CHAPTER IV

GENERALIZATIONS OF NON-CREATIVITY

In this chapter, we want to define a generalized criterion of
non-creativity and show that explicit definitions also satisfy this

criterion.

1
4.1 Definition. Let L and L be two first-order languages such that
1 1
LCL . A sentence ¢ in L is non-creative with respect to L if and

only if : for all sentences ¥ in L; if ¢ =y then j=y.

We want to show that non-creativity with respect to the first-
order language of theory T (L(T))is more general than non-creativity

with respect to T.

]
4.2 Theorem. If a sentence ¢ in L DO L(T) is non-creative with respect

to L(T), then ¢ is non-creative with respect to T.

roof. Assume ¢ is non-creative with respect to L(T), i.e. for
Ereot P

all sentences ¥ in L(T); if ¢+ then |—y.

Want to show that ¢ is non-creative with respect to T, i.e. show

that, for all sentences Y in L(T) ; if Tpé— ¥ then T |—y.

Let Y be any sentence in L(T). Assume TH¢— ¢. Then there

exists a finite sequence of formulas 6 .,en such that en = ¢— Y

i

and for each i, Gi is a logical axiom, or ei €T, or ei comes from ej,



48

ek (j,k <1i) by MP, or Gi comes from Gj (j <1i) by generalization.
Let T1 be a set of sentences used in this deduction, so T1 is finite.
Let T, = {dl,...,dn} where each di, 1 <i<n, is a sentence in T
used in this deduction, hence we get TH¢— 9, i.e. {01,...,0n }
f=¢— ¢. By Deduction Theorem, we get {¢} U{ol,..., on}l—w o 50
¢ A Oy a e a0 [—¥. By Deduction Theorem; ¢ Opa veen O =
oﬁ-ﬂp. Use Deduction Theorem again and again until we get ¢|-—01->
(02—> . o= (or? Y))...). Since 01-> (oz—b(...-—>(on—> P)) . ) 1s

sentence in L(T), by first assumption, we get o — (02-—>(...—>

1

(on—> ¥))...). Use Deduction Theorem again and again, so we get

{01,...,0n}|-—w . i 3 T1|-—lp.- Hence T .

4.3 Theorem. (Interpolation Theorem). Let ¢ and Y be sentences in

first-order language without identity such that }—¢ — §. Then

(i) if ¢ and ¥ contain . common symbols, then there is a
sentence 6 such |-¢— 6 and|—6— Y and the symbols of 6 are common to

¢ and Y,

and (ii) if ¢ and Y contain no common symbols, then either [—~ ¢

or |—1y.

proof. We can find this proof in [2].
4.4 Theorem. The converse of Theorem 4.2 is not necessarily true.

proof. To prove this theorem, we must show that there exists a
1
sentence ¢ in L O L(T) which is non-creative with respect to theory T

but not non-creative with respect to L(T). So we must find a sentence
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]
¢ in L D L(T) and a sentence Y in L(T) such that : for all formulas t

in L(T); if TH—¢ — tthen T |-t and ¢ -y but ;.

Let T = {q} where 0 is a sentence in first-order language with-
out identity such that P 0. Let TN L(T) U{P} where P is a new 1-
placed relation symbol. Let ¢ be the sentence (0 ~dVPvV) in L'. Want
to show that, for all formulas t in L(T); if Th¢—t then T - t. To
show this, let t be any formula in L(T). Assume Tfl—¢— t, i.e. {0}
(0 ~HvPv)— t. By Deduction Theorem; we get 0 ~ gvPv j—t and so
q vPv|—0—> t. Since gvPviand ¢ — t are sentences contain no com-
mon symbols, by Interpolation Theorem, we get either |—~ ( T vPvV) or
f—(o— t. By Godel's Completeness Theorem, we getl=~ (dvPv) which
is impossible, hence f~ (dvPv). So|-0— t and hence 'O |-t, i.e.

{6} |—t. Then ¢ is non-creative with respect to T.

Let ¥ be a sentence ¢ in T, we see that (0 ~ VP V) }—0 but fro.

Thus ¢ is not non-creative with respect to L(T).

Hence, from Theorem 4.2 and 4.4, we see that non-creativity with

respect L(T) is more general than non-creativity with respect to T.

4.5 Theorem. Let L and L' be two first-order languages such that
L& L', and ¢ be a sentence in L'. If for all models M of L, there
exist a model M* of L such that M = M* and M* can be expanded to a
mode 1 M' of L' in which M' = ¢, then ¢ is non-creative with respect

to L.

