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Steady two-dimensional flows due to an applied pressure distribution in water
of finite depth are considered. Gravity is included in the dynamic boundary condition.
The problem is solved numerically by using the boundary integral equation technique.
It is shown that, for both sunercritical and suberitical flows, solutions are
characterized by three parameters: (i) the Froude number, (i1) the magnitude of
applied pressure distribution and (iii) the span length of applied pressure distribution.
For supercritical flows, there exist up to two solutions corresponding to the same
value of Froude number for positive pressures and a unique solution for negative
pressures. For subcritical flows, there are solutions with wave behind the applied
pressure distribution. As the Froude number decreases, these waves diminish when
the Froude numbers approach the critical values. The surface tension effect is also
investigated in the case of subcritical symmetric flows. It is found that for some
values of the Bond number and positive pressures, there exist limiting configurations
with trapped bubble as the Froude number approaches a critical value (near zero). On
the other hand, the free surface profile tends to develop a large number of inflexion
points as the Froude numbers approach 1.
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Chapter 1

Introduction

Efforts to analyze the hydrodynamical characteristics of free-surface flow
with surface-disturbance have been divided primarily between theoretical and
experimental considerations. There are various types of surface-disturbance
occurred in nature and some are due to man-made structures. Most of the
theoretical studies lie mainly in the two-dimensional framework and were based
on global analysis. Results from the laboratory experiments provides, on the
other hand, small scale analysis for both two- and three- dimensional problems.

We devote this research to the investigations of steady two-dimensional po-
tential flow of an inviscid and incompressible fluid due to pressure distribution.
These two-dimensional models allow us to utilize various mathematical tools
for solving the problem, for example, the use of complex analysis particularly
conformal transformation. This simplification will not only provide qualita-
tive behaviors but also give some insights to the real flow situations. Though
the assumption of steadiness may seem unreal but we can always choose the
appropriate moving frame of reference in such a way that the flow becomes
steady.

In this study, we consider fully nonlinear free-surface flow past an applied
pressure distribution on the free surface. The fluid domain is of finite depth
with no vertical boundaries in the far fields. Such flows can be produced
by blowing air onto the surface of water flowing in a channel with parallel
sidewalls. In the far field on upstream, the flow is assumed to approach a
uniform stream with constant velocity U and uniform depth H. The flow is

characterized by a nondimensional parameter, the ¥Froude number,



F=—og, (1.1)

where g denotes the acceleration of gravity.

In general, this flow configuration can be served as a model of moving
vehicles such as hovercraft in a loné canal. It may also be viewed as an inverse
method of solution to the classical ship-wave problem. When the pressure
distribution is applied, the free surface will deform in some manner that must
be determined as part of the solution. The portion of the deformed free surface
at which the pressure distribution is applied can be viewed as a rigid obstacle.
It can be possible to find solutions for flow past different classes of hull forms
corresponding to the pressure distribution problem.

It has been known that, problems in free-surface hydrodynamics under the
influence of gravity are too difficult to solve exactly. Appropriate techniques
of mathematical approximations are usually sought. Here, we introduce the
integral equation formulation based on analytic function theory which may
prove useful in treating variety of fluid flow problems with free boundaries.
Numerical results can be obtained from this method after a few Newtonian
iterations.

The problem of free surface pressure distributions has been studied quite
extensively in the case of infinite depth for over 150 years. The classical lin-
earized version of the two-dimensional problem was solved long ago and was
discussed in detail by Lamb (1932). It was shown that for some pressure dis-
tributions the motion is drag-free. That is, the free surface is symmetric with
respect to the applied pressure distribution without a train of sinusoidal waves
in the far field. Schwartz (1981) reformulated the problem into a boundary in-
tegral equation and solved numerically. He showed that, for some values of the
Froude number (defined by using the span length of the pressure distribution

as the length scale), nonlinear theory gave drag-free solution while linearized



theory did not. He also found nonlinear wave train in the form of narrow crests
an broad troughs which were essentially periodic and propagated downstream.

In the case of finite depth, Von-Kerczek and Salvesen (1977) placed a net-
work of mesh points over the entire flow domain and performed finite dif-
ference calculations (successive overrelaxation) to obtain nonlinear solutions.
Their numerical calculations were restricted to certain values of the ratio of
pressure-distribution-length to the depth of the flow domain. The nonlinear
wave train propagates downstream while the flow satisfies radiation condition
on the upstream free surface. They found that, the effect of the nonlinearities
can clearly be seen on the phase shift in the solutions.

