CHAPTER II

PRELIMINARIES

In this thesis, we assume a basic knowledge of logic. The

materials of this chapter are drawn from [1] and [3] .

2.1 Definition. A first-order language L is a finite collection of

symbols.

These symbols are separated into three groups; relation symbols,
function symbols and (individual) constant symbols. The relation and
function symbols of L will be denoted by capital letters P, F with
superscripts and subscripts. Lower case letters c, with subscripts,

range over the constant symbols of L.

We may write the symbols of L as follows :

i by j
we g A LN Fm?cl,...,c}

L = SINTMAWEINE ¥

Eventually, each relation symbol P? will seen as representing
an n-placed relation, similarly, each function symbol F? of L, an
m-placed function. Subsequently, the superscripts of these symbols

will be omitted in cases where it is clear what they are, e.g. if we

i : ; n
write P1 (vl...vn), this means that P1 is Pl'

When dealing with several languages at the same time, we use

1
the letters L, L , L , etc. If the symbols of the language are quite



standard, as for example + for addition, < for an order relation, etc.,

we shall simply write
L = {f_ }; L= {i’+,-:0 } s L= {+9',':0:1 } s etc.,

for such languages. The number of places of the various kinds of

symbols is understood to follow the standard usage '.

2.2 Definition. The cardinal, or power, of a first-order language

L, denoted by ||L|| , is defined as

||l L]] = wulL] where |L| is the cardinal of set of

symbols of L.

'
2.3 Definition. A first-order language L is an expansion of a
1
first-order language L if and only if L has all the symbols of L plus

]
some additional symbols. We use the notation LC L .

! 1
Since L and L are just sets of symbols, the expansion L may

1
be written as L = L U X, where X is the set of new symbols.
2.4 Definition. A model of a first-order language L consists of

(1) a nonempty set A called universe,
(2) interpretations of relation, function and constant symbols
where
(2.1) each relation symbol P? corresponds to an n-placed
relation Rjg;An,
(2.2) each function symbol F? corresponds to an m-placed

function Gj from A™ into A,



(2.3) each constant symbol c corresponds

x in A.
i 03
Hence if L = {PI}..., el Fl}..., F
5 1
model M of L is written as M = <A, Rll;,..,Rn

When the symbols of L are familiar, we shall agree to use, for in-
stance, M = <A, <, +, . > for model of the language L = {<, +, . }.
Sometimes; we use the shorter notation < A,5> for the model of L,
wherej is an interpretation function mapping the symbols of L to ap-

propriate relations, functions and constants in A.

1
2.5 Definition. If M is a model of L and L = L U X, then M can be
1 1
expanded to a model M of L by giving appropriate interpretations for
1 |
the symbols in X. We call M an expansion of M to L and M is the

]
reduct of M to L.

/
]
1£ S’ is any interpretation for the symbols in X, then M = <A,

/ /
1
9U9> or«< M,9> is a model of L .
1 1
2.6  Remark. let AC 'L and'L = LzU X.

(i) There are many ways that a model M of L can be expanded
to a model M| of L'.

(ii) There is only one reduct M of M' to L, namely, by res-
tricting the interpretation function 3/ on. Lall-X €0 "L;

(iii) Expansion and reduction do not change the universe of

the model.



2.7 Definition. The cardinal, or power, of the model M is the cardi-

nal |A |.

M is said to be finite, countable or uncountable if A is finite,

countable or uncountable.

To formalize a first-order language L, we need the following

logical symbols :

parentheses ), ( ;
a denumerable list of individual variables Vis Voseees Voyseoos
connectives A~ , ~ ;

quantifier \ 4

and identity symbol =
2.8 Definition. Terms of L are defined as follows :

(i) An individual variable is a term.

(ii) A constant symbol is a term.

(iii) If F is an m-placed function symbol and tl,..., tm are
terms, then F (tl...tm) is a term.

(iv) A string of symbols is a term only if it can be shown to

be a term by a finite number of applications of (i) - (iii).
2.9 Definition. Atomic formulas of L are defined as follows :

G-t = it is an atomic formula, where t., and t, are terms

2 1 2

of L.

(ii) If P is an n-placed relation symbol and tl,..., tn are



.

terms, then P (tl... tn) is an atomic formula.
(iii) A string of symbols is an atomic formula only by (i)

and (ii).
2.10 Definition. Formulas of L are defined as follows :

(i) An atomic formula is a formula.

(ii) If ¢ and Y are formulas, then ($~¥), (~9¢) and (~ V¥)
are formulas.

(iii) If v is an individual variable and ¢ is a formula, then
(vv) ¢ is a formula.

(iv) A sequence of symbols is a formula by a finite number of

applications of (i) - (iii).

2.11 Definition. The defined connectives v , — , «+—, and g are

introduced as abbreviations defined as :

b vy for ~(~pa~V ).

¢— ¥ for ~ Oy

¢ < GHY for =¥ ~ v—¢).
(av) ¢ for ~(YV) ~ ¢

2.12 Definition. Length of a term t is the number of occurrences of

function symbols in t.

2.13 Definition. Length of a formula is the number of connectives

and quantifiers.

2.14 Note. An atomic formula is a formula of length zero.



2.15 Definition. Subformulas of a formula ¢ are defined as follows :

(1) ¢ is a subformula of ¢.
(ii) If Y ~6 1is a subformula of ¢, then both Yy and 6 are
subformulas of ¢.

(iii) If ~y is a subformula of ¢, then Y is a subformula of

(iv) If (vv) ¢ is a subformula of ¢, then { is a subformula

of <.
2.16 Definition. The scope of (Vv) in (VvVv) ¢ is ¢.

2.17 Definition. An occurrence of an individual variable v is bound
in a formula ¢ if and only if it is the variable of a quantifier (vv)

in ¢, or it is within the scope of a quantifier (vv) in ¢ .

2.18 ; Definition. An occurrence of an individual variable is free in

a formula ¢if and only if it is not bound in ¢.

2.19 Definition. An individual variable is free (bound) in a formula

¢, if and only if it has a free (bound) occurrence in ¢ .

2.20 Definition. ¢ (Vl"' vk) means that some of Vise+. Vy arve free

in ¢.
2.21 Definition. A sentence is a formula with no free variables.

To make all the above syntactical notions into a formal system

we need logical axioms and rules of inference.



Let ¢, ¥ and 6 be formula of L.

2.22 Logical axioms of L.

(1) > p—>9).

(ii) (¢—(W— 6)) —((9—)— (¢—6)).

(@ii) (o=~ PY—((~ =P — ¢).

(iv) (vv) (6—yY)—(¢—(VvV) ¥ ); where v is a variable
not free in ¢.

