CHAPTER II

PRELIMINARIES

In this thesis, we assume a basic knowledge of logic. The materials of this chapter are drawn from [1] and [3].

2.1 <u>Definition</u>. A first-order language L is a finite collection of symbols.

These symbols are separated into three groups; relation symbols, function symbols and (individual) constant symbols. The relation and function symbols of L will be denoted by capital letters P, F with superscripts and subscripts. Lower case letters c, with subscripts, range over the constant symbols of L.

We may write the symbols of L as follows:

$$L = \{ P_1^{i_1}, \dots, P_n^{i_n}, F_1^{j_1}, \dots, F_m^{j_m}, c_1, \dots, c_q \}$$

Eventually, each relation symbol P_j^n will seen as representing an n-placed relation, similarly, each function symbol F_j^m of L, an m-placed function. Subsequently, the superscripts of these symbols will be omitted in cases where it is clear what they are, e.g. if we write P_1 $(v_1 \dots v_n)$, this means that P_1 is P_1^n .

When dealing with several languages at the same time, we use the letters L, $L^{'}$, $L^{''}$, etc. If the symbols of the language are quite

standard, as for example + for addition, \leq for an order relation, etc., we shall simply write

$$L = \{ \leq \}, L' = \{ \leq, +, ., 0 \}, L'' = \{ +, ., -, 0, 1 \}, etc.,$$

for such languages. The number of places of the various kinds of symbols is understood to follow the standard usage.

2.2 <u>Definition</u>. The cardinal, or power, of a first-order language L, denoted by ||L||, is defined as

 $|\ |\ L\ |\ |\ =\ \omega\ U\ |\ L\ |\$ where $|\ L\ |$ is the cardinal of set of symbols of L.

2.3 <u>Definition</u>. A first-order language L' is an expansion of a first-order language L if and only if L' has all the symbols of L plus some additional symbols. We use the notation LC L'.

Since L and L are just sets of symbols, the expansion L may be written as L = L U X, where X is the set of new symbols.

- 2.4 Definition. A model of a first-order language L consists of
 - (1) a nonempty set A called universe,
- (2) interpretations of relation, function and constant symbols where
- (2.1) each relation symbol P_j^n corresponds to an n-placed relation $R_j \subseteq A^n$,
- (2.2) each function symbol F_{j}^{m} corresponds to an m-placed function G_{j} from A^{m} into A,

(2.3) each constant symbol c corresponds to an element x in A.

2.5 <u>Definition</u>. If M is a model of L and L' = L U X, then M can be expanded to a model M' of L' by giving appropriate interpretations for the symbols in X. We call M' an expansion of M to L' and M is the reduct of M' to L.

If \mathbf{y}' is any interpretation for the symbols in X, then $\mathbf{M}' = < A$, $\mathbf{y}' \mathbf{y}' > \mathbf{y$

2.6 Remark. Let LC L and L = LU X.

- (i) There are many ways that a model M of L can be expanded to a model M of L .
- (ii) There is only one reduct M of M to L, namely, by restricting the interpretation function f on L U X to L.
- (iii) Expansion and reduction do not change the universe of the model.

2.7 <u>Definition</u>. The cardinal, or power, of the model M is the cardinal |A|.

M is said to be finite, countable or uncountable if A is finite, countable or uncountable.

To formalize a first-order language L, we need the following logical symbols:

```
parentheses ), (;  \text{a denumerable list of individual variables } v_1, v_2, \ldots, v_n, \ldots; \\ \text{connectives } \land, \land; \\ \text{quantifier} \qquad \forall \ ; \\ \text{and identity symbol} = .
```

2.8 Definition. Terms of L are defined as follows:

- (i) An individual variable is a term.
- (ii) A constant symbol is a term.
- (iii) If F is an m-placed function symbol and t_1,\ldots,t_m are terms, then F $(t_1\ldots t_m)$ is a term.
- (iv) A string of symbols is a term only if it can be shown to be a term by a finite number of applications of (i) (iii).

2.9 Definition. Atomic formulas of L are defined as follows:

- (i) $t_1 = t_2$ is an atomic formula, where t_1 and t_2 are terms of L.
 - (ii) If P is an n-placed relation symbol and t_1, \ldots, t_n are

terms, then P $(t_1 \dots t_n)$ is an atomic formula.

- (iii) A string of symbols is an atomic formula only by (i)
 and (ii).
- 2.10 Definition. Formulas of L are defined as follows:
 - (i) An atomic formula is a formula.
- (ii) If φ and ψ are formulas, then ($\varphi \, {\scriptstyle \wedge} \, \psi$), (${\scriptstyle \sim} \, \varphi$) and (${\scriptstyle \sim} \, \psi$) are formulas.
- (iii) If v is an individual variable and φ is a formula, then ($\forall\, v)\,\,\varphi\,$ is a formula.
- (iv) A sequence of symbols is a formula by a finite number of applications of (i) (iii).
- 2.11 <u>Definition</u>. The defined connectives \vee , \rightarrow , \longleftrightarrow , and \exists are introduced as abbreviations defined as :

$$\phi \sim \psi$$
 for $\sim (\sim \phi \sim \psi)$.
 $\phi \longrightarrow \psi$ for $\sim \phi \sim \psi$
 $\phi \longleftrightarrow \psi$ for $(\phi \longrightarrow \psi) \sim (\psi \longrightarrow \phi)$.
 $(\exists v) \phi$ for $\sim (\forall v) \sim \phi$

- 2.12 <u>Definition</u>. Length of a term t is the number of occurrences of function symbols in t.
- 2.13 <u>Definition</u>. Length of a formula is the number of connectives and quantifiers.
- 2.14 Note. An atomic formula is a formula of length zero.

- 2.15 Definition. Subformulas of a formula ϕ are defined as follows:
 - (i) ϕ is a subformula of ϕ .
- (ii) If $\psi_\wedge\,\theta_{}$ is a subformula of φ , then both $\psi_{}$ and $\theta_{}$ are subformulas of $\varphi_{}.$
- (iii) If $\sim \psi$ is a subformula of φ , then ψ is a subformula of φ .
- (iv) If (\forall v) ψ is a subformula of φ , then ψ is a subformula of φ .
- 2.16 <u>Definition</u>. The scope of $(\forall v)$ in $(\forall v)$ ϕ is ϕ .
- 2.17 <u>Definition</u>. An occurrence of an individual variable v is bound in a formula ϕ if and only if it is the variable of a quantifier ($\forall v$) in ϕ , or it is within the scope of a quantifier ($\forall v$) in ϕ .
- 2.18 <u>Definition</u>. An occurrence of an individual variable is free in a formula ϕ if and only if it is not bound in ϕ .
- 2.19 <u>Definition</u>. An individual variable is free (bound) in a formula ϕ if and only if it has a free (bound) occurrence in ϕ .
- 2.20 <u>Definition</u>. $\phi(v_1, \dots, v_k)$ means that some of v_1, \dots, v_k are free in ϕ .
- 2.21 <u>Definition</u>. A sentence is a formula with no free variables.

To make all the above syntactical notions into a formal system we need logical axioms and rules of inference.

Let ϕ , ψ and θ be formula of L.

2.22 Logical axioms of L.

- (i) $\phi \rightarrow (\psi \rightarrow \phi)$.
- (ii) $(\phi \rightarrow (\psi \rightarrow \theta)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \theta))$.
- (iii) $(\sim \phi \rightarrow \sim \psi) \rightarrow ((\sim \phi \rightarrow \psi) \rightarrow \phi)$.
- (iv) $(\forall v) (\phi \rightarrow \psi) \rightarrow (\phi \rightarrow (\forall v) \psi)$; where v is a variable not free in ϕ .
- (v) $(\forall v) \phi \rightarrow \psi$; where ψ is a formula obtained from ϕ by freely substituting each free occurrence of v in ϕ by a term t. (i.e. no variable x in t shall occur bound in ψ at the place where it is introduced.).
 - (vi) x = x; x is a variable.
- $(\text{vii}) \quad x = y \longrightarrow t(v_1 \dots v_{i-1} x v_{i+1} \dots v_n) = t(v_1 \dots v_{i-1} y v_{i+1} \dots v_n);$ where x, y are variables and $t(v_1 \dots v_n)$ is a term.