This thesis is organized in two folds. Firstly, the effect of gravity is intro-
duced to the flow field. This problem is studied thoroughly in chapters 2 and 3.
Secondly, the combined effects of gravity and surface tension are investigated
in chapter 4. We consider the fluid domain of finite depth. The conditions
of incompressibility and irrotationality of the fluid motion imply the existence
of the potential function and the stream function. The fluid domain in the
physical plane is transformed onto the complex plane. Bernoulli equation is
applied on the free surface while we assume no flow across the bottom bound-
ary. We satisfy the bottom conditon by using Schwartz reflection principle.
We solve the problem numerically by the boundary integral equation method
based on Cauchy’s integral formula. The integral equation is derived to obtain
a relationship of the flow variables at the free surface only. Thus mesh points
in the numerical scheme need only be placed at the free surface rather than
throughout the entire fluid. We obtain the numerical solutions by solving a
system of nonlinear algebraic equations on the free surface using Newton’s
Method. Details of the formulation and the numerical procedure are given in
chapter 2.

In chapter 3, we present and discuss numerical results for two flow regimes:



supercritical low F > 1 and subcritical low F < 1. As we shall see, both
supercritical flows and subecritical flows are characterized by three parameters.
These parameters are (i) the Froude number F', (ii) the magnitude of applied
pressure distribution e (positive pressure if € > 0 and negative pressure if € <
0), (iii) the span length of pressure distribution. In section 3.1, we present the
numerical results of supercritical flows. Our results show that the free surface
profile is always symmetric (drag free) with respect to the axis of symmetry
of the pressure distribution. There are two different families of solutions when
€ > 0. One family is a purturbed solution of uniform stream whereas the other
is a purturbed solution of solitary wave. When € < 0, there is only one family
of solutions that exists for all values of Froude number up to unity. We expect
that these solutions can be extend to the subcritical regime (F' < 1) by allowing
waves downstream. The case of subcritical flows is discussed in section 3.2.
The solutions are characterized by a train of nonlinear waves downstream while
the flow satisfies the radiation condition on the upstream. As F' decreases,
there are critical values of Froude number at which the flows become drag free.
Our finding is in contrast with the problem of flows past a surface-piercing
object. Asavanant and Vanden-Broeck (1994) showed that subcritical flows
past a parabolic-shaped object never possess drag-free solutions but they will
always approach Stokes’ limiting configuration. Difficulty in the numerical
process occurs when the Froude number is increasing to unity from below
because of the unpredicted numerical disturbances in periodic forms on the
upstream free surface. This has sabotaged the convergence of the numerical
scheme. However we conjecture that, for subcritical solutions, the wave length
would approach infinity as F' 1 1 and would extend to the supercritical regime.

The imporfance of surface tension effects on gravity waves is discussed in
chapter 4. We include the effects of both gravity and surface tension in the

dynamic boundary condition on the free surface. At this early stage of our
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study, we shall restrict ourselves in the case of subcritical symmetric flows due
to pressure distribution. We solve the problem numerically by the boundary
integral equation method for arbitrary values of the Froude number, magni-
tude of pressure distribution, span length of pressure distribution and Bend
number 7* (which is the nondimensional parameter including gravity and sur-
face tension effects). Our numerical results show that, for a fixed value of 7*
and ¢ > 0, there are two families of solutions. One family of solutions is a pur-
turbed solution of uniform stream whereas the other is a purturbed solution
of solitary wave. When € > 0 and 7* < }, the perturbed solution of solitary
wave approaches a limiting configuration with trapped bubble as F' close to
0. Moreover, when ¢ > 0 and 7* < %, we found that the free surface profile
develops a large number of inflexion points as 7* decreases. These solutions
are found to be qualitatively similar to those gravity-capiilary suiitary wave
in water of finite depth (Hunter and Vanden-Broeck, 1983). We have shown
in section 4.2 that more solutions can be obtained when there is an applied

pressure distribution in comparison with their results.



Chapter 2

Formulation of Flows with Gravity

2.1 Formulation

We consider the steady two-dimensional, irrotational flow of an inviscid incom-
pressible fiow in the domain bounded below by a rigid bottom and above by a
free surface as shown in Figure 2.1. We choose Cartesian coordinates with the
z-axis along the free surface at z = —oo and the y-axis directed vertically up-
wards through the symmetry line of the applied pressure distribution. Gravity
is acting in the negative y- direction. The velocity components in the z- and
y- directions are denoted by u and v respectively. As z — —oc, the flow is
assumed to approach a uniform stream with constant velocity U and uniform
depth H.