(v) (Vv) ¢— ¢; where ¢ is a formula obtained from ¢ by
freely substituting each free occurrence of v in ¢ by a term t. (i.e.

no variable x in t shall occur bound in ¥y at the place where it is in-

troduced.).
(vi) X = X)X/ AS g rralle
(vii) x*8 sy—> t(vl. e Vo qXVL .. vn) = t(vl. CeVy YViep et

vn); where x, y are variables and t(vl...vn) is a term.
(viii) x = y—> (¢(v1...vi_1xvi+1... vn)—>¢(v1...vi_1yvi+1. % .

vn)); where x, y are variables and ¢(v1... vn) is a formula.

2.23 Rules of Inference.

(i) Rule of Detachment (dr Modus Ponen or MP.) : From ¢ and
¢—yYinfer VY .

(ii) Rule of Generali'zation : From ¢ infer (yv) ¢ .

2.24 Definition. A proo"f-is; a finite sequence of formulas “’1’“"‘%

such that each ¢, 1 <i <n, is



10

(i) a logical axiom of L, or
(ii) a conclusion from wj’ \J)k (j, k <1i) by MP., or

(iii) a conclusion from wj (j < 1) by generalization.

2.25 Definition. Let I be a set of sentences of L and ¢ be a formula.
A proof of ¢ from I is a finite sequence of formulas 1111,. oid s U)n such

that llJn = ¢ and each wi’ I sd'<nyds

(i) a logical axiom of L, or
(ii) a conclusion from U)j, I]Jk ¢, k <1i) by MP,, ox
(iii) a conclusion from wj (j < i) by generalization, or

(iv) a member of I .

2.26 Definition. ¢ is deducible from Z (in notation Z I ¢) if and
only if there exists a proof of ¢ from X . If it is not the case that

¢ is deducible from I, then we use I Hro¢.

If = {o .,On} , we write G;... O ¢ for Z ¢ .

10
2.27 Definition. ¢ is a theorem ( |—¢) if and only if ¢ is deducible

from empty set. If ¢ is not a theorem, we then use px ¢.

2.28 Definition. Let I be a set of sentences of L. I is inconsistent
if and only if Z }=¢ ~ ~¢, for any formula ¢ of L. Otherwise I is

consistent.
A sentence 0 is consistent if and only if {0} is.

2.29 Definition. Let I be a set of sentences of L. X is maximal con-

sistent (in L) if and only if £ is consistent and no set of sentences
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(of L) properly containing X is consistent.

2.30 Lemma. Let ¢ be a formula of L, then ¢—¢ is a theorem,i.e.

o= ¢.

proof. (1) (9= (($—9)— )= ((6— (6—§))— (p—¢)) by
axiom (ii)
2) 6= ((9— ) — ¢) by axiom (i)
(3) (9= (o6— $))— (6— ¢ by (1), (2) and M.
4 ¢— (94— 9 by axiom (i)
(8) ¢o—+1¢ by (3), (4) and MP.

Hence ¢— ¢ is a theorem.

2.31 Theorem. (Deduction Theorem.) Let L be a set of sentences of L,
¢ a sentence and Y a formula. I U {¢} |y if and only if Z}¢p— ¢ .

In particular, ¢ |-y if and only if |—¢—- ¥.

proof. Assume X U {o} v , therefore, there exists a finite
sequence of formulas 61,..., Gn such that Gn = ¥ and each Gi, lii <n,
is a logical axiom of L, or eis:ZU {¢}, or Gi is a conclusion from Gj,
ek (j, k <1i) by MP., or ei is a conclusion from ej (j < i) by genera-

lization.

Claim that Z}o¢— 81, 1<i<n. We must show this by induction
on i. Suppose i = 1, therefore 61 is a logical axiom or 6162 or 61 =
¢ . Suppose 61 is a logical axiom or 61 €L . Since '-91——>(¢-—*61),
we get Lf-¢p— 61. Suppose 61 = ¢ . Since ¢—¢ by Lemma 2.30, we
have I |-¢p— 61.
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Assume LI |—¢ — ej’ for all j <k <n. Then 6 1is a logical

k

axiom, or ek €l, or Ok = ¢ , or 6k is a conclusion from ej, Gj——>6k,
(j < k) by MP., or Gk is a conclusion from ej, (j < k) by generalization.
For the first three possibilities, I}-¢— Gk by the proof for 61. 5

Gk is a conclusion from Bj, Gj-—> ek, (j <k) by MP., then for some % < k,

g = Bj—> Gk. By induction hypothesis; Z|l¢— Gj and I |—¢-—>(6j——> Gk)

and since f—(¢-"’(9j—> A B et €T Beps ej)—”(¢ — 6)), we get Ij—¢—

0

Gk. Ef ek is a conclusion from ej, (j < k) by generalization, then by
induction hypothesis; If¢—> OJ., and I F=(Vv) (¢— GJ.). Since
F=((Vv) (6— ej)——* (¢—(Vv) ej)), we get I¢ — (Vv) ej, i.e.

Ik-¢ —= 0. Therefore/LF A/ 340., RSH<n, so Zl¢— 6 .

k"
Hence Z|—¢ — ¢ .

To prove the converse, assume that I |—¢ —> { , then there
exists a finite sequence of formulas 61,..., Gn such that en = ¢—;
which is a proof of ¢y from Z. Add ¢ to the proof, we then get {

by MP. Hence I U {¢ 1.
2.32 Prop_osition. Let £ be a set of sentences of L and ¢ be a sentence.

(i) IfZ U{ ¢} is inconsistent, then I |~ ¢.

(ii) IfIPx¢ , then ZU{~ ¢} is consistent.

proof. (i) Assume ZU{¢} is inconsistent, so ZU{¢}V.~
for any formula ¥ of L. Then ZU{¢}¢y and ZU{d}pF-~v . By
Deduction Theorem, we get Z |—¢—> Y and I ¢—> ~y. Since |—(¢—*ﬂ))

— ((p—~P)— ~ ¢), we get T I—~ ¢.
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(ii) Assume I P\ ¢. Suppose ZU{~¢} is inconsis-
tent, then 2U{~ ¢} |~y ~ ~ ¥ for any formula ¥ of L, i.e. ZU{~¢}
and 2U{~¢}F~ y. By Deduction Theorem, we get Z}—~ ¢— ¢ and
Th~¢— ~¥. Sincej—(~¢ — ~ N—((~¢ — V) — ¢), we get

Zl— ¢ which is a contradiction. Hence ZU{~¢} is consistent.

2,33 ProEosition. Let £ be a set of sentences of L. If I 'is maximal

consistent, then for any sentences ¢ and ¢ of L,

(i) Il¢ if and only if ¢€I ,
(ii) ¢¢I if and only if ~¢eZ

and (iii) ¢ ~ e if and only if both ¢ and Y belong to I .

proof. (i) Assume I }=¢ . Consider ZU{¢}= Zl. Suppose
Zl is inconsistent. By Proposition 2.32 (i) we get L j—~ ¢ and so
ZF—¢ ~ ~ ¢, thenI is inconsistent which is a contradiction. Thus Zl
is consistent and since Z is maximal consistent, we get I = Zl.
Hence ¢ € L.