 $(\text{viii}) \ x = y \longrightarrow (\phi(v_1 \dots v_{i-1} x v_{i+1} \dots v_n) \longrightarrow \phi(v_1 \dots v_{i-1} y v_{i+1} \dots v_n)) ; \text{ where } x, \text{ y are variables and } \phi(v_1 \dots v_n) \text{ is a formula.}$

2.23 Rules of Inference.

- (i) Rule of Detachment (or Modus Ponen or MP.) : From φ and $\varphi {\:\longrightarrow\:} \psi \text{ infer } \psi \ .$
 - (ii) Rule of Generalization : From φ infer (yv) φ .
- 2.24 <u>Definition</u>. A proof is a finite sequence of formulas ψ_1,\ldots,ψ_n such that each ψ_i , $1 \le i \le n$, is

- (i) a logical axiom of L, or
- (ii) a conclusion from $\psi_{\mathbf{j}},\,\psi_{k}$ (j, k < i) by MP., or
- (iii) a conclusion from ψ_{j} (j < i) by generalization.
- 2.25 <u>Definition</u>. Let Σ be a set of sentences of L and ϕ be a formula. A proof of ϕ from Σ is a finite sequence of formulas ψ_1, \ldots, ψ_n such that $\psi_n = \phi$ and each ψ_i , $1 \le i \le n$, is
 - (i) a logical axiom of L, or
 - (ii) a conclusion from ψ_j , ψ_k (j, k < i) by MP., or
 - (iii) a conclusion from ψ_j (j < i) by generalization, or
 - (iv) a member of Σ .
- 2.26 <u>Definition</u>. ϕ is deducible from Σ (in notation $\Sigma \vdash \phi$) if and only if there exists a proof of ϕ from Σ . If it is not the case that ϕ is deducible from Σ , then we use $\Sigma \not\models \phi$.

If
$$\Sigma = \{\sigma_1, \ldots, \sigma_n\}$$
, we write $\sigma_1 \ldots \sigma_n \vdash \phi$ for $\Sigma \vdash \phi$.

- 2.28 <u>Definition</u>. Let Σ be a set of sentences of L. Σ is inconsistent if and only if $\Sigma \models \varphi \land \neg \varphi$, for any formula φ of L. Otherwise Σ is consistent.

A sentence σ is consistent if and only if $\{\sigma\}$ is.

2.29 <u>Definition</u>. Let Σ be a set of sentences of L. Σ is maximal consistent (in L) if and only if Σ is consistent and no set of sentences

(of L) properly containing Σ is consistent.

2.30 <u>Lemma</u>. Let ϕ be a formula of L, then $\phi \rightarrow \phi$ is a theorem, i.e. $\vdash \phi \longrightarrow \phi$.

<u>proof.</u> (1) $(\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$ by axiom (ii)

(2)
$$\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)$$
 by axiom (i)

(3)
$$(\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi)$$
 by (1), (2) and MP.

(4)
$$\phi \rightarrow (\phi \rightarrow \phi)$$
 by axiom (i)

(5)
$$\phi \rightarrow \phi$$
 by (3), (4) and MP.

Hence $\phi \rightarrow \phi$ is a theorem.

2.31 <u>Theorem.</u> (Deduction Theorem.) Let Σ be a set of sentences of L, ϕ a sentence and ψ a formula. Σ U $\{\phi\}$ $\vdash \psi$ if and only if Σ $\vdash \phi \longrightarrow \psi$. In particular, ϕ $\vdash \psi$ if and only if $\vdash \phi \longrightarrow \psi$.

proof. Assume Σ U $\{\phi\}$ $\vdash \psi$, therefore, there exists a finite sequence of formulas $\theta_1, \ldots, \theta_n$ such that $\theta_n = \psi$ and each θ_i , $1 \le i \le n$, is a logical axiom of L, or $\theta_i \in \Sigma$ U $\{\phi\}$, or θ_i is a conclusion from θ_j , θ_k (j, k < i) by MP., or θ_i is a conclusion from θ_j (j < i) by generalization.

Claim that $\Sigma \vdash \phi \to \theta_1$, $1 \leq i \leq n$. We must show this by induction on i. Suppose i = 1, therefore θ_1 is a logical axiom or $\theta_1 \in \Sigma$ or $\theta_1 = \phi$. Suppose θ_1 is a logical axiom or $\theta_1 \in \Sigma$. Since $\vdash \theta_1 \to (\phi \to \theta_1)$, we get $\Sigma \vdash \phi \to \theta_1$. Suppose $\theta_1 = \phi$. Since $\vdash \phi \to \phi$ by Lemma 2.30, we have $\Sigma \vdash \phi \to \theta_1$.

Assume $\Sigma \longmapsto \theta_j$, for all $j < k \le n$. Then θ_k is a logical axiom, or $\theta_k \in \Sigma$, or $\theta_k = \phi$, or θ_k is a conclusion from θ_j , $\theta_j \mapsto \theta_k$, (j < k) by MP., or θ_k is a conclusion from θ_j , (j < k) by generalization. For the first three possibilities, $\Sigma \longmapsto \phi \mapsto \theta_k$ by the proof for θ_1 . If θ_k is a conclusion from θ_j , $\theta_j \mapsto \theta_k$, (j < k) by MP., then for some $\ell < k$, $\theta_\ell = \theta_j \mapsto \theta_k$. By induction hypothesis; $\Sigma \longmapsto \phi \mapsto \theta_j$ and $\Sigma \longmapsto \phi \mapsto (\theta_j \mapsto \theta_k)$ and since $\longmapsto (\phi \mapsto (\theta_j \mapsto \theta_k)) \mapsto ((\phi \mapsto \theta_j) \mapsto (\phi \mapsto \theta_k))$, we get $\Sigma \longmapsto \phi \mapsto \theta_k$. If θ_k is a conclusion from θ_j , (j < k) by generalization, then by induction hypothesis; $\Sigma \longmapsto \phi \mapsto \theta_j$, and $\Sigma \longmapsto (\forall \nu)$ $(\phi \mapsto \theta_j)$. Since $\longmapsto ((\forall \nu)$ $(\phi \mapsto \theta_j) \mapsto (\phi \mapsto (\forall \nu)$ $\theta_j)$, we get $\Sigma \longmapsto \phi \mapsto \theta_k$. Therefore $\Sigma \longmapsto \phi \mapsto \theta_i$, $1 \le i \le n$, so $\Sigma \longmapsto \phi \mapsto \theta_n$. Hence $\Sigma \longmapsto \phi \mapsto \psi$.

To prove the converse, assume that $\Sigma \longmapsto \phi \longrightarrow \psi$, then there exists a finite sequence of formulas $\theta_1, \ldots, \theta_n$ such that $\theta_n = \phi \longrightarrow \psi$; which is a proof of $\phi \Longrightarrow \psi$ from Σ . Add ϕ to the proof, we then get ψ by MP. Hence $\Sigma \cup \{\phi\} \longmapsto \psi$.

- 2.32 Proposition. Let Σ be a set of sentences of L and ϕ be a sentence.
 - (i) If Σ U { ϕ } is inconsistent, then $\Sigma \vdash \sim \phi$.
 - (ii) If $\Sigma \vdash \varphi$, then $\Sigma \cup \{ \neg \varphi \}$ is consistent.

<u>proof.</u> (i) Assume $\Sigma \cup \{\phi\}$ is inconsistent, so $\Sigma \cup \{\phi\} \vdash \psi \land \sim \psi$ for any formula ψ of L. Then $\Sigma \cup \{\phi\} \vdash \psi$ and $\Sigma \cup \{\phi\} \vdash \sim \psi$. By Deduction Theorem, we get $\Sigma \vdash \phi \longrightarrow \psi$ and $\Sigma \vdash \phi \longrightarrow \sim \psi$. Since $\vdash (\phi \longrightarrow \psi) \longrightarrow ((\phi \longrightarrow \sim \psi) \longrightarrow \sim \phi)$, we get $\Sigma \vdash \sim \phi$.

- (ii) Assume $\Sigma \hspace{0.2em} \hspace{0.2$
- 2.33 <u>Proposition</u>. Let Σ be a set of sentences of L. If Σ is maximal consistent, then for any sentences ϕ and ψ of L,
 - (i) $\Sigma \vdash \phi$ if and only if $\phi \in \Sigma$,
 - (ii) $\phi \not\in \Sigma$ if and only if $\sim \phi \in \Sigma$,
- and (iii) $\phi \wedge \psi \in \Sigma$ if and only if both ϕ and ψ belong to Σ .

<u>proof.</u> (i) Assume $\Sigma \models \varphi$. Consider $\Sigma \cup \{\varphi\} = \Sigma_1$. Suppose Σ_1 is inconsistent. By Proposition 2.32 (i) we get $\Sigma \models \neg \varphi$ and so $\Sigma \models \varphi \land \neg \varphi$, then Σ is inconsistent which is a contradiction. Thus Σ_1 is consistent and since Σ is maximal consistent, we get $\Sigma = \Sigma_1$. Hence $\varphi \in \Sigma$.