Let us introduce dimensionless variables by choosing U as the unit ve-
locity and H as the unit depth. The conditions of incompressibility and ir-
rotationality of the fluid motion imply the existence of the potential func-
tion ¢(z,y) and the stream function ¥(z,y). We define the complex poten-
tial f(z) = ¢(z,y) + i(z,y) and the complex velocity {( = £ = u — v
where 2z = z + 1y. Both f and ( are analytic functions of z. Without loss
of generality we choose ¥ = 0 on the free surface and the bottom defines
another streamline on which ¢y = —UH. By the choice of our dimension-
less variables we will have 1 = —1 on the bottom (see Figure 2.2). The
flow domain it the complex f -plane is simply an infinite strip defined by
D= {(¢$,¥)| —o0 < ¢ <00,—1 < <0}
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Figure 2.1: Sketch of flow domain under the applied pressure distribution
between C and D. ;



Figure 2.2: The complex f- plane by the transformation f = ¢ + i3



The nonlinear free-surface condition for this problem can be expressed by

the Bernoulli equation

1
5(]2 + gy + P _ constant on the free surface (2.1)
0
where ¢, p and p denote the magnitudes of the fluid velocity, the pressure
and the fluid density respectively. Here g is the acceleration of gravity. We
determine the constant term on the right hand side of (2.1) by using flow
condition in the far field, i.e., £ — —o0. That is,
1, p_1l 4 Do
=2 APt L I 4
59 +g9y+ S + r
Here pp represents the atmospheric pressure which is constant along the free

surface. Putting ¢' = & and 3’ = §, we have

1 / 2 1 1
—(dU Hy + =(p—pp) = =U?
2(4 ) +g y+p(p Do) 5
9 gH 2 .
q +2Wy'+pﬁ(P—Po)—1
o
q2+ﬁy+p=l (2.2)

Eq.(2.2) is the dimensionless form of Bernoulli equation where g = (—’_l’;—l’}il and
2
F is the Froude number defined in (1.1). The kinematic condition on the

bottom is

v(d,9) =0o0n 9 =—1 (2.3)
We now define the analytic function £ = v — v — 1 in the domain D. Here ¢ is
real on the bottom boundary 3 = —1. By the Schwartz reflection principle we
can satisfy the kinematic condition (2.3) on the bottom by reflecting the flow
field in the physical 2- plane about the line y = —H. Let Q and Q denote the
fluid domain in the z- plane and its reflection. The function £ can be extended
to a function = which is analytic in QU and is defined as

f_ . 2€Q

(z
£(z) : 2€Q

=(2) =



The overbar represents the complex conjugation of the function. Applying the
Cauchy integral formula to the function = in the extended region in the f-

plane, which is the strip —2 < 9 < 0, we obtain

- _ _ 1 ru(f) —d(f) -1
E=u—w-1= I F—J

T

af’ (2.4)

Here I" is the negatively oriented contour given (see Figure 2.3) by

4

L:fi=4¢ . —R<$ <R
Fz{Fz:f’=R'+i¢’ ; —2<P <0
Ty:fl=¢' -2 ; -R<F<R
Do ff=-R+d ; —2<9 <0

Letting f approaches the boundary 3 = 0, we obtain

u(f) —w(f)—1 4
g4 (29

2(6,0) = (4,0~ (8,00~ 1=~ ¢

We denote by u(¢) and v(¢) the velocity components in the z- and y- directions
on the free surface 1 = 0. From (2.5), we have

=
1 [ u(¢) — () -1

we)—in9) -1 = % [HOZ RO 1y
-R
LT u(d = 20) —iv(g — 20) - 1
u(¢' — 28) — (¢ — 21) — .o
+ P & —2%i—o d(d’_%)
R
0
1 fu(R+w)—wR +i))—1 .
tm B +ip) — ¢ AE 34
0
1 fu(=R4a)—w(-R+a) =1,
- = CRT i) — ¢ d(—R +))
(2.6)

10



Figure 2.3: The path of negatively oriented contour integral I
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One can easily verify that the last two integrals on the right hand side of (2.6)

vanish as R’ — oo. To show this, we consider the third term on this equation.

0
1 fu@+@))—w®+wp)-1 ., .,
i (B +10) — ¢ (R + i)

dy'

1 /0 W(R + i) — io(R + i) — 1
(R — @) + 1/ '

m

_ lfo WB + i) (R i) -1 (R=9) =i,
T ® =9 +i¥ ®=9)— i
ljwm%WﬁﬂMR+W%4MH—@—wﬁ
d (R = ¢)* + 9

-2

dp’

We can see that order of the above equation is 1/R’. Let # = R'-+iy/’. Since u
and v are bounded functions in the flow domain and u(%') = 1 and v(z’) = 0
as R’ — o0, it then follows that

0
1 TR Y A ! s LN
lim (R +)) —w(R +w) —1

R >0 T (R’ A= Zl/)’) Za ¢
2

d(R + @) =0

Simnilarly, the fourth term on the right hand side of (2.6) can be shown that

0 0
.1 fu(-R+#))—w(-R+w)f)-1 D
Romso 7 —R +ip)) — ¢ d(—R +#)=0

Taking limit as R' — oo, (2.6) yields

. _ 1 Tu@)—iw@) =1, 1 [u@)-w@) -1,
u(qﬁ)—w(gﬁ)»—l——E/ 5 —4 d¢+m,/ i ¢ d¢

where @(¢') and B(¢') represent the horizontal and vertical components of the

velocity on the image 1 = —2 of the free surface. We can simplify (2.7) by

12



using elementary complex analysis, as follows

u) - i) -1 = - [ LBy

—-00

17 @) -1 (@) (¢ -¢)+2
m)  @-#-2 (§-¢+u

—00

+

de'.