To prove the converse, assume that ¢ €Z. By Definition 2.26,
we get X I—¢.
(ii) Assume ¢ ¢ Z. By (i), ZH9¢ , so ZU{~¢} is
consistent. Since I is maximal consistent, we getZU {~ ¢} = X.

Hence ~ ¢ € L .

To prove the converse, assume that ~ ¢ € Z , by (i) we get
L }—~ ¢. Suppose ¢ € I, then I [—¢. Thus Zj—¢.~¢ and so I is

inconsistent which is a contradiction. Hence ¢ ¢ T .
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(iii) Assume ¢ ~ Y €I , by (i) we get Z ¢ ~ ¢ ,

i.e. Z|-¢ and I |~y . Hence ¢€Z and Y€ I .

To prove the converse, assume that ¢ € Z and Y € L, so I ¢

and I}~y . Hence ¢€Zand Yyl ,i.e. ¢ ~VeETI,

2.34 Theorem. (Lindenbaum's Theorem). Any consistent set of sentences

L of L can be extended to a maximal consistent set of sentences I of L.

proof. Let us arrange all the sentences of L in a list, ¢0,
¢1,..., ¢a s«... The order in which we 1list them is immaterial, as
long as the list associates in a one-one fashion an ordinal number with
g

each sentence. If ZU{¢.} is consistent, define I, = IZU{¢.}
0 1 0

S A th : _
Otherwise define I, =1I . At the stage, we define I . = ZaU{d)a}
15 2 Zoc U {¢a} is consistent, and otherwise define Za+1 = Za. At limit
ordinals a take unions Za = Bg azB' So we shall form an increasing

chain £ = ZOC zlc: ZZC —_— = Zac"" of consistent set of sentences.

Now let T be the union of all the sets Zoz i

Claim that T is consistent. Suppose not. Then there is a
deduction ll)l,..., lbp of the formula $ ~ ~¢ from . Let 91,. % &% eq be
all the formulas in I' which are used in this deduction. We may choose

0 so that all of © i eq belong to Z,. But this means that Z_ is

1°°°

inconsistent, which is a contradiction.

Having shown that I' is consistent, we next claim that I' is maxi-
mal consistent. Suppose A is consistent and T'CA . Let ¢, €D

Claim that 2 U {¢a} is consistent. To prove this, suppose Z_ U {¢a}



15

is inconsistent, therefore I {—~ ¢ . Since I € rca, we get

At~ ¢ and since ¢, € A, it follows that A ¢, Therefore A9, ~~9,
and so A is inconsistent which is a contradiction. Hence 20&1 = Zap{¢a}.
Thus ¢a €l adso A =T,

Satisfaction of formulas of L.

Let ¢ be any formula of L,

M < A,$'> be a model of L,

and s = (51’ 52,...) be any sequence of elements of A.

2.35 Definition. The value of a term t at the sequence s, denoted by

t[s] , is defined as follows :

iy ~If .t = Vis then t[s] = S

(ii) If t is a constant symbol c, then t[s] is the interpreta-
tion of ¢ in M, denoted by éy(c).
(da)y: TEt = F(tl...tm) where F is an m-placed function symbol

and t ., t_are terms, then t[s] = G(t;[s] ... t [s]) where G is the

10"

interpretation of F in M.

2.3 Definition. Satisfaction of an atomic formula ¢ by a sequence s

in M is defined as follows

({): . If diis gyo= 1. swher€& 'to 't

1 2 1?
in M if and only if tl[s] = tz[s].

, are terms, then s satisfies ¢

(ii) If ¢ is P(tl...tn) where P is an n-placed relation symbol

and t.,..., t are terms, then s satisfies ¢ in M if and only if
X n

000969
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(tl[ i T, t [s]) € R where R is the interpretation of P in M.

2.37 Definition. Satisfaction of a formula ¢ by a sequence s in M is

defined as follows :

(@) . Ef P dis 61 P 62 where 61 and 62 are formulas, then s satis-
fies ¢ in M if and only if s satisfies both 61 and 62 in M.

(ii) If ¢ is ~ 6 where 6 is a formula, then s satisfies ¢ if and
only if s does not satisfy 6 in M.

(ii1) - Ifd 35 (¥ vi) 6 where vy is an individual variable and
6 is a formula, then s satisfies ¢ in M if and only if every sequence

of elements of A differing from s in at most ith place satisfies 0 .

2.38 Lemma. If the free variables of a formula ¢ occur in the 1list

1
Vi seees Vo and if the sequences s and s have the same components in
1 k :
thedy v i;h places, then s satisfies ¢ if and only if s satisfies

proof. We must prove this lemma by induction on length of a

formula ¢ .

First we must prove that if t is a term with variables among

1
V. 5..., v. and if s and s have the same components in the ith ,...,ith
i i 1 k
L 1
places; then t 8] = € [8) .siievineinens ®

If t is an individual variable vy for some j, i < j <k then

' I th

t[s] =a. , t[s]=a. where a, is the i,

i 3 i, j
J ' J I

sequence s and s , hence t[s] = t[s ].

element of the
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If t is a constant symbol c, then t contains no variables at

all. So t[sl] = t[sz] for any sequences s, and s, .

Suppose ® is true for all terms t such that length of t < k.
Ii?tisF(tl... tm) of length k, where F is an m-placed function symbol
and tl,..., tm are terms with variables among vil,..., vik such that
length of tj < k, then t[s] = G(tl[s] A tm[s] ) and t[s'] = G(t1
[s'] i tnlB']) where G is the interpretation of F. By induction

hypothesis, t,[s] = tl[s'] Shodl sl = tm[s'] A S 1L

t.fs]/) e G(tl[s'] " tm[s'] 0 Eeets] = tls' ] .

If ¢ is an atomic formula tl = t2 where tl, t2 are terms and tl
1
are terms with variables among v. ,..., v. , then t_[s] = t_[s ]
11 i 1 1
t, then tl[s]= tz[s] and

and t2

1
and tz[s] = tz[s ] . Assume s satisfies t

1

1 1 1
SO tl[s = tz[s ] . Therefore s satisfies t, = t,.

Similarly, if s

satisfies t1 = t2 then s satisfies t1 = t2.

If ¢ is an atomic formula P(tl"' tnP where P is an n-placed
relation symbol and tj, 1 <j<n, is a term with variables among Vi s
1
1 1
vi , then t. [s] = € I8 °15..0, ¢t I8] ="t [s'] . " Assume s satisfies
1k 1 1 n n
P(tl... tn) then (tl[s] s v tn[s] ) € R where R is the interpretation
1 1 )
of P, so (tl[s , Al tn[s 1) € R. Hence s satisfies P(tl... tn).