*
proof. Assume for all models M of L, there exist a model M of
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L such that M EM* and M* can be expanded to a model M' of LI in which
M = ¢. Want to show that ¢ is non-creative with respect to L, i.e.
show that for all sentences ¥ in L; if ¢ |—y then |— ¢. To show this,
let ¥ be any sentence in L. Assume ¢ |—Yy. Suppose F-y. By Godel's
Completeness Theorem, we can suppose ¢ ¥, therefore there exists a model
M of L such that M Pgy. From first assumption, there exists model M*s
M and a model expansion of M*, say M', such that M'i=¢>. Since M ['\T— Y,
we have M Pc ¥ and M Pc ¥, and from ¢ =y (i.c. M=o =3M =), we
get M'PF ¢ which is a contradiction. Thus |—1y.

!
4.6 Definition. Let L and L be two first-order languages such that
1 1
LCL . A sentence ¢ in L is said to be semantically non-creative with
respect to L if and only if : for all models M of L, there exist a model

1 1 ' |
M of L such that M is an expansion of M and M |= ¢.

1 1]
4.7 Theorem. Let L and L be two first-order languages such that L CL
'
and ¢ be a sentence in L . If ¢ is semantically non-creative with res-
*
pect to L, then for all models M of L there exist a model M of L such

* 1 1 1
that M= M and M can be expanded to a model M of L' in which M k= ¢.

proof. Assume ¢ is semantically non-creative with respect to L,
i.e. for all models M of L, there exist a model M' of L' such that M'
is an expansion of M and M' |=¢. Let M* be M, so we get for all models
M of L, there exist a model M,'r of L such that M EM* and M"r can be ex-

1 1
panded to a model M of L' in which M ,=¢.

1 1
4.8 Theorem. Let L and L be two first-order languages such that L € L

1
and ¢ be a sentence in L . If ¢ is semantically non-creative with res-
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pect to L, then ¢ is non-creative with respect to L.
proof. From Theorem 4.5 and 4.7.

1
Next, we describe two first-order languages L and L such that
1 1
LC L, and a sentence ¢ in L such that for all models M of L, there
* * *
exist a model M of L such that M =M and. M can be expanded to. ’a model

1
M of. Lin which M = ¢.

! !
Let L={P, R}andL = {P, R, F} ; where P is a 1-placed
relation symbol, R is a 2-placed relation symbol and F is a 1l-placed

1
function symbol. Thus LCL .

Let ¥ in L be the sentence : §x P x A~ VX (~ R (x, X))~ VX gy

By ~R(x, Y))Aa VX Vy ¥z (R(X, ¥) ~ R(y, 2) — R(x,2)).

1
Let & in L be the sentence : Vx (~ Px— 3y (Py  F(y) =

X)) .

1
Let ¢ in L be the sentence : y— 6 . (Intuitively, ¢ says
that "If { x/x is P } is infinite then there is a function F that maps

{x/x is P } onto {x/x is not P} ".).
Before we show the above, we need some lemmas.

4.9 Lemma. If M=V, then Ip is infinite, where Ip is the interpreta-

tion of P in M.

proof. Assume My and let M= < A, Ip, 1> where A is the

universe and Ip’ IR are interpretations of P and R, respectively, in M.



52

Suppose Ip is finite, let Ip = { a1,..+5 8 /a, €A, 1 <i<n L

Since M}:ll), we can define B = { LIPRPR bn/bl =a andb, ., =a,
where (bi’ aJ.) EIR } . From this set, we see that (bi’ bi+1) €IR and
if (bi’ bi+1) €IR and (bi+1’ bi+2) EIR, then (bi, b;1.+2) eIR 3251 <R,

Vo .
At last, we get (bi, bn) o 1,141 €n, but (bn’ bk) EIR for some

R
k, 1 <k <n, therefore (bn’ bn) € IR contradiction. Hence Ip is infi-

nite.

4.10 Lemma. For all infinite models M of L, there exist a countable

* *
(infinite) model M of L such that M= M .

proof. Let M be any infinite model of L. Let T = {¢/¢ is a
sentence in which M |=¢}, then T is consistent. By Theorem 2.57;: Tihdas
a countable model, say M*. Now we want to show that M = M*. Let Y be
any sentence in L. Suppose M =V, then ¥ €T, and so M*~|=w . Suppose
M*l= Y. If €T, then we get M. If y ¢ T, and suppose that My
then M I-—_-~ Y , therefore -~ V€ T, so M*|=~1b, i.e. M*l#\b which is a

contradiction. Thus M'=1D.
4.11 Theorem. The converse of Theorem 4.7 is not necessarily true.

proof. To prove this theorem, we must show that there exist two
first-order languages L and L' such that L C L' and a sentence ¢ in L'
such that for all models M of L, there exist a model M* of L such that
MZM and M can be expanded to a model M of L' in which M'E ¢, but ¢

is not semantically non-creative with respect to L.

. 1
Let L= {P, R} , L = {P, R, F} where P is an 1-placed relation

symbol, R is a 2-placed relation symbol and F is an l-placed function
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1
symbol. Thus L CL .