From the fact that v(¢') = —7(¢') and u(¢’) = ©(¢’), we can relate the integral
over the reflection of the free surface to the integral over the free surface itself.
Finally, after taking the real parts, we can rewrite (2.7) as
o0 (o)
1 [ v(¢) 1 / v(¢)(8' — ¢) +2(u(¢) — 1)
—-1=- d¢' + — d¢’ 2.8
-1 [ FTg @ - 97 +4 #oe8
~00

—00

Using the identity
8¢ 0 u—iv

the Bernoulli equation (2.2) can be written in terms of u{¢) and v(¢) as

, (2.9)

¢
u*($) +0*(8) + — / u2(¢,';(f3)2(¢,)d¢’ +ph=1;—co<$p<oo (2.10)

We consider now that the distribution of pressure be described by function

with compact support defined by

0 $ fOT |¢|>¢0
3 fOT |¢|<¢0

lzl"—l
ce %o

-1}
I

where @ is the value of potential function ¢ on the free surface. The problem
becomes that of finding u(¢) and v(¢) satisfying (2.8) and (2.10). The shape
of the unknown free surface can be determined.by numerically integrating the
identity (2.9).

13



2.2 Numerical Procedure

To obtain nonlinear solution of (2.8) and (2.10) in the previous section, it is
necessary to resort to a numerical method. We solve this system of integral
equations by discretizing the free surface in the f- plane. Thus we introduce

the M mesh points.
$pi=(G-1)E, i=1,2,..,M (2.11)

where E is the discretization interval. The values of u(¢) and v(¢) are com-

puted at the mid points

. i + Pit1

2 i=12,.,M -1

Piy

-

Equation (2.8) and (2.10) are to be satisfied at these mid points. We denote
the value of » and v at the mesh points by u; and v;. The integral in (2.8) are
truncated downstream at the point ¢ subject to the requirement that the
pressure distribution is applied on the free surface sufficiently far from the end
points. The error due to this truncation can be estimated by comparing the
solutions for different values of M and E.

We approximate the integral in (2.8) by using the trapezoidal rule with
summation over ¢;. Since the Spaciﬁg points are symmetric with respect to
the pole, the singularity is subtracted from the Cauchy principal-value integral
leaving nonsingular integrals (see Appendix). Next we replace (2.8) by

dME ¢ME
1 1 .1 vi(¢' = 1) +2(wi - 1)
Uiey —1= 2 J v"[qb’ - ¢,-+%] Wt 4)/ (¢' — ¢iy1)?+4 d¢

(2.12)

The radia,tionICOndition v — 0 as ¢ = —oo is now applied at the first mesh
point ¢, i.e.,

u=0 - (2.13)

14



The Bernoulli equation (2.10) is satisfied at the mesh points
2 b=l i=1,23,., M 2.14
ui+vi+ﬁyx Di = 4 t=1,4,9,.., ( )
We obtain 2M equations from (2.12) - (2.14) for the 2M unknows u; and ;.

It is convenient to write this syste}n of equations in the form
film,may o) =0, 1=1,2,...,2M (2.15)

where {n;}7Z, = {u;}}Z, and {n;}3%,,, = {v;}}5,.
We solve (2.15) by Newton’s method . Thus if nj(.k) is an approximation to

the solution, the next approximation nj(-k“) is obtained by

(k+1) _  (k 1
st =gl AW, j=1,9,.,2M (2.16)

where the corrections Agk) are calculated from

®
] AP = £, =12, 9M (2.17)

o
= Lon;

The Jacobians g;% are determined by exact differentiation of (2.15).
To conclude this section, let us define a span length L of the pressure
distribution by i
o 5
z
L=2| —d 2.18
55 (2.18)
0
The numerical scheme developed in this section is used to calculate solutions
for various values of 2, ¢ and L. As we shall see later, there are two-parameter
family of solutions. Furthermore, it is found that the behaviors of solution
for different values of L are quanlitatively similar. Thus it suffices to obtain

computed solutions for various values of F2 and ¢ with L fixed. The numerical

accuracy is checked by increasing M while keeping F fixed and vice versa.