1
Similarly, if s satisfies P(tl... tn) then s satisfies P(tl"'tn)'

Suppose this lemma is true for all formulas ¥ such that length of

Y < length of ¢ .

1
If ¢ is ~ Y, then s satisfies Y if and only if s satisfies V.
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1
Therefore s does not satisfy ¥ if and only if s does not satisfy ¥ ,

1
i.e. s satisfies ¢ if and only if s satisfies ¢ .

If ¢ is ll)l,\ 11)2 , then lIJl and IPZ are formulas whose lengths <
1
length of ¢. Therefore s satisfies “’1 if and only if s satisfies ll)l
1
and s satisfies wz if and only if s satisfies 11)2. Hence s satisfies

1
ll)lAllJz if and only if s satisfies lPlAlPZ.

If ¢ is (Vv.) VU where v_ ¢ {v. ,..., V. } , then ¥ is a formu-
N g ¥ o 11 lk
la of length < length of ¢. Assume s satisfies (V vr) Y, then s satis-

fies V and s satisfies ¥ where s is a sequence differing from s in at

' )
most rth place. By induction hypothesis, s satisfies Y. Let s be

! S B, |
any sequence differing from s in at most rth place, so s and s have

e, |
the same components in the itl:},l..., i;h places, therefore s satisfies

1
Y. Hence s satisfies (er) Y. Similarly, if s satisfies (er) U]

then s satisfies (er) P.

If ¢ is (er) Y and v,.€ {vil,..., vik }, so v, must be vijfor
some j, 1 < j <k. Assume s = (bl,..., bil-l’ ail,..., aik, bik+1,.. D
- - '
satisfies (V vr) Y . Suppose s = (cl,..., cil-l’ ail,..., aik,
|

c ) does not satisfy (er) Y , then there exists a sequence s

ik+1,...

= (cl,..., cil-l’ a; seees dij,..., aik, cik+1,...), which is differing
1

from s in at most i.;h place does not satisfy Y. By induction hypo-

thesis, s = (b bi 2 By s d. ,..., a, , b, Siad) s aiiE-Ch

5% ey
1 1 11 1j lk X

is a sequence differing from s in at most i;h place does not satisfy .
1
Contradicts to the assumption, hence s satisfies (er) Y. Similarly,

1
if s satisfies (er) Y then s satisfies (V Vr) (/A
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Hence this Lemma is true for all formulas g.

2.39 Definition. A sentence g of L is true in a model
M= (A,§’7 or M is a model of ¢ (M= g) if and only if every

sequence of elements of A satisfies ¢ in M.

2,40 Lemma. Let g be a sentence of L and M = LA,é’) a model
of L. If there exists a sequence of elements of A satisfies &

. in M, then every sequence of elements of A satisfies g in M.

proof. Assume (a1, a2,...), a sequence of elements of A
satisfies § in M. Let (b'l’ b2,...) be any sequence of elements
of A, Want to show that (bl’ b2,...) satisfies ¢ in M. We must
prove this by induction on length of sentence g.

continue
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Fivst, we must prove that if t is a term with no free variables,

1
then t[s] = t[s ] .
3 '
If t = ¢, where ¢ is a constant symbol, then t[s] = o (c) = t[s ].

Assume this is true for all terms t with no free variables of
lengths < k. If t is F(tl... tm) of length k, where F is an m-placed
function symbol and tl,..., tm are terms with no free variables of
lengths < k, then t[s] = G(tl[s] Wit tm[s] ) and t[s'] = G(tl[s'] iy
tm[s']) where G is the interpretation of F in M. By induction hypothe-

sis, we get tl[s] = tl[s'] 7. tm[s] ® tm[s'] and so G(tl[s]

eees ot CENE G(tl[s'] /] tm[s'] ). Hence t[s] = t[s'].

If ¢ is an atomic formula t1 = t2 where tl, t2 are terms with no

free variables and s satisfies t, =t then tl[s] o b a3 .. Sinee

tl[s] = tl[s'] and t2[s] = tz[s'] , hence tl[s'] = tZIs'], i s

satisfies t1 = tz.

If ¢ is P(tl... tn) where P is an n-placed relation symbol and
tl""’ tn are terms with no free variables and s satisfies P(tl... tn),
then (tl[s] o sk iy tn[s] ) € R, R is the interpretation of P in M.

1 1 1
There fore, tl[s] - tl[s ) tn[s] 2 tn[s ] and so (tl[s Forsis i

1 1
€ i.e. isfi 3ieid é
tn[s ] )eER, i.e. s satisfies P(t1 tn)

Assume this lemma is true for all sentences Y such that length

of ¥< length of ¢.

If ¢ is wl ~ wZ’ then wl and wz are sentences of lengths < length

of ¢. By induction hypothesis, we get (bl, b2,...) satisfies wl and
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(b,, b,,...) satisfies wz. Hence (bl’ b

1> by ..) satisfies wl A wz.

o

If ¢ is ~ P, then from the assumption, there exists a sequence
satisfies ~ Y, i.e. this sequence does not satisfy . Suppose not, so
there exists a sequence satisfies ) which contradicts to the assumption.

Hence every sequence satisfies ~ y.

If ¢ is (V vi) Y, then Y is a sentence of length < length of

¢. Therefore every sequence differing from (al, a ..) in at most ith

2

place satisfies Y, i.e. (al,... a, 1» Cse-- ai+1,...), for any c,
satisfies .

case 1 : vy is not freerin{y, Since Y is a sentence
whose length < length of ¢, we get (bl, bz,...) satisfies ¢ .

case 2 : v, is free in Y. By Lemma 2.38, we get (bl,... bi-l’
c, bi+1"")’ for any ¢, satisfies . Hence every sequence differing

from (bl, b2,...) in at most ith place satisfies y. Thus (bl, b2,...)

satisfies ( Vvi) V.

Hence, we get (bl, bz,...) satisfies for all sentences ¢. Since

(bl, b2,.

of A satisfies for all sentences ¢ of L.

..) is arbitrary sequence, we get every sequence of elements

2.41 Theorem. Let ¢ be a sentence in L and M = < A,§y> a model of L.

If M is not a model of ¢, then M is a model of ~ ¢.

proof. Assume M is not a model of ¢, then there exists a

sequence of elements of A does not satisfy ¢, i.e. a sequence satisfies
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~¢. Since ¢ is a sentence, we get ~ ¢ is a sentence. Hence, by Lemma
2.40, we get every sequence of elements of A satisfies ~¢. Thus M is

a model of ~ ¢.
2.42 Note. If M is not a model of ¢, we then use the notation MPe¢ .

2.43 Definition. Let I be a set of sentences. M is a model of I

M '=2) if and only if M is a model of each sentence ¢ in I.