To prove the converse, assume that $\phi \in \Sigma$. By Definition 2.26, we get $\Sigma \models \phi$.

(ii) Assume $\phi \notin \Sigma$. By (i), $\Sigma \not\models \varphi$, so $\Sigma \cup \{\sim \varphi\}$ is consistent. Since Σ is maximal consistent, we get $\Sigma \cup \{\sim \varphi\} = \Sigma$. Hence $\sim \varphi \in \Sigma$.

To prove the converse, assume that $\sim \varphi \in \Sigma$, by (i) we get $\Sigma \models \sim \varphi$. Suppose $\varphi \in \Sigma$, then $\Sigma \models \varphi$. Thus $\Sigma \models \varphi_{\wedge} \sim \varphi$ and so Σ is inconsistent which is a contradiction. Hence $\varphi \not\in \Sigma$.

(iii) Assume $\phi \wedge \psi \in \Sigma$, by (i) we get $\Sigma \vdash \phi \wedge \psi$, i.e. $\Sigma \vdash \phi$ and $\Sigma \vdash \psi$. Hence $\phi \in \Sigma$ and $\psi \in \Sigma$.

To prove the converse, assume that $\varphi \in \Sigma$ and $\psi \in \Sigma$, so $\Sigma \longmapsto \varphi$ and $\Sigma \longmapsto \psi$. Hence $\varphi \in \Sigma$ and $\psi \in \Sigma$, i.e. $\varphi \wedge \psi \in \Sigma$.

2.34 <u>Theorem</u>. (Lindenbaum's Theorem). Any consistent set of sentences Σ of L can be extended to a maximal consistent set of sentences Γ of L.

proof. Let us arrange all the sentences of L in a list, ϕ_0 , $\phi_1,\ldots,\phi_{\alpha}$,.... The order in which we list them is immaterial, as long as the list associates in a one-one fashion an ordinal number with each sentence. If $\Sigma \cup \{\phi_0\}$ is consistent, define $\Sigma_1 = \Sigma \cup \{\phi_0\}$. Otherwise define $\Sigma_1 = \Sigma$. At the α^{th} stage, we define $\Sigma_{\alpha+1} = \Sigma_{\alpha} \cup \{\phi_{\alpha}\}$ if $\Sigma_{\alpha} \cup \{\phi_{\alpha}\}$ is consistent, and otherwise define $\Sigma_{\alpha+1} = \Sigma_{\alpha}$. At limit ordinals α take unions $\Sigma_{\alpha} = \bigcup_{\beta < \alpha} \Sigma_{\beta}$. So we shall form an increasing chain $\Sigma = \Sigma_0 \subset \Sigma_1 \subset \Sigma_2 \subset \ldots \subset \Sigma_{\alpha} \subset \ldots$ of consistent set of sentences. Now let Γ be the union of all the sets Σ_{α} .

Claim that Γ is consistent. Suppose not. Then there is a deduction ψ_1,\ldots,ψ_p of the formula $\phi \wedge \phi$ from Γ . Let θ_1,\ldots,θ_q be all the formulas in Γ which are used in this deduction. We may choose α so that all of θ_1,\ldots,θ_q belong to Σ_α . But this means that Σ_α is inconsistent, which is a contradiction.

Having shown that Γ is consistent, we next claim that Γ is maximal consistent. Suppose Δ is consistent and $\Gamma \subseteq \Delta$. Let $\phi_{\alpha} \in \Delta$. Claim that Σ_{α} U $\{\phi_{\alpha}\}$ is consistent. To prove this, suppose Σ_{α} U $\{\phi_{\alpha}\}$

Satisfaction of formulas of L.

Let ϕ be any formula of L,

 $M = \langle A, \mathcal{Y} \rangle$ be a model of L,

and $s = (s_1, s_2,...)$ be any sequence of elements of A.

- 2.35 <u>Definition</u>. The value of a term t at the sequence s, denoted by t[s], is defined as follows:
 - (i) If $t = v_i$, then $t[s] = s_i$.
- (ii) If t is a constant symbol c, then t[s] is the interpretation of c in M, denoted by \mathbf{y} (c).
- (iii) If $t = F(t_1...t_m)$ where F is an m-placed function symbol and $t_1,...,t_m$ are terms, then $t[s] = G(t_1[s]...t_m[s])$ where G is the interpretation of F in M.
- 2.36 <u>Definition</u>. Satisfaction of an atomic formula ϕ by a sequence s in M is defined as follows:
 - (i) If ϕ is $t_1 = t_2$ where t_1 , t_2 are terms, then s satisfies ϕ in M if and only if $t_1[s] = t_2[s]$.
- (ii) If ϕ is $P(t_1...t_n)$ where P is an n-placed relation symbol and $t_1,\ldots,\ t_n$ are terms, then s satisfies ϕ in M if and only if

 $(t_1[s],...,t_n[s]) \in R$ where R is the interpretation of P in M.

- 2.37 <u>Definition</u>. Satisfaction of a formula ϕ by a sequence s in M is defined as follows:
- (i) If ϕ is $\theta_1 \wedge \theta_2$ where θ_1 and θ_2 are formulas, then s satisfies ϕ in M if and only if s satisfies both θ_1 and θ_2 in M.
- (ii) If φ is $\sim \theta$ where θ is a formula, then s satisfies φ if and only if s does not satisfy θ in M.
- (iii) If φ is ($\forall \ v_i)$ θ where v_i is an individual variable and θ is a formula, then s satisfies φ in M if and only if every sequence of elements of A differing from s in at most i ^th place satisfies θ .
- 2.38 <u>Lemma</u>. If the free variables of a formula ϕ occur in the list v_1, \ldots, v_k and if the sequences s and s have the same components in the $i_1^{th}, \ldots, i_k^{th}$ places, then s satisfies ϕ if and only if s satisfies ϕ .

 $\underline{\text{proof.}}$ We must prove this lemma by induction on length of a formula φ .

First we must prove that if t is a term with variables among v_1,\ldots,v_k and if s and s' have the same components in the i_1^{th},\ldots,i_k^{th} places, then t [s] = t [s']

If t is an individual variable v_i for some j, $i \le j \le k$ then $t[s] = a_i$, $t[s'] = a_i$ where a_i is the i_j^{th} element of the sequence s and s', hence t[s] = t[s'].

If t is a constant symbol c, then t contains no variables at all. So $t[s_1] = t[s_2]$ for any sequences s_1 and s_2 .

Suppose $\textcircled{\bullet}$ is true for all terms t such that length of t < k. If t is $F(t_1, \ldots, t_m)$ of length k, where F is an m-placed function symbol and t_1, \ldots, t_m are terms with variables among v_1, \ldots, v_i such that length of $t_j < k$, then $t[s] = G(t_1[s] \ldots t_m[s])$ and $t[s'] = G(t_1[s'] \ldots t_m[s'])$ where G is the interpretation of F. By induction hypothesis, $t_1[s] = t_1[s'], \ldots, t_m[s] = t_m[s']$, so $G(t_1[s] \ldots t_m[s]) = G(t_1[s'] \ldots t_m[s'])$. Hence t[s] = t[s'].

If ϕ is an atomic formula $t_1 = t_2$ where t_1 , t_2 are terms and t_1 and t_2 are terms with variables among v_1, \ldots, v_i , then $t_1[s] = t_1[s']$ and $t_2[s] = t_2[s']$. Assume s satisfies $t_1 = t_2$ then $t_1[s] = t_2[s]$ and so $t_1[s'] = t_2[s']$. Therefore s' satisfies $t_1 = t_2$. Similarly, if s' satisfies $t_1 = t_2$ then s satisfies $t_1 = t_2$.

If φ is an atomic formula $P(t_1,\ldots t_m)$ where P is an n-placed relation symbol and t_j , $1\leq j\leq n$, is a term with variables among v_1,\ldots,v_i , then $t_1[s]=t_1[s'],\ldots,t_n[s]=t_n[s']$. Assume s satisfies $P(t_1,\ldots t_n) \text{ then } (t_1[s],\ldots,t_n[s]) \in R \text{ where } R \text{ is the interpretation of } P, \text{ so } (t_1[s'],\ldots,t_n[s']) \in R. \text{ Hence } s' \text{ satisfies } P(t_1,\ldots t_n).$ Similarly, if s' satisfies $P(t_1,\ldots t_n)$ then s satisfies $P(t_1,\ldots t_n)$.