Chapter 3
Numerical Results of Flows with Gravity

We use the numerical scheme described in the previous chapter to compute
solutions for two flow regimes: supercritical flow F > 1 and subcritical flow
F < 1. In section 3.1, we present and discuss numerical results of supercritical
flows. Our numerical results show that the flow is always symmetric with
respect to the axis of symmetry of the pressure distribution. Two families of
solutions are found when ¢ > 0 (see Figure 3.5). One family is a perturbed
solution of uniform stream, whereas the other is a perturbed solution of a
solitary wave. When ¢ < 0, there is only one family of supercritical-flow
sclntions that exist for all values of Froude number up to unity (see Figure
3.9). The case of subcritical flows is discussed in section 3.2. A train of
nonlinear waves is generated behind the applied pressure distribution. There
are critical values of Froude number at which the wave amplitude diminishes.
This is the so-called ”drag-free” solution. Our finding is in contrast with
the problem of flows past a surface-piercing object. Asavanant and Vanden-
Broeck (1994) showed that subcritical flows past a parabolic-shaped object
never possess drag-free solutions but they always approach Stokes’ limiting

configuration.

3.1 Supercritical Flow

As Mentioned in section 2.2, we calculate solutions of the system of nonlinear
algebraic equations (2.12)-(2.14) for various values of F? e and L. It is found
that the behaviors of solutions for different values of L are qualitatively similar.
This is illustrated in Figure 3.1-3.4. Thus it is sufficient to present the results
for a given value of L.We therefore set L = 3.0 throughout the calculation of
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Figure 3.1: Typical free-surface profile for L = 3.0, F? = 10.0,¢ = —1.0 and
E =0.15.
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Figure 3.2: Typical free-surface profile for L = 1.0, F? = 10.0,e = —1.0 and
E =0.15.
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E=0.15.
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supercritical low. The numerical accuracy is achieved by increasing M while
keeping E fixed and vice versa. We found that the results are independent of
M and E, within graphical accuracy, for M > 129 and F < 0.2. The solutions
converge rapidly after a few iterations. All the results presented here were
obtained with M =199 and F = 0.15.

Following Vanden-Broeck and Keller (1989), we define the amplitude pa-
rameter

o= % (3.1)

Here W is the distance from bottom to maxima or minima of the free surface
profile at which the pressure distribution is applied.

When e = 0 (i.e. pressure on the free surface equals to atmosheric pressure
), uniform flow, i.e. o = 1, is always a solution for F? > 1. From the
weakly nonlinear analysis (see Lamb, ” Hydrodynamics,” 1945), one can also

find another solution namely the ”solitary wave” solution. This is the solution

of the well-known ”Korteweg-de Vries” equation that can be expressed by

y = (Fz—l)sechz[(mi—m)%z], —00 <z < 00

It bifurcates from the uniform flow at the critical Froude number F? = 1. QOur
numerical results for solitary wave solutions (¢ = 0) differ by 0.418% of root
mean square error from this exact solution. This constitutes a check on our
numerical scheme.

It is anticipated that solutions of free-surface flow due to pressure distn-
bution (e # 0) is the perturbation of a uniform stream solution, since uniform
flow is no longer a solution for any values of F2 when € # 0. Also we expect
a perturbed bifurcation of solitary wave solution. To discuss the numerical
calculations of supercritical flow regime, we consider 2 cases: € > 0 (positive
pressure) and € < O (negative pressure).

When ¢ > 0, the solutions are characterized by o — 1 > 0. Typical free-

surface profiles are shown in Figure 3.3, 3.4 and 3.6. The numerical values of
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F? versus a—1 for a fixed value of L = 3.0 and various value of ¢ are presented
in Figure 3.5. Figure 3.5 shows that there are two branches of solutions for
each ¢ and L. The lower branch (closer to the F2- axis) can be viewed as
perturbation of uniform stream while the upper branch (farther away from the
F2. axis) is the perturbation of solitary wave solution. The nonuniqueness of
these solutions can be summarized as follows. There are two critical values, F?
and F2, of the Froude number F2 such that, for each e, there are no solutions
when F? < FZ, two solutions for F2 < F2 < F2, and one solution for F2 > F2,
At the critical value F?, a limiting configuration with 120° angle corner at the
crest (known as Stokes highest wave) is reached. The other critical value F?
signifies the nonlinear effect, i.e., it determines whether there are 2 solutions
or no solutions at all. __

The upper dashed curve in Figure 3.5 is the limiting configuration for each
value of ¢. We can find such limiting configuration by substituting y = o — 1,
g =0 and § = £ into (2.2). This limiting configuration is characterized by

(1-2)F (32)

N =

a—1 =

Relation (8.2) corresponds to the upper dashed curve in Figure 3.5. A typical
profile for a value of F2 > F? is shown in Figure 3.6 and a typical profile for
a value of F2 < F2 < F? are shown in Figures 3.7 and 3.8.