2.44 Definition. A sentence ¢ of L is valid (i:cb) if and only if ¢ is

true in every model of L. If ¢ is not valid, we use the notation PF .

2.45 Definition. A sentence U is a consequence of another sentence ¢,
in symbols ¢|=1p , 1f and only if every model of ¢ is a model of y. A
sentence ¢ is a consequence of a set of sentences I, in symbols Il=¢,

if and only if every model of £ is a model of ¢.

1
2.46 Definition. Two models M and M of L are elementarily equivalent,
1
in symbols M= M , if and only if every sentence that is true in M is

1
true in M , and vice versa.

2.47 Lemma. If t and u are terms and s is a sequence of model M, and
1 '
t 7results from t by substitution of u for all occurrences of vy and s

results from s by substituting u[s] for the ith component of s, then

18] < #fs ]

proof. We must prove this lemma by induction on length of a

term t.

@t = Vj where V.‘i is an individual variable.
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1 of\v 1
If v, # vj, then t t. Since v, is not in t, : =

t[s'] by Lemma 2. 38.

u and so t'[s] = u[s] = t[s'].

1
If v. = v., then t
1 J

1 1 1
(ii) t = constant symbol c, therefore t =t and t [s] = t[s ]=

3(C).

Assume this lemma is true for all terms t of length < k.

Let t be of the form F(tl... tm) of length k, where F is an m-

placed function symbol and t A tm are terms of length < k. Then

1
1 1 1
tls ] = G(t1 g S tm[s 1) where G is the interpretation of F in M.
1 1 1 1 1 1
Since t = F(tl... tm), we get t [s] = G(tl[s]... tm[s] ). By induc-

1 1 1 1
tion hypothesis, we get ti[s }oE ti[sl, 1<i<m Thus t[s ] =t [s].
Hence this lemma is true for all terms t.

2.48 Lemma. Let ¢ (Vi) be a formula, and ¢(t) results from ¢(vi) by
replacing free occurrences of Vo with a term: t, where t is a term such
that no variable x in t shall occur bound in ¢(t) at the place ! where

it is introduced. Then s = (al, a ..) satisfies ¢(t) if and only if

220

..) satisfies ¢(Vi).

£ . (al,..., a;_1» tit]- , a;, 1

proof. We must prove this lemma by induction on length of a

formula ¢.
Suppose ¢ is an atomic formula t, =t where t;, t, are terms.
If vy ¢ t1 = t2 then ¢(vi) = ¢(t) = ¢. Therefore s satisfies ¢(t) if

1
and only if s satisfies ¢(vi) by Lemma 2.38. If vie tl = tz, then ¢(t)
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is (t; = t,) (Vti) and (t, = t,) (Zi) is t (‘t’i) = t, (}c’i) where t; (‘t’i)

is a term obtained from t, by replacing v, with t. Assume s satisfies
|
o(t), then t (Xi)[s] = t, (zi)[s] . By Lemma 2.47, we get tl[s ] %=
1 1
tz[s ] , therefore s' satisfies ¢(vi). Similarly, if s satisfies ¢(vi)

then s satisfies ¢(t).

Suppose ¢ is P(tl... tn) where P is an n-placed relation symbol

and t,,..., t are terms. Ifv, ¢ {v/ve t, or ..., vE:tn} , then ¢(t)

1
]
= ¢(vi) = ¢. By Lemma 2.38, we get s satisfies ¢(t) if and only if s

satisfies ¢(v,). If v,e{v/vet or ..., v€tn} , then ¢(t) = p(tlcfc’i)

1

g (}c’i)). Assume s_sHCrP s SR Then (tl(‘,éi) £ 3 R (‘t’i) [sD

|
€ R where R is the interpretation of P. By Lemma 2.47, we get (tl[s | S
1 1 1
tn[s 1) eR, so s satisfies P(tl... tn), i.e. s satisfies ¢(vi). Simi-

1
larly, if s satisfies ¢(vi) then s satisfies ¢(t).

Assume this lemma is true for all formulas ¥ such that length of

P < length of ¢.

If ¢ is ~ P, then lemma is true for Y. Therefore s satisfies
]
P(t) if and only if s satisfies w(vi). Thus s does not satisfy: Y(t)
1
if and only if s does not satisfy w(vi), i.e. s satisfies ~yY(t) and

|
only if s satisfies ~w(vi).

If ¢ is wl"wZ’ then wl and wz are formulas of lengths < length
of ¢. Therefore s satisfies wl(t) if and only if s' satisfies wl(vi)
and s satisfies wz(t) if and only if s' satisfies wz(vi). Hence s
satisfies wl(t)"wz(t) if and only if s' satisfies wl(vi)“wz(vi)’ i.e.

s satisfies (wl"wz)(t) if and only if s' satisfies (wl"WZ)(Vi)'
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If ¢ is (V VJ.) /3 Vj # vis and assume s satisfies ¢(t), then by
induction hypothesis, s satisfies Y(t) if and only if s' satisfies w(vi) 3
Let s be any sequence differing from s in at most jth place, then s
satisfies Y(t). Thus §" satisfies w(vi) where E' is any sequence dif-

'

1
fering from s in at most jth place. Therefore s satisfies <b(v.1).

1
Similarly, if s satisfies ¢(vi) then s satisfies ¢(t).

If ¢ is (ij) (V3 vj = ¥y then ¢(t) = ¢ (vi) and vy is not free

in ¢.
Hence this lemma is true for all formulas ¢.

2.49 Theorem. (i) Logical axioms of L are valid.

(ii) Rules of inference preserve validity.
proof. (i) To show logical axioms (i) - (viii) are valid.
Axiom (i) : ¢ — (Y— ¢).

Let M = < A,5’> be any model of L and (al, a ..) be any sequence

2430
of elements of A. Suppose (al, a2,...) does not satisfy ¢—=(Y — ¢).

Therefore (al, a,,...) satisfies ¢ but does not satisfy p— ¢, i.e.

i
satisfies y but does not satisfy ¢ which is a contradiction. Then (a,,

a2,...) satisfies ¢—>(Y— ¢). Thus ¢—>(YV—> ¢) is true in M and M is

arbitrary model, so ¢—(Yp—¢ ) is valid.
Axion (di) .t "~ (pr={P=20)) == U= V) — (== 8)).

Let M = < A,5l> be any model of L and (al, a,,...) be any sequence

2,

of elements of A. Suppose (al, az,...) does not satisfy axiom (ii), then
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(a;, a,,...) satisfies ¢— (Y — 6) but does not satisfy (¢—> yY)—

(¢=— 6). From this, we get (al, a,,...) does not satisfy ¢ and satis-

g

fies ¢ which is a contradiction. Thus (al, a ..) satisfies axiom (ii).

22"

Then axiom (ii) is true in M and M is arbitrary model, thus axiom (ii)

is valid.
Axiom (iii) : (¢ — ~YP—= ((~¢— YY) — ¢).