Suppose this lemma is true for all formulas ψ such that length of ψ < length of φ .

If ϕ is $\sim \psi$, then s satisfies ψ if and only if s satisfies ψ .

Therefore s does not satisfy ψ if and only if s' does not satisfy ψ , i.e. s satisfies φ if and only if s' satisfies φ .

If φ is $\psi_1 ^{\ }\psi_2$, then ψ_1 and ψ_2 are formulas whose lengths < length of $\varphi.$ Therefore s satisfies ψ_1 if and only if s'satisfies ψ_1 and s satisfies ψ_2 if and only if s'satisfies ψ_2 . Hence s satisfies $\psi_1 ^{\ }\wedge\psi_2$ if and only if s'satisfies $\psi_1 ^{\ }\wedge\psi_2$.

If ϕ is $(\forall v_r)$ ψ where $v_r \notin \{v_1, \ldots, v_i\}$, then ψ is a formula of length < length of ϕ . Assume s satisfies $(\forall v_r)$ ψ , then s satisfies ψ and \overline{s} satisfies ψ where \overline{s} is a sequence differing from s in at most r^{th} place. By induction hypothesis, s' satisfies ψ . Let \overline{s} be any sequence differing from s' in at most r^{th} place, so \overline{s} and \overline{s} have the same components in the $i_1^{th}, \ldots, i_k^{th}$ places, therefore \overline{s} satisfies ψ . Hence s' satisfies $(\forall v_r)$ ψ . Similarly, if s' satisfies $(\forall v_r)$ ψ then s satisfies $(\forall v_r)$ ψ .

If ϕ is $(\forall v_r)$ ψ and $v_r \in \{v_{i_1}, \dots, v_{i_k}\}$, so v_r must be v_i for some $j, 1 \leq j \leq k$. Assume $s = (b_1, \dots, b_{i_1-1}, a_{i_1}, \dots, a_{i_k}, b_{i_k+1}, \dots)$ satisfies $(\forall v_r)$ ψ . Suppose $s' = (c_1, \dots, c_{i_1-1}, a_{i_1}, \dots, a_{i_k}, c_{i_k+1}, \dots)$ does not satisfy $(\forall v_r)$ ψ , then there exists a sequence $s' = (c_1, \dots, c_{i_1-1}, a_{i_1}, \dots, a_{i_k}, \dots, a_{i_k}, c_{i_k+1}, \dots)$, which is differing from s' in at most i_j place does not satisfy ψ . By induction hypothesis, $\overline{s} = (b_1, \dots, b_{i_1-1}, a_{i_1}, \dots, d_{i_k}, \dots, a_{i_k}, b_{i_k+1}, \dots)$, which is a sequence differing from s in at most i_j place does not satisfy ψ . Contradicts to the assumption, hence s' satisfies $(\forall v_r)$ ψ . Similarly, if s' satisfies $(\forall v_r)$ ψ then s satisfies $(\forall v_r)$ ψ .

Hence this Lemma is true for all formulas \$6.

- 2.39 <u>Definition</u>. A sentence \emptyset of L is true in a model $M = \langle A, \mathcal{I} \rangle$ or M is a model of \emptyset ($M \models \emptyset$) if and only if every sequence of elements of A satisfies \emptyset in M.
- 2.40 Lemma. Let \emptyset be a sentence of L and M = $\langle A, \mathcal{J} \rangle$ a model of L. If there exists a sequence of elements of A satisfies \emptyset in M, then every sequence of elements of A satisfies \emptyset in M.

proof. Assume (a_1, a_2, \ldots) , a sequence of elements of A satisfies \emptyset in M. Let (b_1, b_2, \ldots) be any sequence of elements of A. Want to show that (b_1, b_2, \ldots) satisfies \emptyset in M. We must prove this by induction on length of sentence \emptyset .

continue

First, we must prove that if t is a term with no free variables, then t[s] = t[s'].

If t = c, where c is a constant symbol, then t[s] = 3(c) = t[s'].

Assume this is true for all terms t with no free variables of lengths < k. If t is $F(t_1...t_m)$ of length k, where F is an m-placed function symbol and t_1, \ldots, t_m are terms with no free variables of lengths < k, then $t[s] = G(t_1[s], \ldots, t_m[s])$ and $t[s'] = G(t_1[s'], \ldots, t_m[s'])$ where G is the interpretation of F in M. By induction hypothesis, we get $t_1[s] = t_1[s'], \ldots, t_m[s] = t_m[s']$ and so $G(t_1[s], \ldots, t_m[s]) = G(t_1[s'], \ldots, t_m[s'])$. Hence t[s] = t[s'].

If ϕ is an atomic formula $t_1 = t_2$ where t_1 , t_2 are terms with no free variables and s satisfies $t_1 = t_2$, then $t_1[s] = t_2[s]$. Since $t_1[s] = t_1[s']$ and $t_2[s] = t_2[s']$, hence $t_1[s'] = t_2[s']$, i.e. s' satisfies $t_1 = t_2$.

If ϕ is $P(t_1, \ldots, t_n)$ where P is an n-placed relation symbol and t_1, \ldots, t_n are terms with no free variables and s satisfies $P(t_1, \ldots, t_n)$, then $(t_1[s], \ldots, t_n[s]) \in R$, R is the interpretation of P in M. Therefore, $t_1[s] = t_1[s'], \ldots, t_n[s] = t_n[s']$ and so $(t_1[s'], \ldots, t_n[s']) \in R$, i.e. s' satisfies $P(t_1, \ldots, t_n)$.

Assume this lemma is true for all sentences ψ such that length of $\psi <$ length of $\varphi.$

If ϕ is $\psi_1 \wedge \psi_2$, then ψ_1 and ψ_2 are sentences of lengths < length of ϕ . By induction hypothesis, we get (b_1, b_2, \ldots) satisfies ψ_1 and

 $(b_1, b_2,...)$ satisfies ψ_2 . Hence $(b_1, b_2,...)$ satisfies $\psi_1 \wedge \psi_2$.

If ϕ is $\sim \psi$, then from the assumption, there exists a sequence satisfies $\sim \psi$, i.e. this sequence does not satisfy ψ . Suppose not, so there exists a sequence satisfies ψ which contradicts to the assumption. Hence every sequence satisfies $\sim \psi$.

If ϕ is $(\forall v_i)$ ψ , then ψ is a sentence of length < length of ϕ . Therefore every sequence differing from (a_1, a_2, \ldots) in at most ith place satisfies ψ , i.e. $(a_1, \ldots, a_{i-1}, c, \ldots, a_{i+1}, \ldots)$, for any c, satisfies ψ .

 $\underline{case\ 1}:\ v_i\ is\ not\ free\ in\ \psi_\bullet\qquad Since\ \psi\ is\ a\ sentence$ whose length < length of $\varphi,$ we get $(b_1,\ b_2,\ldots)$ satisfies φ .

 $\frac{\text{case 2}}{\text{c, b_{i+1},...}} \cdot v_i \text{ is free in } \psi. \text{ By Lemma 2.38, we get } (b_1, \dots b_{i-1}, \dots, b_{i+1}, \dots), \text{ for any c, satisfies } \psi. \text{ Hence every sequence differing from } (b_1, b_2, \dots) \text{ in at most i}^{th} \text{ place satisfies } \psi. \text{ Thus } (b_1, b_2, \dots) \text{ satisfies } (\forall v_i) \psi.$

Hence, we get $(b_1, b_2, ...)$ satisfies for all sentences ϕ . Since $(b_1, b_2, ...)$ is arbitrary sequence, we get every sequence of elements of A satisfies for all sentences ϕ of L.

2.41 Theorem. Let ϕ be a sentence in L and M = < A, ϑ > a model of L. If M is not a model of ϕ , then M is a model of $\sim \phi$.