When ¢ < 0, for given € and L, solution exists for all Froude number be-
tween 1 < F? < co and is unique. This solution can be viewed as perturbation
of a uniform stream. Numerical values of F? versus o — 1 when L = 3.0 for
various value of ¢ are presented in Figure 3.9. Typical free-surface profiles for

¢ = —1.0 are shown in Figures 3.10 and 3.11.
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Figure 3.5: Plot of amplitude o:— 1 versus F2 for various values of ¢ > 0 when

L = 3.0. The upper dashed curve represents limiting configurations satisfying

equation (3.2)
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Figure 3.6: Typical free-surface

E =0.15.
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Figure 3.7: Typical free-surface profile for L = 3.0, F? = 1.6,¢ = 0.1 and
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3.2 Subcritical Flow

In this section, numerical solutions in the subcritical flow regime (i.e., F? < 1)
are presented and discussed. We found that, when F? < 1, the flow is charac-
terized by a train of periodic waves behind the pressure distribution while the
upstream free surface satisfies the radiation condition (v — 0 as z —» —ox).
Since symmetry of the flow configuration is not expected, the calculations
are performed throughout the upper boundary and radiation condition is im-
posed at the first mesh point v, = 0 at ¢;. Typical profiles for ¢ = £0.1 with
F? =0.25 and L = 0.39 are given in Figures 3.12 and 3.13 respectively. Unlike
the case of supercritical flows, the truncation of computational flow domain
(M) and the interval or mesh spacing of discretization (E) play significant
role when we try to achieve better solution accuracy even to obtain converged
solutions. We also find that mesh location at which the pressure is acting does
affect the accuracy of the computed solutions while keeping other parameters
unchanged. This is discussed in the next paragraph. To check the sensitivities
of M and F on the computed solutions, we increase M while keeping F fixed
and vice versa until the required accuracy is achieved. This is illustrated in
Figures 3.14, 3.15, 3.16 and 3.17. Most of our calculations in this flow regime
are performed with E = 0.065 and M = 199.

It is apparent from Figures 3.18 and 3.19 that accuracy of the solutions is
also sensitive to the position of the applied pressure distribution on the free
surface. The occurrence of small amplitude periodic disturbance is detected
on the upstream free surface when left-end of applied pressure is at z = 12.50.
This oscillation is nonphysical and computationally contaminated the solu-
tions. This is tllustrated in Figure 3.18. As we shift this left-end slightly
to z = 12.30, the computed free surface proﬁlé is significantly improved (see
Figure 3.19).
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Figure 3.12: Typical free-surface profile for L = 0.39, F? = 0.25 and ¢ = 0.1.
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Figure 3.13: Typical free-surface profile for L = 0.39, F2 = 0.25 and ¢ = —0.1.
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M = 329.
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Figure 3.17: Typical free-surface profile for L = 0.39, F? = 0.21, ¢ = 0.1 and
E =0.04875.
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Figure 3.18: Typical free-surface profile for L = 0.39, F2 = 0.601 and € = 0.1
(the left-end of applied pressure is at z = 12.50).
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Figure 3.19: Typical free-surface profile for L = 0.39, F2 = 0.601 and € = 0.1
(the left-end of applied pressure is at z = 12.30).
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As F? 1 1, the wave amplitude and steepness increase and more mesh
points are needed to capture waves behind the pressure distribution. This
is computationally expensive and hence the calculations are limited only for
F <08

Let us now define the wave amplitude A as the difference between the levels
of the successive crest and trough. It can be seen from Figures 3.20 and 3.21
that, for the same value of Froude number, the wave amplitude increases as €
gets bigger (i.e. larger magnitude of pressure distribution). We observe from
the relationships between wave amplitude A and Froude number F' (see Figure
3.22) that there are critical values F, so that the wave amplitude vanishes. We
conjecture that there are finitely many F, such that 0 < ... < Fyu < Fy; < 1.

Some of these critical values are given in Table 3.1.

Fa 0.1897
Fe 0.1414
Fe 0.1204
Fu 0.1025

Table 3.1: Critical values F, of Froude number for L = 0.39 and ¢ = 0.1 (see
also Figure 3.33).

Numerical calculations show that the subcritical solutions depend on three
parameter F) ¢ apd L. 1t is observed that the behavior of solutions is quanlita-
tively similar for different values of L. Thus it suffices to present results when
L =0.39 and L = 0.65. The flow reduces to uniform stream as ¢ | 0.

The wave drag D is calculated by integrating the pressure distribution p

over the deformed surface. That is

D= / prgds = / Pz = / pdy (3.3)
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Here n, is the x-component of the outward unit normal vector to the free
surface. The wave drag versus the Froude number for various values of € > 0
are shown in Figure 3.23. In addition, the steepness s of the waves, defined
as the height between a creast and a trough divided by the wavelength, is
presented in Figure 3.24.

When F' > F,;, the wave amplitude A increases with F'* whereas the drag
D and the steepness s increase to their maximum values and then decrease
as F? 1 1. For each ¢, when the Froude number lies between the two con-
secutive critical values F2 < F2? < F%_| for i = 2,3,..., the amplitude, drag
and steepness increase to their peaks and decrease as the Froude number F?
decreases between the values FZ%_, and FZ. Similarly, the results for L = 0.39
and € < 0 are presented in Figure 3.25-3.27. We found that the behavior of
these numerical values is quanlitatively similar for e > 0. Thus, it is sufficient
to present results for the case ¢ > 0.