Let M = < A,g> be any model of L and (al, a,,...) be any sequence

anr

of elements of A. Suppose (al, a,,...) does not satisfy axiom (iii),

" 0

then (al,' a .) satisfies ~ ¢— ~ Y but does not satisfy (~ ¢ —y) — ¢.

g e

From this, we get (al, a,,...) satisfies ¢ and does not satisfy ¢ which

27

is a contradiction, so (al, a,,...) satisfies axiom (iii). Then axiom

(iii) is true in M and M is arbitrary model, thus axiom (iii) is valid.

Axiom (iv) : (Vvi) (p—> Y)— (¢ — (Vvi) V), where 4 is

a variable not free in ¢.

Suppose there exists a model M = < A,A’> and a sequence (al, ays

...) of elements of A such that (al, a ..) does not satisfy axiom (iv)

i

2,...) satisfies (Vv.l) (¢— Y) but does not

satisfy ¢—>(Vvi) Y, i.e. (al, az,...) satisfies ¢ but does not satis-

in M. Therefore (al, a

fy (Vvi) P .- Since vy is not free in ¢ ; we get, (al, Bysee 85 15 b,
ai+1,...) satisfies ¢ for any b, by Lemma 2.38. Hence (al, Aysenns
a; 1 b, ai+1,...) satisfies Y for any b. Thus (al, az,...) satisfies

(Vvi) Y, contradiction. Therefore for any model M = < A,9'> of L and
any sequence of elements of A satisfies axiom (iv). Thus axiom (iv)

is valid.
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Axiom (v) : (V’vi)¢-—* VY where Y is a formula obtained from ¢

by freely substituting each free occurrence of vy in ¢ by a term t.

Let M = < A,Al> be any model of L and s = (al, a2,...) be any
sequence of elements of A. Suppose s does not satisfy axiom (v), then
1
s satisfies (V vi)tb but does not satisfy Y. Let s = (al,...

o place,

’ai-l’

tls] , ai+1,...) be any sequence differing from s in at most i
1

then s satisfies ¢. By Lemma 2.48, s satisfies ¥, which is a contra-

diction. Thus s satisfies axiom (v), so axiom (v) is true in M and M

is arbitrary model, then axiom (v) is valid.

Axiom (vi) : v Yo/ Vg is variable.

Let M = < A,g'> be any model of L and s = (al, az,...) be any
sequence of elements of A. Suppose s does not satisfy axiom (vi), then
there exists a, such that a, ¥ a; which is impossible. Thus s satisfies
axiom (vi) and axiom (vi) is true in M, and M is arbitrary model, then

axiom (vi) is valid.

'Vi-lxivi+1"’vn) = t(vl...vi_1

Axiom (vii) : X, = xj——+t(v1,.

X.V.. ....v_) where x., x. are variables and t(v,...v_ ) is a term.
j i+l n i j 1 n

Let M = < A,9'> be any model of L and s = (al, a2,...) be any

sequence of elements of A such that a, = aj.

1f ¢t ¥s v., then t[s]i e il t[s]j, where t[s]i is the

value of t at (al,..., ..) and t[s]j is the value of t

a. X, &; 3
i=1% =d? " CA41

at (al,..., a, 1 Q. @
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If t is a constant symbol c and x is the interpretation of ¢ in

M, then t[s]i & ool t[s]j .

Assume this axiom is true for all terms t of length < k. Let t
be of the form F(tl... tm) of length k, where F is an m-placed function
symbol and tl,..., tm are terms of length < k. By induction hypothesis,
tk[s]i » tk[s]j for k =1,.2,.4, 8. Thus t[s]i = G(tl[s]i... tm[s]i)
= G(tl[s]j... tm[s]j)= t[s]j, where G is the interpretation of F in M.
Hence s satisfies axiom (vii), so axiom (vii) is true in M, and M is

arbitrary model, then axiom (vii) is valid.

Axiom (viii) x, = xj——> ) (o (vl. S Vi 1% Vie1 .vn)——Nt)(v1 AN

Vi-lxjvi+1"'vn)) where X; xj are variables and Cb(vl...vn) is a

formula.

LetM=<A,g> be any model of L and s = (a ..) be any

1® By ¢

sequence of elements of A such that a; = aj.

If ¢ is an atomic formula t, =t where t,, t, are terms, then

by axiom (vii), tl[s]i = tl[s]j and 'cz[s]i =t [s]j . Assume s satisfies

(v .vn), then tl[s]i » t2[s]i . Therefore tl[s]j =

1 V515 Vi1
tZ[S]j , S0 s satisfies ¢(V1"'Vi-1xjvi+1"'vn)'

If ¢ is P(tl... tn) where P is an n-placed relation symbol and

t -» t are terms, then by axiom (vii), tk[s]i - tk[s]j, for k=1,

1°°°

2,..., n. Assume s satisfies ¢(v1...v ..vn), then (tl[s]i,. b

i-1%1Vis1"
tn[s]i) € R where R is the interpretation of P in M. Hence (tl[S]j’ IR

tn[s]j) € R, and so s satisfies ¢ (vl"’vi-lxjvi+1" .vn).
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Assume this axiom is true for all formulas Y such that length of

Yy < length of ¢.

If ¢ is ~ Y, then ¥ is a formula of length < length of ¢.

Assume s satisfies ~11)(vl...vi_lxivi+1...vn). Since X = xj, we get
lb(vl. eV 1% V5410 .vn) is ll)(vl. f 'Vi-lxjvi+1' : .vn) . Hence s satisfies

~ lJ)(vl. 3 'Vi-lxjvi+1' i .vn) "

EfF b is 11)1 A IPZ, then “’1 and d}z are formulas of lengths < length

of ¢. Thus, if s satisfies<gx(v... ..v_) then s satisfies
= el | n

Y131 Via1
wl(vl. ; 'Vi-lxjvi+1' . .vn) , and if s satisfies wz(vl. Vi 1% Vie1te .vn)
’Vi-lxjvi+1"'vn)' Hence, if s satisfies

(ll)l ~ IPZ) (Vl' c Vs 1% V5410 .vn) then s satisfies (lPl ~ xpz) (vl. 3 'Vi—lxj

then s satisfies wz(vl..

V.

1+1...vn).

Ff+pis (er) Y, Vi # Ve, then Y is a formula of length < length

of ¢§. Assume s satisfies ¢(v1...v v_). By induction hypo-

——e—r |,
i-1"11i+1 n

|
Tfis = (al,...,a.

thesis, s satisfies lp(vl.. 1212350

'vi-lxjvi+1' : .vn) <

\J
.10 34 s...) be any sequence differing from s in at most rth place,
"
i-lxivi+1"'vn)' Since a, = aj, we get s =
!