<u>proof.</u> Assume M is not a model of ϕ , then there exists a sequence of elements of A does not satisfy ϕ , i.e. a sequence satisfies

- $\sim \varphi$. Since φ is a sentence, we get $\sim \varphi$ is a sentence. Hence, by Lemma 2.40, we get every sequence of elements of A satisfies $\sim \varphi$. Thus M is a model of $\sim \varphi$.
- 2.42 Note. If M is not a model of ϕ , we then use the notation M $\not\models \phi$.
- 2.43 <u>Definition</u>. Let Σ be a set of sentences. M is a model of Σ $(M \models \Sigma)$ if and only if M is a model of each sentence ϕ in Σ .
- 2.44 <u>Definition</u>. A sentence ϕ of L is valid $(\models \phi)$ if and only if ϕ is true in every model of L. If ϕ is not valid, we use the notation $\not\models \phi$.
- 2.45 <u>Definition</u>. A sentence ψ is a consequence of another sentence φ , in symbols $\varphi \models \psi$, if and only if every model of φ is a model of ψ . A sentence φ is a consequence of a set of sentences Σ , in symbols $\Sigma \models \varphi$, if and only if every model of Σ is a model of φ .
- 2.46 <u>Definition</u>. Two models M and M of L are elementarily equivalent, in symbols $M \equiv M$, if and only if every sentence that is true in M is true in M, and vice versa.
- 2.47 <u>Lemma</u>. If t and u are terms and s is a sequence of model M, and t' results from t by substitution of u for all occurrences of v_i and s' results from s by substituting u[s] for the ith component of s, then t'[s] = t[s'].

proof. We must prove this lemma by induction on length of a term t.

(i) $t = v_j$ where v_j is an individual variable.

If $v_i \neq v_j$, then t' = t. Since v_i is not in t, we get t'[s] = t[s'] by Lemma 2.38.

If $v_i = v_j$, then t' = u and so t'[s] = u[s] = t[s'].

(ii) $t = constant \ symbol \ c$, therefore t' = t and $t'[s] = t[s'] = \phi(c)$.

Assume this lemma is true for all terms t of length < k.

Let t be of the form $F(t_1, \dots, t_m)$ of length k, where F is an m-placed function symbol and t_1, \dots, t_m are terms of length < k. Then $t[s'] = G(t_1[s'] \dots t_m[s'])$ where G is the interpretation of F in M. Since $t' = F(t_1' \dots t_m')$, we get $t'[s] = G(t_1'[s] \dots t_m'[s])$. By induction hypothesis, we get $t_i[s'] = t_i'[s]$, $1 \le i \le m$. Thus t[s'] = t'[s].

Hence this lemma is true for all terms t.

2.48 <u>Lemma</u>. Let ϕ (v_i) be a formula, and ϕ (t) results from ϕ (v_i) by replacing free occurrences of v_i with a term t, where t is a term such that no variable x in t shall occur bound in ϕ (t) at the place! where it is introduced. Then $s = (a_1, a_2, \ldots)$ satisfies ϕ (t) if and only if $s' = (a_1, \ldots, a_{i-1}, t[s], a_{i+1}, \ldots)$ satisfies ϕ (v_i).

 $\underline{\text{proof.}}$ We must prove this lemma by induction on length of a formula $\varphi\,.$

Suppose ϕ is an atomic formula $t_1 = t_2$ where t_1 , t_2 are terms. If $v_i \not\in t_1 = t_2$ then $\phi(v_i) = \phi(t) = \phi$. Therefore s satisfies $\phi(t)$ if and only if s' satisfies $\phi(v_i)$ by Lemma 2.38. If $v_i \in t_1 = t_2$, then $\phi(t)$

is $(t_1 = t_2)$ $\binom{v_i}{t}$ and $(t_1 = t_2)$ $\binom{v_i}{t}$ is t_1 $\binom{v_i}{t}$ = t_2 $\binom{v_i}{t}$ where t_i $\binom{v_i}{t}$ is a term obtained from t_i by replacing v_i with t. Assume s satisfies $\phi(t)$, then t_1 $\binom{v_i}{t}$ $[s] = t_2$ $\binom{v_i}{t}$ [s]. By Lemma 2.47, we get t_1 $[s'] = t_2$ [s'], therefore s' satisfies $\phi(v_i)$. Similarly, if s' satisfies $\phi(v_i)$ then s satisfies $\phi(t)$.

Suppose ϕ is $P(t_1, \ldots, t_n)$ where P is an n-placed relation symbol and t_1, \ldots, t_n are terms. If $v_i \notin \{v/v \in t_1 \text{ or } \ldots, v \in t_n\}$, then $\phi(t) = \phi(v_i) = \phi$. By Lemma 2.38, we get s satisfies $\phi(t)$ if and only if s satisfies $\phi(v_i)$. If $v_i \in \{v/v \in t_1 \text{ or } \ldots, v \in t_n\}$, then $\phi(t) = P(t_1(v_i^v))$ and $v_i \in \{v/v \in t_1 \text{ or } \ldots, v \in t_n\}$, then $\phi(t) = P(t_1(v_i^v))$ and $v_i \in \{v/v \in t_1 \text{ or } \ldots, v \in t_n\}$, then $\phi(t) = P(t_1(v_i^v))$ and $v_i \in \{v/v \in t_1 \text{ or } \ldots, v \in t_n\}$, then $\phi(t) = P(t_1(v_i^v))$ and $v_i \in \{v/v \in t_1 \text{ or } \ldots, v \in t_n\}$, then $\phi(t) = P(t_1(v_i^v))$ and $v_i \in \{v/v \in t_1 \text{ or } \ldots, v \in t_n\}$. Similarly, if $v_i \in \{v/v \in t_1 \text{ or } \ldots, v \in t_n\}$, i.e. $v_i \in \{v/v \in t_1 \text{ or } \ldots,$

Assume this lemma is true for all formulas ψ such that length of ψ < length of $\varphi.$

If φ is ~ ψ , then lemma is true for $\psi.$ Therefore s satisfies $\psi(t)$ if and only if s'satisfies $\psi(v_i)$. Thus s does not satisfy $\psi(t)$ if and only if s'does not satisfy $\psi(v_i)$, i.e. s satisfies ~ $\psi(t)$ and only if s'satisfies ~ $\psi(v_i)$.

If ϕ is $\psi_1 \wedge \psi_2$, then ψ_1 and ψ_2 are formulas of lengths < length of ϕ . Therefore s satisfies $\psi_1(t)$ if and only if s' satisfies $\psi_1(v_i)$ and s satisfies $\psi_2(t)$ if and only if s' satisfies $\psi_2(v_i)$. Hence s satisfies $\psi_1(t) \wedge \psi_2(t)$ if and only if s' satisfies $\psi_1(v_i) \wedge \psi_2(v_i)$, i.e. s satisfies $(\psi_1 \wedge \psi_2)(t)$ if and only if s' satisfies $(\psi_1 \wedge \psi_2)(v_i)$.

If ϕ is $(\forall v_j)$ ψ ; $v_j \neq v_i$, and assume s satisfies $\phi(t)$, then by induction hypothesis, s satisfies $\psi(t)$ if and only if s' satisfies $\psi(v_i)$. Let \overline{s} be any sequence differing from s in at most j^{th} place, then \overline{s} satisfies $\psi(t)$. Thus \overline{s}' satisfies $\psi(v_i)$ where \overline{s}' is any sequence differing from s' in at most j^{th} place. Therefore s' satisfies $\phi(v_i)$. Similarly, if s' satisfies $\phi(v_i)$ then s satisfies $\phi(t)$.

If φ is ($\forall\;v_j)\;\;\psi;\;\;v_j=v_i,$ then $\varphi(t)=\varphi\left(v_i\right)$ and v_i is not free in $\varphi.$

Hence this lemma is true for all formulas ϕ .

- 2.49 Theorem. (i) Logical axioms of L are valid.
 - (ii) Rules of inference preserve validity.

proof. (i) To show logical axioms (i) - (viii) are valid.

Axiom (i) : $\phi \rightarrow (\psi \rightarrow \phi)$.

Let $M = \langle A, \emptyset \rangle$ be any model of L and (a_1, a_2, \ldots) be any sequence of elements of A. Suppose (a_1, a_2, \ldots) does not satisfy $\phi \rightarrow (\psi \rightarrow \phi)$. Therefore (a_1, a_2, \ldots) satisfies ϕ but does not satisfy $\psi \rightarrow \phi$, i.e. satisfies ψ but does not satisfy ϕ which is a contradiction. Then (a_1, a_2, \ldots) satisfies $\phi \rightarrow (\psi \rightarrow \phi)$. Thus $\phi \rightarrow (\psi \rightarrow \phi)$ is true in M and M is arbitrary model, so $\phi \rightarrow (\psi \rightarrow \phi)$ is valid.

Axiom (ii) :
$$(\phi \rightarrow (\psi \rightarrow \theta)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \theta))$$
.