We further investigate the behavior of solution for L = 0.65 and € > 0. The
plots of amplitude, wave drag and steepness versus F' are presented in Figure
3.28, 3.29 and 3.30 respectively. It is shown that the behavior of solutions for
L = (0.65 are similar to the solutions for L = 0.39.

The comparison of wave amplitude, steepness, drag and Froude number
relationships in Figures 3.22, 3.23, 3.24 and 3.28, 3.29, 3.30 shows that the span
length of pressure distribution does have the impact on the wave resistance.
Particularly, the wave amplitude, steepness and drag increase when the span
length L increase. In addition, the critical value FZ for which the drag-free
solutions exist are shifted to larger values for bigger value of L (see Table 3.2).

Typical profiles of the drag-free solutions as the Froude number approaches
F?2 and FZ, are shown in Figures 3.31 and 3.32 respectively. Besides the de-
creasing amplitude of the deformed free surface, we observe that two ” humps”

occurs as F2 — F2 while only one "hump” is detected when F2 — F2. The
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L F2

0.39 0.036
0.65 0.065

0.78 0.078

Table 3.2: Critical values of Froude number F,; for various values of L.

numerical results show that as F2 — F2 there are n "humps” on the free
surface of the drag-free solutions. Various values of critical Froude number in
the case of L = 0.39 and € = 0.1 are shown in Figure 3.33.

It is found that this similar behavior of subcritical solutions exists in the
case ¢ < 0 and the other values of L. In order to obtain the waves solutions
for the Fronde number less than critical value F2 are very difficult. This is
because of the decreasing trend of wave length. Thus we are required to use

smaller mesh spacing and more mesh points in the computations in order to

capture accurate results.
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Figure 3.20: Typical free-surface profile for L = 0.39, F? = 0.25 and € = 0.1.

42



0.03 T T T T T T

002 |

0.0% |-

Q.01 |-

0.3
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Figure 3.22: Plot of amplitude A versus F for L = 0.39,¢ = 0.1,0.2 and 0.3.
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Figure 3.23: Plot of wave drag D versus F for L = 0.39,¢ = 0.1,0.2 and 0.3.
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Figure 3.26: Plot of wave drag D versus F for L = 0.39,e = —0.1,—0.2 and
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Figure 3.27: Plot of steepness s versus F for L = 0.39,¢ = —0.1,—-0.2 and
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Figure 3.28: Plot of amplitude A4 versus F' for L = 0.65,¢ = 0.1,0.2 and 0.3.
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Figure 3.29: Plot of wave drag D versus F for L = 0.65,¢ = 0.1,0.2 and 0.3.
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Figure 3.33: Plot of amplitude A versus F' for L = 0.39 and ¢ = 0.1.
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3.3 Conclusions

Von Kerczek and Salvesen (1977) solved the nonlinear pressure-distribution
problem in water of finite depth by using finite defference scheme for Laplace’s
equation. Over-relaxation technique together with a network of mesh points
all over the fluid domain were employed in the calculations. They found that,
for subcritical Hlow solutions, a train of nonlinear waves was generated behind
the applied pressure distribution. Drag-free (symmetric) solutions were found
at the critical Froude number F/(0 < F, < 1). It should be noted here
that they defined the Froude number based on the span length of pressure
distribution which is different from ours. Solutions at two critical values of
Froude number, 0 < F/, < F], < 1, were presented for various values of
pressure coefficient (magnitude of pressure distribution). When F' > F!, | the
wave resistance increased to their maximum value and the decrease as F 1 1.
When F), < F < F},, the wave resistance increased to its peak and decreased
as the Froude number F' approached F),. In addition, they found a ” hump”
on the free surface as F' — F|; while two "humps” were detected as F — F,.
Their numerical solutions are qualitatively similar and in good agreement with
our results.

Schwartz (1981) used a boundary integral equation technique based on
Cauchy’s integral formula to solve the steady two-dimensional potential flow
past a fixed pressure distribution on the free surface. Fluid was assumed to
be of infinite depth. Nonlinear subcritical solutions with narrow crests and
broad troughs on the downstrearmn waves were presented. The wave resistance
coefficient for various values of Froude number was calculated and compared
to the linear theory. He found that, for subcritical flow solutions in deep water,
the wave resistance was identically zero at certé,in values of the span length of
pressure distribution (L = 2 = 4,8, ....), i.e. when the ship length was an

integer multiple of a free wave length. This was similar to the linear theory
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except a phase shift. Thus, there were finitely many Froude numbers at which
the flows would be drag-free. In our computations, the solutions show similar
behaviors to those of infinite depth when % <%