Let Y in L be the sentence : x Px ~ Vx (~ R(x, X)) ~ VX gy

Py ~R(x, ¥)) ~ Vx Vy Vz (R(Xx, y) » R(y, 2)— R(x, 2)),
1]
6 in L be the sentence : Vx (~ Px—dy (Py ~ F(y) = x)).
|
and ¢ in L be the sentence : y —- 0,

Let M= <A, I, I > where A is the universe, I_ and I_ are
B P R

interpretations of P and R, respectively, in M; be any model of L.

*
case 1 : M is finite. /Let M ="M =<A, Ip’ IR> where A is

1 *
finite and Ip_C_ A is also finite. Let M <M, IF > where IF is any

] ;]
interpretation of F. By Lemma 4.8, we get M H=w. Hence M is an ex-

pansion of M* such that M',=w—+ 0.

case 2 : M is countably infinite. Suppose M = <A, Ip’ IR >
where A is countably infinite and Ip is finite. Let M* = M and M' =<M,
IF > where IF is any interpretation of F, M' is an expansion of M*. By
Lemma 4.8, M BV, so we get M"|=tl)-—>9.

Suppose M= <A, Ip, IR_-> where A is countably infinite and Ip
is also countably infinite. 4 Let M#r = M. Since A and Ip are also counta-
bly infinite, there exists a function IF maps from Ip onto A-Ip. So

1 * i =
let M = <M, Ip>, thus M = 6. Hence M is an expansion of M such

|
that M =9— 6.

case 3 : M ivsfvlmcountable. By Lemma 4.9, there exists a model

* * *
M such that M is countable and M=M . As in case 2, there exists an
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*

1 * '
expansion M = <M, I > of M such that M =y —> 6.

Finally, we must show that ¢ is not semantically non-creative
with respect to L, i.e. there exists a model M of L such that for all

1 ]
mode 1 M of i which M’ are expansions of M, M ¢ (i.e. M }=w and
M HE0).

Let M = <R,Q,< > , we see that M |=y. LetM'=<R,
Q, < IF > is any model of L', we get M' is an expansion of M, there-
fore M Ev. If I. is any function maps from Qto R-Q , then Ig
is not onto, so M' l:\= o '

4.12 Theorem. The converse of Theorem 4.8 is not necessarily true.

proof. To proof this theorem, we must show that there exist two
\J 1 1
first-order languages L and L such that L C L and a sentence ¢ in L
such that ¢ is non-creative with respect to L but is not semantically

non-creative with respect to L.

1
Let L, L and ¢ as in Theorem 4.10. By Theorem 4.4, ¢ is non-

creative with respect to L.

We see that semantical non-creativity with respect to L =dnon-
creativity with respect to L(T) =pnon-creativity with respect to T,
but the converses are not true. Hence semantical non-creativity with
respect to L is the most general criterion of non-creativity among

these three.

4.13 Theorem. Explicit definitions are semantically non-creative.
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proof. Let L and L' be two first-order languages such that
LCL =LU{P} where P is a new n-placed relation symbol. Let ¢ be
an explicit definition, therefore ¢ is of the form (Vvl)... (an)
(P(vl... vn) «—>S), whereS'is 3 formula in L. We must show that ¢ is

semantically non-creative with respect to L.

Let M = < A, 3’ > be any model of L. Want to show that there
1 ' 1
exists a model M of L which is an expansion of M and such that M=

(Vvl)... (an) (P(Vl"' vn) = 19),

Let B = { (al,..., an)/aie A and there exists (bl,..., NS

satisfies S in M such that b = a

{ b =an}

A W

'
Let interpretation of P = Ip =B. LetM = <M, Ip > , hence

]
M is an expansion of M.

1
Next, we want to show that M ':P(vl... vn) =8, 1i.e. to Show

1
all sequence of elements of A satisfy P(vl.. - vn) 'S in M-,

Let s = (cl,..., cn,...) be any sequence of elements of A which

1
satisfies P(vl... vn) in M, therefore (cl,..., cn) € Ip. Then there

exists sequence of elements of A : s = (b : bn,...) such that b1 =

oo

! ]
c i bn = c. satisfies S in M. By Lemma 2.38, s satisfies S in M .

100"

Let s = (d » d ,...) be any sequence of elements of A does

12" ¥

1
not satisfy P(vl_.... vn) in M , therefore (dl""’ dn) ¢ Ip. Then for

all sequence of elements of A : (b b.-,.:%) such: that b1 =d

1272 By

1 '
bn = dn does not satisfy S in M. So s does not satisfy S in M .

177"
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Thus, all sequences of elements of A satisfy P(vl. i, Vn) «~— S
1 1 1
in M and so M |=P(v1... Vn)HS. Hence M = (V Vl)"' (V vn) (P

(v vn) +~— S).

1°°"
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