(al,..., ai-l’aj’ai+1""’ar ,...) satisfies w(vl"'vi-lxjviﬂ"'vn)'

"
Since s is any sequence differing from s in at most rth

1
then s satisfies w(vl...v

place, we get
s satisfies ¢(v1. 3 'Vi—lxjvi+1' . .vn) :

If ¢ is (er) Vv, Sl and assume that s satisfies ¢ (vl...

Vi 1%5V5.10 .vn) » then by induction hypothesis, s satisfiesy (vl. Vi g
\J
xjvi+1°"Vn)' Let s = (al,..., ai-l’aj’ai+1’°“) be any sequence dif-
hio - . th . e
fering from s in at most i~ place and s satisfies w(vl. SV 1% V54100
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1
vn). Since a, = aj, we get s satisfies w(vl...vi_lxjvi+1...vn).

Hence s satisfies d)(vl. : 'Vi-lxjvi+1' E .vn) 4

Thus s satisfies this axiom for all formulas ¢, so s satisfies
axiom (viii), and axiom (viii) is true in M, and M is arbitrary model,

then axiom (viii) is valid.

(ii) (a) To show MP, preserves validity, i.e. if M'=1p and

M = VY= ¢ then M|=<b, for any model M and any formulas ¢, ¥ of L.

Let ¢ , Y be any formulas of L, M = < A,9> any model of L and
s any sequence of elements of A. Assume MI:w and M[.=¢—>d>, i.e. s satis-
fies Y and s satisfies y— ¢. From s satisfies Pp— ¢ we get s does
not satisfy Y or s satisfies ¢. Thus s satisfies ¢. Therefore ¢ is

true in M and hence M = ¢.

(b) To show Generalization preserves validity, i.e. if

M |=¢ then M= (v v,) ¢ , for any model M and any formula ¢ of L.

Let ¢ be any formula of L, M = <A, .9’ > any model of L and s
any sequence of elements of A. Assume M b ¢, i.e. s satisfies ¢. Let
'  ;
s be any sequence differing from s in at most ith place; 'so's. is

) ;
sequence of elements of A. Thus s satisfies ¢. Therefore s satisfies

(Vv Vi) ¢, i.e. (V vi)cb is true in M. Hence M}:(Vvi) ¢ .

One of the important theorems of first-order Model Theory is
Godel's Completeness Theorem. Before we prove this theorems, we need a

new definition, two lemmas and the Extended Completeness Theorem.
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2.50 Definition. Let T be a set of sentences of L and let C be a set
of constant symbols of L (C might be a proper subset of the set of all
constant symbols of L). We say that C is a set of witnesses for T in

L if and only if for every formula ¢ of L with at most one free varia-

ble, say v, there is a constant c¢c € C such that

TH(3v) ¢ — ¢(c),

where ¢(c) is obtained from ¢ by replacing simultaneously all free

occurrences of v in ¢ by the constant c.

We say that T has witnesses in L if and only if T has some set

C of witnesses in L.

2.51 Lemma. Every maximal consistent set of sentences T of L, which

has witnesses C in L, has a model.

proof. Let T be a maximal consistent set of sentences of L,

and C be a set of witnesses for T in L.
Define a relation ™~ on C as follows :

for ‘all ¢, d e €, civ.d if ‘and only 1if ¢c,= d € T. . Since.T is®maximal

consistent, we see that for c, d, e, € C;

CY-C™,
ifcvdand dve, thencVve,

ifcnvdthen dVvec .

. . . v
So v is an equivalence relation on C. For each c € C, let c =
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{de c|d~c} bean equivalence class of c¢c. We purpose to construct
a model M = < A,9> whose set of elements A is the set of all these

N
equivalence classes ¢, for ¢ € C; so we define
N
(0. A=sd{c] eeCc}.
We now define the relations, constants and functions of M.

(i) For each n-placed relation symbol P in L, we define

L o 0,

'
an n-placed relation R on the set C by : for all Cpasees C

1
(2) R (cl. ..cn) if and only if P(cl...cn) e.T.
By the axiom of L, we have

|—p(cl...cn) ~ of PR . qc = d — P(d....d).

1

If follows that we may define a relation R on A by

(3) R(El...?n) if and only if P(c;...c ) € T. This relation R

is the interpretation of the symbol P in M.

(ii) Consider a constant symbol d of L. Since j—d = d,
we see thatj— ( ’:Ivo) (d = VO) and so T |—( Hvo) (d = Vo). Since T has
witnesses, there is a constant ¢ € C such that T}—( Hvo) (d = vo)—>
d=c. Thus T|~d = c, and hence d = c € T. The constant ¢ may not be

1
uniqued, but its equivalence class is unique because |—(d = ¢ ~ d = ¢c—>

|
¢ =c ). The constant d is interpreted in the model M by the ‘(uniquely
N
determined) element c of A. In particular, if d € C, then d is inter-

47
preted by its own equivalence class d in M, because (d = d) € T.
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(iii) We handle the function symbols in a similar way.
Let F be any m-placed function symbol of L, and let c seeesC € €. As
before, we have T |—( Elvo) (F(cl. ..cm) = vo) and because T has witnesses,
there is a constant ¢ € C such that (F(cl...cm) = ¢c) € T. Once more, we
have a slight difficulty because c may not be unique, and use our axiom

to obtain :

I"—(F(Clo..cm) =LA Cl = dl A cee A Cm = dm A C= d»)'_> F(dl...dm) = d.

This shows that a function G can be defined on the set A of equivalence

classes by the rule.

v v v . { . 74
(4) G(cl...cm) = ¢ if and only if (F(cl...cm) =c¢c) €ET. We

interpret the function symbol F by the function G in the model M.

We have now specified the universe set and the interpretation of
each symbol of L in M, so we have completed the definition of the model

M.

We proceed to prove that M is a model of T. We will prove M ¢

if and only if ¢ €T by induction on length of sentence ¢.

First of all, using (4), we get : for every term t of L with no

free variables and for every constant c € C ,
(5) Mt=c if and only if (t = c¢) €T.
Using the fact that C is a set of witnesses for T, we have :

t, of L with no free variables,

for any two terms tl, 2

€T, and

(6) M |=t1 = t, if and only if tl =t,
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for any P(tl.. .tn) of L containing no free variables,
(7 M1=P(t1...tn) if and only if P(tl...tn) e T.

Suppose M ’=‘P if and only if Y€ T for all sentences Y such that

length of Y <length of ¢.

If ¢ is ~¥, then M=y if and only if Y € T, and so ME ~ ¥ if

and only if ~y e T.

If ¢ is wl A wz, then wl, wz are sentences of lengths < length
of ¢. Therefore M|=1p1 if and only if y, € T and M|=\p2 if and only if

Y, € T. Thus MY, « ¥, if and only if Y, A ¥, € T.

