ohms.
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The surface of the test specimen around which the
strain gages were stuck had to be mechanically ground with
an electric grinder to remove any traces of rust and scale.
Then it was smoothly rubbed by grade zero emery cloth and
finally cleaned and polished by cleansing fluid such as
carbontetrachloride or acetene. To stick +the gage, a thin
layer of Durofix adhesive was first coated on the surface
and allowed to dry out. A second layer of cement was then
applied and the gage attached at the position and excess
adhesive were squeezed out by pressure of the thumb. After
the attachment of sixteen gages are completed, they were
left to dry for at least 48 hours. A thin layer of vaseline
wags required over the gages to prevent them from moisture.
Then the gages were wired up to strain gage bridge, dummy
gage and selector switch to form a D.C. Wheatstone Bridge
circuit as shown in FigAll and Al3. The strain gage bridge
diagram was shown in Fig.Al2. <The voltage of the battery
was always checked to see whether the pointer of the meter
reached the red line. If not, the recharge was needed. The
gage factor dial was set to 1.92 asg epecified by the
manufacturer. The initial reading of every gage was obtsined
by pressing the detector button and recorded the value of

measuring dial that brought the pointer +to the zero
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position. When loaded, the measuring dial was also adjusted
until the pointer was at zero position and the value
recorded. The difference was the required percent strain.
If “pull fgo %B" button was pulled, the required percent
strain had to be divided by 10, For the bridge used herein,

the percent strain in the ranges of -0.1 to 0.1 % and -1 to

1 % could be measured.
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/ Longitudinal stress

Y| o—o—o0 In-plane bending ( F = 1,000 kg. )

%] o—o—nono Internal pressure( p = 10 ksc. )

w| A—AO—A Combined loads ( p = 10 ksc., F = 1,000 kg.)
H Circumferential stress

vy|] ®—e—e In-plane bending ( F = 1,000 kg. )
m—m—m Internal pressure( p = 10 ksc. )

A—A——A Combined loads ( p = 10 ksc., F = 1,000 kg.)
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Fig.A5. Variation of longitudinal and circumferential stresses
around the pipe cross-section under various types of
load.
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Longitudinal stress
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Fig.A6. Variation of longitudinal and circumferential stress
around the pipe cross-section under various types of
load.
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O Longitudinal stress
<l o o o In-plane bending ( F = 1,000 kg. )
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o Longitudinal stress
a o o} o In-plane bending ( F = 2,000 kg. )
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Olsen Proving Ring No. 56180 !
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Fig.A9, Calibration curve of Proving Ring No. 50180
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Note :- When used with external Apex Unit open Link between terminals 2 and 3

Mains Input for
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Fig.All. Strain gage bridge connections for two arm bridge
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b) Unreinforced single mitered pipe bend

Fig.Alk. Single mitered pipe bend



Fig.Al5. Amsler Universal Testing Machine

Fig.A16. Hand pump
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3 A2 . ) \ ’
Pig.Al17. / /'Strain gage and cement, Pressure gage
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Strain gage bridge

Fig.Al19.

Selector switch and dummy gage

Fig.A20.



Fig.A21.

Fig.A22,

Dial gage with magnetic holder

Calibration of pressure gage
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Fig.A23. Flexibility under pure in-plane

bending
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Fig.A2L4. Flexibility under combined pressure and in-plane

bending load
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Fig.A25. Pipe specimen with completely

attached strain gages
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Fig.A26, Strains of the pipe subjected te in-plane bending

Fig.A27. Strains of the pipe subjected to combined load
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