Let $M = \langle A, \mathcal{G} \rangle$ be any model of L and (a_1, a_2, \ldots) be any sequence of elements of A. Suppose (a_1, a_2, \ldots) does not satisfy axiom (ii), then

 (a_1, a_2, \ldots) satisfies $\phi \to (\psi \to \theta)$ but does not satisfy $(\phi \to \psi) \to (\phi \to \theta)$. From this, we get (a_1, a_2, \ldots) does not satisfy ϕ and satisfies ϕ which is a contradiction. Thus (a_1, a_2, \ldots) satisfies axiom (ii). Then axiom (ii) is true in M and M is arbitrary model, thus axiom (ii) is valid.

Axiom (iii) :
$$(\sim \phi \longrightarrow \sim \psi) \longrightarrow ((\sim \phi \longrightarrow \psi) \longrightarrow \phi)$$
.

Let $M = \langle A, y \rangle$ be any model of L and (a_1, a_2, \ldots) be any sequence of elements of A. Suppose (a_1, a_2, \ldots) does not satisfy axiom (iii), then (a_1, a_2, \ldots) satisfies $\sim \phi \rightarrow \sim \psi$ but does not satisfy $(\sim \phi \rightarrow \psi) \rightarrow \phi$. From this, we get (a_1, a_2, \ldots) satisfies ϕ and does not satisfy ϕ which is a contradiction, so (a_1, a_2, \ldots) satisfies axiom (iii). Then axiom (iii) is true in M and M is arbitrary model, thus axiom (iii) is valid.

Axiom (iv) : $(\forall v_i) (\phi \rightarrow \psi) \rightarrow (\phi \rightarrow (\forall v_i) \psi)$, where v_i is a variable not free in ϕ .

Suppose there exists a model $M = \langle A, \mathcal{Y} \rangle$ and a sequence (a_1, a_2, \ldots) of elements of A such that (a_1, a_2, \ldots) does not satisfy axiom (iv) in M. Therefore (a_1, a_2, \ldots) satisfies $(\forall v_i) \ (\phi \rightarrow \psi)$ but does not satisfy $\phi \rightarrow (\forall v_i) \ \psi$, i.e. (a_1, a_2, \ldots) satisfies ϕ but does not satisfy $(\forall v_i) \ \psi$. Since v_i is not free in ϕ ; we get, $(a_1, a_2, \ldots, a_{i-1}, b, a_{i+1}, \ldots)$ satisfies ϕ for any ϕ , by Lemma 2.38. Hence $(a_1, a_2, \ldots, a_{i-1}, b, a_{i+1}, \ldots)$ satisfies ϕ for any ϕ . Thus (a_1, a_2, \ldots) satisfies $(\forall v_i) \ \psi$, contradiction. Therefore for any model $M = \langle A, \mathcal{Y} \rangle$ of L and any sequence of elements of A satisfies axiom (iv). Thus axiom (iv) is valid.

Axiom (v) : $(\forall v_i) \phi \longrightarrow \psi$ where ψ is a formula obtained from ϕ by freely substituting each free occurrence of v_i in ϕ by a term t.

Let $M = \langle A, \emptyset \rangle$ be any model of L and $s = (a_1, a_2, \ldots)$ be any sequence of elements of A. Suppose s does not satisfy axiom (v), then s satisfies $(\forall v_i) \phi$ but does not satisfy ψ . Let $s' = (a_1, \ldots, a_{i-1}, t[s], a_{i+1}, \ldots)$ be any sequence differing from s in at most i place, then s' satisfies ϕ . By Lemma 2.48, s satisfies ψ , which is a contradiction. Thus s satisfies axiom (v), so axiom (v) is true in M and M is arbitrary model, then axiom (v) is valid.

Axiom (vi) : $v_i = v_i$, v_i is variable.

Let $M = \langle A, 9 \rangle$ be any model of L and $s = (a_1, a_2, \ldots)$ be any sequence of elements of A. Suppose s does not satisfy axiom (vi), then there exists a_i such that $a_i \neq a_i$ which is impossible. Thus s satisfies axiom (vi) and axiom (vi) is true in M, and M is arbitrary model, then axiom (vi) is valid.

Axiom (vii) : $x_i = x_j \rightarrow t(v_1, \dots v_{i-1} x_i v_{i+1} \dots v_n) = t(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n)$ where x_i , x_j are variables and $t(v_1 \dots v_n)$ is a term.

Let $M = \langle A, \emptyset \rangle$ be any model of L and $s = (a_1, a_2, ...)$ be any sequence of elements of A such that $a_i = a_i$.

If t is v_i , then $t[s]_i = a_i = a_j = t[s]_j$, where $t[s]_i$ is the value of t at $(a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots)$ and $t[s]_j$ is the value of t at $(a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots)$

If t is a constant symbol c and x is the interpretation of c in M, then $t[s]_i = x = t[s]_j$.

Assume this axiom is true for all terms t of length < k. Let t be of the form $F(t_1 cdots t_m)$ of length k, where F is an m-placed function symbol and $t_1, cdots, t_m$ are terms of length < k. By induction hypothesis, $t_k[s]_i = t_k[s]_j$ for $k = 1, 2, \ldots, m$. Thus $t[s]_i = G(t_1[s]_i \ldots t_m[s]_i) = G(t_1[s]_j \ldots t_m[s]_j) = t[s]_j$, where G is the interpretation of F in M. Hence s satisfies axiom (vii), so axiom (vii) is true in M, and M is arbitrary model, then axiom (vii) is valid.

Axiom (viii): $x_i = x_j \longrightarrow \phi(\phi(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n) \longrightarrow \phi(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n))$ where x_i , x_j are variables and $\phi(v_1 \dots v_n)$ is a formula.

Let $M = \langle A, y \rangle$ be any model of L and $s = (a_1, a_2, ...)$ be any sequence of elements of A such that $a_i = a_i$.

If ϕ is an atomic formula $t_1 = t_2$ where t_1 , t_2 are terms, then by axiom (vii), $t_1[s]_i = t_1[s]_j$ and $t_2[s]_i = t_2[s]_j$. Assume s satisfies $\phi(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$, then $t_1[s]_i = t_2[s]_i$. Therefore $t_1[s]_j = t_2[s]_j$, so s satisfies $\phi(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n)$.

If ϕ is $P(t_1 \dots t_n)$ where P is an n-placed relation symbol and t_1, \dots, t_n are terms, then by axiom (vii), $t_k[s]_i = t_k[s]_j$, for k = 1, 2,..., n. Assume s satisfies $\phi(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$, then $(t_1[s]_i, \dots, t_n[s]_i) \in R$ where R is the interpretation of P in M. Hence $(t_1[s]_j, \dots, t_n[s]_j) \in R$, and so s satisfies $\phi(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n)$.

Assume this axiom is true for all formulas ψ such that length of ψ < length of $\varphi.$

If φ is $\sim \psi$, then ψ is a formula of length < length of φ . Assume s satisfies $\sim \psi \, (v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$. Since $x_i = x_j$, we get $\psi (v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n) \text{ is } \psi (v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n) \text{ . Hence s satisfies } \sim \psi (v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n) \text{ .}$

If ϕ is $\psi_1 \wedge \psi_2$, then ψ_1 and ψ_2 are formulas of lengths < length of ϕ . Thus, if s satisfies $\psi_1(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$ then s satisfies $\psi_1(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n) \text{, and if s satisfies } \psi_2(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$ then s satisfies $\psi_2(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n) \text{. Hence, if s satisfies}$ $(\psi_1 \wedge \psi_2)(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n) \text{ then s satisfies } (\psi_1 \wedge \psi_2)(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n).$

If ϕ is $(\forall v_r)$ ψ , $v_r \neq v_i$, then ψ is a formula of length < length of ϕ . Assume s satisfies $\phi(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$. By induction hypothesis, s satisfies $\psi(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n)$. If $s' = (a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_i', \dots)$ be any sequence differing from s in at most r^{th} place, then s' satisfies $\psi(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$. Since $a_i = a_j$, we get $s'' = (a_1, \dots, a_{i-1}, a_j, a_{i+1}, \dots, a_r', \dots)$ satisfies $\psi(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n)$. Since s'' is any sequence differing from s in at most r^{th} place, we get s'' = s satisfies $\phi(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$.

If ϕ is $(\forall v_r) \psi$, $v_r = v_i$, and assume that s satisfies ϕ $(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$, then by induction hypothesis, s satisfies ψ $(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n)$. Let $s' = (a_1, \dots, a_{i-1}, a_j, a_{i+1}, \dots)$ be any sequence differing from s in at most i^{th} place and s' satisfies ψ $(v_1 \dots v_{i-1} x_i v_{i+1} \dots$

 v_n). Since $a_i = a_j$, we get s' satisfies $\psi(v_1 \dots v_{i-1} x_j v_{i+1} \dots v_n)$. Hence s satisfies $\phi(v_1 \dots v_{i-1} x_i v_{i+1} \dots v_n)$.