Suppose ¢ is (dv) ¢. If ME=¢, then for some T e A, M|=1p['<\:'] ?
This means that M |= Y(c), where Y(c) is obtained from Y by replacing
all free occurrences of v by c¢. Thus Y(c) € T and because |—(c) — (dv)
Y, we have ¢ € T. On the other hand, if ¢€ T, then because T has wit-
nesses, there exists a constant ¢ € C such that TI—(d vV)¥— ¥(c). As
T is maximal consistent, y (c) € T, so MEy(c). This gives M| ¢ ['2:']

and M= ¢.
This shows that M is a model of T.

2.52 Lemma. Every consistent set of sentences T of L can be extended
to a consistent set of sentences T of L = L U C, where C is a set of new

constant symbols of power lc] = |[|L]], such that T has witnesses in

L.
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proof. Let w = || L ||. For each a<w. Let c, be a constant
symbol which does not occur in L and such that Sy, # cY if o <y < w,
LetC={ca|0L <w}, T=LUC. Clearly ||T||] = w, so we may ar-

range all formulas of T with at most one free variable in a sequence
¢E’ € < w. We now define an increasing sequence of sets of sentences of
| T T, C T1C CTg C ...,E<w, and a sequence dE , EBi<ie, of

constants from C such that :

(i) each T€ is consistent in L ;

(ii) 4if E = [ + Ithen TE = TC U {(avc)¢c—>¢§(dc)} 3 vy is

the free variable in ¢C if it has one, otherwise VC =, Vg .3

(iii) if &€ is a limit ordinal different from zero, then Tg < C<E' ?

Suppose that TC has been defined. Note that the number of

sentences in TC which are not sentences of L is smaller than w, i.e. the
cardinal of the set of such sentences is less than w. Furthermore, each
such sentence contains at most a finite number of constants from C.

Therefore, let dC be the first element of C which has not yet occurred

in TC . We show that

TC+1 = TC U {(gvc)d)c — ¢c (dc)}

is consistent. If this were not the case, then by proposition 2.32 (i),

we get
Tob= (avp o= ¢ (4).

Therefore TCI—(EI V;) ¢C : AL~ ¢C (dC)' As d_ does not occur in TC , SO

C

1153 89v8% -



T, I—(ch) ¢C A~ ¢C (VC)'
Hence TC |-—(ch) ((Elvc) ¢C i ¢C(VC))’ and so
T, =3 v) Op A~ (3Vv) ¢,

which contradicts the consistency of T If £ is a nonzero limit

-
ordinal, and each member of the increasing chain TC 506 $i68, 18 con~
sistent, then obviously TE = g<'£c is consistent. This complete the
induction.

UurT

Now we let T = It is evident that T is consistent in

E<w®
T and T is an extension of T. Next, we want to show that C is a set of
witnesses for T in L. Sﬁppose ¢ is a formula of L with at most one
free variable v. Then we vma.y4 suppose that ¢ = ¢g‘and V.= vEfor some
£ < w. Since TE+1 = TE u{(a Vg) ¢£—>¢E(dg)} , we get (g vg) d)g—* ¢E
(dg) ETE+1’ and so € T. - Then T |—=(3v)¢ — ¢(c) for some c € C. Thus

C is a set of witnesses for Tin. L.

2.53 Theorem. (Extended Complei:eness Theorem). Let Z be a set of

sentences of L. Then I is consistent if and only if I has a model.

proof. Assume I is consistent. By Lemma 2.52, we can extend
£ to T which is consistent and has witnesses in L. By Lindenbaum's
Theorem, we can extend L to a maximal consistent % which has witnesses
in L. Therefore, by Lemma 2.51, ¥ hes a model M = <A, ‘4’u.9’> for L,
so let M = < A,3> be the model of L which is the reduct of M to L.
Because sentences in I do not involve constants of L not in L, we see

that M is a model of ¥.
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To prove the converse, assume that £ has a model M. Therefore
Mf=¢ for each sentence ¢ of I. Suppose I is inconsistent, so I}y .~y
for any formula Y of L. Then there exists a finite sequence of formulas
61,..., Gn such that Gn =Y ~~ Y in which each 9.1, TS S T
logical axiom, or a member of I, or a conclusion from Gj, Bk (i k<)
by MR, or a conclusion from ej (j <1i) by generalization. By Lemma 2.49
(i), if 8, is a logical axiom, then MF6., and if 6, € I, then M'=ei.
By Lemma 2.49 (ii); if M|‘=e‘j and MI=6j—> 0, then M = 0,, and if M |=eJ.
then MI:(V Vi) Bj. Therefore M |=ei, 1 <i<n, sowe get M) ~ ~¥.

Hence MY and M|=~ Y which is impossible. Thus I is consistent.

2.54 Theorem. (Godel's Completeness Theorem.) Let I be a set of
sentences of L and ¢ a sentence. Then I |—¢ if and only if ZF¢ . 1In

particular, |~ ¢ if and only if f=¢.

proof. Assume I |—-¢ . Let Mbe any model of L , i.e. M=y
for each sentence Y of Z. Since I |—-¢ » there exists a finite sequence
of formulas el,..., en such that Bn = fandefich i, 1 <i <n, ei is a
logical axiom, or ei is a member of I , or ei is a conclusion from ej,
ek (j, k <i) by MR, or ei is a conclusion from ej, (j <1i) by generali-
zation. If ei is a logical axiom, then M }=ei, and if ei € I, then
ME ei, by Lemma 2.49 (i). If M }=6J. and M = 6J.—> 6; then M[=9i and
if ME ej then M = ( Vvi) eJ. by Lemma 2.49 (ii). Therefore Mf=6i,

1 <i<n, i.e. M=¢. Hence I [ ¢.

To prove the converse, assume that I |=¢ . Suppose I P~¢ . By

proposition 2.32 (ii), Z U{~ ¢ } is consistent. By Lemma 2.52, £ U
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{~¢} has a model M, i.e. MFL and M=~ ¢. Since IE¢, it follows
that if MIFZ, then M |F¢. Therefore Ml=¢ and M=~ ¢ which is impossi-

ble. Thus I |-¢.

2.55 Definition. A first-order theory T of L is a collection of

sentences of L.

Since theories are sets of sentences of L, we can define a model

of a theory and a consistent theory as before

2.56 Definition. A set of axioms of a theory T is a set of sentences

with the same consequences as T.

The most convenient and standard way of giving a theory T is by
listing a finite or infinite set of axioms for it. Another way to give
a theory is as follows : Let M be a model of L; then the theory of M is

the set of all sentences which is true in M.

2.57 Theorem. (Lowenheim's Theorem.) Every consistent theory T in L
has a model of power at most |[|L ||, i.e. if T has a model, then T has

a countable model.

roof. In the proof of Theorem 2.53, we may choose a model M of
2ER0s

L such that every element is a constant, and we have | A |<||T || =||L]].
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