Thus s satisfies this axiom for all formulas ϕ , so s satisfies axiom (viii), and axiom (viii) is true in M, and M is arbitrary model, then axiom (viii) is valid.

(ii) (a) To show MP preserves validity, i.e. if M $\models \psi$ and M $\models \psi \rightarrow \phi$ then M $\models \phi$, for any model M and any formulas ϕ , ψ of L.

Let ϕ , ψ be any formulas of L, $M = \langle A, \psi \rangle$ any model of L and s any sequence of elements of A. Assume $M \models \psi$ and $M \models \psi \rightarrow \phi$, i.e. s satisfies ψ and s satisfies $\psi \rightarrow \phi$. From s satisfies $\psi \rightarrow \phi$, we get s does not satisfy ψ or s satisfies ϕ . Thus s satisfies ϕ . Therefore ϕ is true in M and hence $M \models \phi$.

(b) To show Generalization preserves validity, i.e. if $M\models \varphi \text{ then } M\models (\forall \ v_i) \ \varphi \text{ , for any model } M \text{ and any formula } \varphi \text{ of } L.$

Let ϕ be any formula of L, $M = \langle A, \emptyset \rangle$ any model of L and s any sequence of elements of A. Assume $M \models \phi$, i.e. s satisfies ϕ . Let s' be any sequence differing from s in at most ith place, so s' is sequence of elements of A. Thus s' satisfies ϕ . Therefore s satisfies $(\forall v_i) \phi$, i.e. $(\forall v_i) \phi$ is true in M. Hence $M \models (\forall v_i) \phi$.

One of the important theorems of first-order Model Theory is Gödel's Completeness Theorem. Before we prove this theorems, we need a new definition, two lemmas and the Extended Completeness Theorem.

2.50 <u>Definition</u>. Let T be a set of sentences of L and let C be a set of constant symbols of L (C might be a proper subset of the set of all constant symbols of L). We say that C is a set of witnesses for T in L if and only if for every formula ϕ of L with at most one free variable, say v, there is a constant c ϵ C such that

$$T \vdash (\exists v) \phi \rightarrow \phi(c),$$

where $\phi(c)$ is obtained from ϕ by replacing simultaneously all free occurrences of v in ϕ by the constant c.

We say that T has witnesses in L if and only if T has some set C of witnesses in L.

2.51 <u>Lemma</u>. Every maximal consistent set of sentences T of L, which has witnesses C in L, has a model.

<u>proof.</u> Let T be a maximal consistent set of sentences of L, and C be a set of witnesses for T in L.

Define a relation ∿ on C as follows :

for all c, d ϵ C, c \circ d if and only if c = d ϵ T. Since T is maximal consistent, we see that for c, d, e, ϵ C;

c ° c ,

if $c \sim d$ and $d \sim e$, then $c \sim e$, if $c \sim d$ then $d \sim c$.

So $^{\circ}$ is an equivalence relation on C. For each c ϵ C, let $\overset{\circ}{c}$ =

 $\{d \in C \mid d \sim c\}$ be an equivalence class of c. We purpose to construct a model $M = \langle A, \mathcal{J} \rangle$ whose set of elements A is the set of all these equivalence classes c, for $c \in C$; so we define

(1)
$$A = \{ \stackrel{\circ}{c} \mid c \in C \}$$
.

We now define the relations, constants and functions of M.

- (i) For each n-placed relation symbol P in L, we define an n-placed relation R on the set C by : for all c_1,\ldots,c_n \in C,
 - (2) $R'(c_1...c_n)$ if and only if $P(c_1...c_n) \in T$.

By the axiom of L, we have

$$\vdash P(c_1 \dots c_n) \land c_1 = d_1 \land \dots \land c_n = d_n \longrightarrow P(d_1 \dots d_n).$$

If follows that we may define a relation R on A by

- (3) $R(c_1, ..., c_n)$ if and only if $P(c_1, ..., c_n) \in T$. This relation R is the interpretation of the symbol P in M.
- (ii) Consider a constant symbol d of L. Since $\vdash d = d$, we see that $\vdash (\exists v_0)$ $(d = v_0)$ and so $T \vdash (\exists v_0)$ $(d = v_0)$. Since T has witnesses, there is a constant $c \in C$ such that $T \vdash (\exists v_0)$ $(d = v_0) \rightarrow d = c$. Thus $T \vdash d = c$, and hence $d = c \in T$. The constant c may not be uniqued, but its equivalence class is unique because $\vdash (d = c \land d = c \xrightarrow{} c = c)$. The constant d is interpreted in the model M by the (uniquely determined) element c of A. In particular, if $d \in C$, then d is interpreted by its own equivalence class d in M, because $(d = d) \in T$.

(iii) We handle the function symbols in a similar way. Let F be any m-placed function symbol of L, and let $c_1, \ldots, c_m \in C$. As before, we have $T \vdash (\exists v_0) (F(c_1 \ldots c_m) = v_0)$ and because T has witnesses, there is a constant $c \in C$ such that $(F(c_1 \ldots c_m) = c) \in T$. Once more, we have a slight difficulty because c may not be unique, and use our axiom to obtain:

 \vdash $(F(c_1...c_m) = c \land c_1 = d_1 \land ... \land c_m = d_m \land c = d) \rightarrow F(d_1...d_m) = d$. This shows that a function G can be defined on the set A of equivalence classes by the rule.

(4) $G(c_1 cdots c_m) = c$ if and only if $(F(c_1 cdots c_m) = c) ext{ } \epsilon$ T. We interpret the function symbol F by the function G in the model M.

We have now specified the universe set and the interpretation of each symbol of L in M, so we have completed the definition of the model M.

We proceed to prove that M is a model of T. We will prove $M\models \varphi$ if and only if $\varphi \in T$ by induction on length of sentence φ .

First of all, using (4), we get : for every term t of L with no free variables and for every constant c ϵ C ,

(5) $M \models t = c$ if and only if $(t = c) \in T$.

Using the fact that C is a set of witnesses for T, we have :

for any two terms t_1 , t_2 of L with no free variables,

(6) $M \models t_1 = t_2$ if and only if $t_1 = t_2 \in T$, and

for any $P(t_1...t_n)$ of L containing no free variables,

(7) $M \models P(t_1...t_n)$ if and only if $P(t_1...t_n) \in T$.

Suppose M $\models \psi$ if and only if $\psi \epsilon$ T for all sentences ψ such that length of $\psi <$ length of ϕ .

If φ is $\sim \psi$, then $M\models \psi$ if and only if $\psi \in T$, and so $M\models \sim \psi$ if and only if $\sim \! \psi \in T.$

If ϕ is $\psi_1 \wedge \psi_2$, then ψ_1 , ψ_2 are sentences of lengths < length of ϕ . Therefore $M \models \psi_1$ if and only if $\psi_1 \in T$ and $M \models \psi_2$ if and only if $\psi_2 \in T$. Thus $M \models \psi_1 \wedge \psi_2$ if and only if $\psi_1 \wedge \psi_2 \in T$.

Suppose ϕ is $(\exists \ v)\ \psi$. If $M \models \phi$, then for some $\tilde{c} \in A$, $M \models \psi[\tilde{c}]$. This means that $M \models \psi(c)$, where $\psi(c)$ is obtained from ψ by replacing all free occurrences of v by c. Thus $\psi(c) \in T$ and because $\vdash \psi(c) \rightarrow (\exists v)$ ψ , we have $\phi \in T$. On the other hand, if $\phi \in T$, then because T has witnesses, there exists a constant $c \in C$ such that $T \models (\exists \ v) \psi \rightarrow \psi(c)$. As T is maximal consistent, $\psi(c) \in T$, so $M \models \psi(c)$. This gives $M \models \psi[\tilde{c}]$ and $M \models \phi$.

This shows that M is a model of T.

2.52 <u>Lemma</u>. Every consistent set of sentences T of L can be extended to a consistent set of sentences \overline{T} of \overline{L} = L U C, where C is a set of new constant symbols of power |C| = ||L||, such that \overline{T} has witnesses in \overline{L} .

proof. Let $\omega = ||L||$. For each $\alpha < \omega$. Let c_{α} be a constant symbol which does not occur in L and such that $c_{\alpha} \neq c_{\gamma}$ if $\alpha < \gamma < \omega$. Let $C = \{c_{\alpha} \mid \alpha < \omega\}$, $\overline{L} = L \cup C$. Clearly $||\overline{L}|| = \omega$, so we may arrange all formulas of \overline{L} with at most one free variable in a sequence ϕ_{ξ} , $\xi < \omega$. We now define an increasing sequence of sets of sentences of \overline{L} : $T = T_0 \subset T_1 \subset \ldots \subset T_{\xi} \subset \ldots, \xi < \omega$, and a sequence d_{ξ} , $\xi < \omega$, of constants from C such that:

- (i) each T_ξ is consistent in \overline{L} ;
- (ii) if $\xi = \zeta + 1$, then $T_{\xi} = T_{\zeta} U \{(\exists v_{\zeta}) \phi_{\zeta} \longrightarrow \phi_{\zeta}(d_{\zeta})\}$; v_{ζ} is the free variable in ϕ_{ζ} if it has one, otherwise $v_{\zeta} = v_{0}$;

(iii) if ξ is a limit ordinal different from zero, then $T_{\xi} = \frac{U}{\zeta < \xi}$.

Suppose that T_ζ has been defined. Note that the number of sentences in T_ζ which are not sentences of L is smaller than ω , i.e. the cardinal of the set of such sentences is less than ω . Furthermore, each such sentence contains at most a finite number of constants from C. Therefore, let d_ζ be the first element of C which has not yet occurred in T_ζ . We show that

$$T_{\zeta+1} = T_{\zeta} U \{(\exists v_{\zeta}) \phi_{\zeta} \xrightarrow{i} \phi_{\zeta} (d_{\zeta})\}$$

is consistent. If this were not the case, then by proposition 2.32 (i), we get

$$T_{\zeta} \vdash \sim ((\exists \ v_{\zeta}) \ \phi_{\zeta} \longrightarrow \ \phi_{\zeta} \ (d_{\zeta})).$$

Therefore $T_{\zeta} \vdash (\exists \ v_{\zeta}) \ \phi_{\zeta} \ \land \ \sim \ \phi_{\zeta} \ (d_{\zeta})$. As d_{ζ} does not occur in T_{ζ} , so

$$T_{\zeta} \vdash (\exists v_{\zeta}) \phi_{\zeta} \land \neg \phi_{\zeta} (v_{\zeta}).$$

Hence $T_{\zeta} \vdash (\forall v_{\zeta}) ((\exists v_{\zeta}) \phi_{\zeta} \wedge \phi_{\zeta}(v_{\zeta}))$, and so

$$T_{\zeta} \vdash (\exists v_{\zeta}) \phi_{\zeta} \wedge \sim (\exists v_{\zeta}) \phi_{\zeta}$$
,

which contradicts the consistency of T_ζ . If ξ is a nonzero limit ordinal, and each member of the increasing chain T_ζ , $\zeta<\xi$, is consistent, then obviously $T_\xi=\frac{U}{\zeta<\xi}\zeta$ is consistent. This complete the induction.

Now we let $\overline{T} = \bigcup_{\xi < \omega} \overline{\xi}$. It is evident that \overline{T} is consistent in \overline{L} and \overline{T} is an extension of T. Next, we want to show that C is a set of witnesses for \overline{T} in \overline{L} . Suppose ϕ is a formula of \overline{L} with at most one free variable v. Then we may suppose that $\phi = \phi_{\xi}$ and $v = v_{\xi}$ for some $\xi < \omega$. Since $T_{\xi+1} = T_{\xi}$ U $\{(\exists v_{\xi}) \phi_{\xi} \rightarrow \phi_{\xi}(d_{\xi})\}$, we get $(\exists v_{\xi}) \phi_{\xi} \rightarrow \phi_{\xi}(d_{\xi})\}$ (d_{\xi}) $\in T_{\xi+1}$, and so $\in \overline{T}$. Then $\overline{T} \vdash (\exists v) \phi \rightarrow \phi(c)$ for some $c \in C$. Thus C is a set of witnesses for \overline{T} in \overline{L} .}

2.53 <u>Theorem</u>. (Extended Completeness Theorem). Let Σ be a set of sentences of L. Then Σ is consistent if and only if Σ has a model.

<u>proof.</u> Assume Σ is consistent. By Lemma 2.52, we can extend Σ to $\overline{\Sigma}$ which is consistent and has witnesses in \overline{L} . By Lindenbaum's Theorem, we can extend $\overline{\Sigma}$ to a maximal consistent $\overline{\Sigma}$ which has witnesses in \overline{L} . Therefore, by Lemma 2.51, $\overline{\Sigma}$ has a model $\overline{M} = \langle A, \mathcal{J} \rangle$ for \overline{L} , so let $M = \langle A, \mathcal{J} \rangle$ be the model of L which is the reduct of \overline{M} to L. Because sentences in Σ do not involve constants of \overline{L} not in L, we see that M is a model of Σ .

To prove the converse, assume that Σ has a model M. Therefore $M\models \varphi$ for each sentence φ of Σ . Suppose Σ is inconsistent, so $\Sigma \models \psi \land \neg \psi$ for any formula ψ of L. Then there exists a finite sequence of formulas $\theta_1, \ldots, \theta_n$ such that $\theta_n = \psi \land \neg \psi$ in which each θ_i , $1 \le i \le n$, is a logical axiom, or a member of Σ , or a conclusion from θ_j , θ_k (j, k < i) by MP, or a conclusion from θ_j (j < i) by generalization. By Lemma 2.49 (i), if θ_i is a logical axiom, then $M\models \theta_i$, and if θ_i Σ , then $M\models \theta_i$. By Lemma 2.49 (ii); if $M\models \theta_j$ and $M\models \theta_j \rightarrow \theta_i$ then $M\models \theta_i$, and if $M\models \theta_j$ then $M\models (\forall v_i) \theta_j$. Therefore $M\models \theta_i$, $1 \le i \le n$, so we get $M\models \psi \land \neg \psi$. Hence $M\models \psi$ and $M\models \neg \psi$ which is impossible. Thus Σ is consistent.

2.54 <u>Theorem</u>. (Gödel's Completeness Theorem.) Let Σ be a set of sentences of L and ϕ a sentence. Then $\Sigma \vdash \phi$ if and only if $\Sigma \models \phi$. In particular, $\vdash \phi$ if and only if $\models \phi$.

proof. Assume $\Sigma \models \varphi$. Let M be any model of Σ , i.e. M $\models \psi$ for each sentence ψ of Σ . Since $\Sigma \models \varphi$, there exists a finite sequence of formulas $\theta_1, \ldots, \theta_n$ such that $\theta_n = \varphi$ and each i, $1 \le i \le n$, θ_i is a logical axiom, or θ_i is a member of Σ , or θ_i is a conclusion from θ_j , θ_k (j, k < i) by MP, or θ_i is a conclusion from θ_j , (j < i) by generalization. If θ_i is a logical axiom, then M $\models \theta_i$, and if θ_i ε Σ , then M $\models \theta_i$, by Lemma 2.49 (i). If M $\models \theta_j$ and M $\models \theta_j \rightarrow \theta_i$ then M $\models \theta_i$ and if M $\models \theta_j$ then M $\models \theta_i$ then M $\models \theta_i$, θ_i then M $\models \theta_i$, then M $\models \theta_i$, then M $\models \theta_i$ then M $\models \theta_i$

To prove the converse, assume that $\Sigma \models \phi$. Suppose $\Sigma \not \vdash \phi$. By proposition 2.32 (ii), Σ U {~ ϕ } is consistent. By Lemma 2.52, Σ U

 $\{ \sim \phi \}$ has a model M, i.e. $M \models \Sigma$ and $M \models \sim \phi$. Since $\Sigma \models \phi$, it follows that if $M \models \Sigma$, then $M \models \phi$. Therefore $M \models \phi$ and $M \models \sim \phi$ which is impossible. Thus $\Sigma \models \phi$.

2.55 <u>Definition</u>. A first-order theory T of L is a collection of sentences of L.

Since theories are sets of sentences of L, we can define a model of a theory and a consistent theory as before

2.56 <u>Definition</u>. A set of axioms of a theory T is a set of sentences with the same consequences as T.

The most convenient and standard way of giving a theory T is by listing a finite or infinite set of axioms for it. Another way to give a theory is as follows: Let M be a model of L; then the theory of M is the set of all sentences which is true in M.

2.57 Theorem. (Löwenheim's Theorem.) Every consistent theory T in L has a model of power at most || L ||, i.e. if T has a model, then T has a countable model.

<u>proof.</u> In the proof of Theorem 2.53, we may choose a model \overline{M} of \overline{L} such that every element is a constant, and we have $|A| \leq ||\overline{L}|| = ||L||$.