Inverse problem to fiows due to applied pressure distribution is the problem
of flows over a semi-circular obstruction considered by Forbes and Schwartz
(1982). They constructed an integral equation involving flow variables at the
free surface so that the bottom boundary condition is automatically satisfied.
The exact nonlinear equations were solved numerically at the free surface by
a nrocess of Newtonian iterations. In the subcritical case, they showed that,
there exist flows with essentially wave-free upstream profile and a train of non-
linear Stokes waves on downstream profile. When the circle radius increased
or F' 1 1, the wave amplitude and the wave drag also increased. This behavior
is observed in our numerical results for the case of larger values of ¢. In the
supercritical case, they found symmetric solutions with respect to the axis of
symmetry of the semicircle. For a large value of Froude number, the nonlin-
ear free surface profile is ultimately limited by the formation of a sharp crest
with sides that enclose an angle of 120°. We can observe such behavior in our
supercritical solutions. This can be seen on the upper dash curve in Figure
3.5 which is our limiting configuration.

Asavanant and Vanden-Broeck (1994) studied the steady two-dimensional
flows past a parabolic obstacle lying on the free surface in water of finite
depth. The object was described by y = 2e(z — )® + yo. Here (2o, %0)
represented the vertex of the object and ¢ was the object geometry (object
was concave if € > 0, convex if ¢ < 0 and flat if ¢ = 0). The problem was
solved numerically by using boundary integral equation technigue based on the
Cauchy’s integral formula. An integral equation was solved together with the
dynamic free-surface condition. They satisfied the bottom boundary condition

by employing the reflection principle. For supercritical flows past a concave

o7



object (F > 1,¢ > 0), they found two different types of solutions. Solutions of
first type were characterized by @ — 1 < 0, i.e. the vertex of the obstacle was
below the level of the free surface at infinity. These solutions modeled a ship
moving at a constant velocity in a channel. For a given ¢ > 0, solution existed
for all Froude number between 1'< F? < oo and was unique. In addition,
o — 1 increased as ¢ increased. Clearly, the first type of their solutions are
similar to ours when F > 1 and € < 0 (see also Figure 3.9). Solutions of the
second type were characterized by o — 1 > 0, i.e. the vertex of the obstacle
was above the level of the free surface at infinity. These solutions modeled
a surfboard riding on a wave. For supercritical flows past a convex object
(F > 1,e < 0), they found one type of solutions that were characterized by
e — 1 > 0. Their numerical results showed that there were nonuniqueness of
solutions. In particular, one solution was a perturbation of uniform stream
while the other solution was a perturbation of solitary wave solution. Our
numerical results for supercritical flows appear to be similar to their in the case
of F > 1 and € > 0 (see also Figure 3.5). Their subcritical solutions showed
that a train of (linear) sine waves was generated for larger values of F'. These
waves developed narrow crests and broad troughs as F' decreased. Finally,
they conjectured that these waves would approach their limiting configurations
characterized by a 120° angle corner at the crests. This is in contrast with our
results. In particular, our subcritical flow solution never posses the Stokes’
limiting configuration but they will reach drag-free solutions at critical Froude

numbers.
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Chapter 4
Flows with Gravity-Capillary Waves

4.1 Formulation

Let us consider the steady two-dimensional irrotational flow of an incompress-
ible inviscid fluid past the applied pressure distribution. Fluid domain is
bounded above by the free surface and below by the rigid bottom. In this
chapter, we include the effects of both gravity g and surface tension 7" in the
dynamic boundary condition on the free surface. It has been known for a long
time that the effect of gravity-capillarity results in very complex phenomenon.
At this stage of study, we shall restrict ourselves in the case of subcritical sym-
metric lows due to pressure distribution. Such gravity-capillary waves will be
calculated numerically and discussed in section 4.2.
Bernoulli equation on the free surface yields, in dimensional form,

1 - T
542 +gy+ P _ Z K = constant on the free-surface (4.1)
p P »

where 7 is the surface tension and K is the curvature of the free surface. We

define the curvature K by

__ 1"
(1+7(2)?
where 7)(z) is the vertical displacment of the free surface measured from the

undisturbed water level. We determine the constant on the free surface (4.1)

by imposing uniform flow condition at £ = —oo. This gives,
1 p T 1. o Po
P +gy+=———K=-U+gH+= (4.2)
2q2 YT 2 p



Refering back in chapter 2, we normalize the problem by choosing H as
the length scale and U as the velocity scale. Bernoulli equation (4.2), in
dimensionless form, appears to be similar to equation (2.2) with additional

surface tension term. That is

F 4+ 2+ F*% - 2r"K =2+ F? (4.3)
where § = £5 and 7" = M—Ti;f. The dimensionless parameter 7* is the well
2

known ”Bond” number. From the assumption of incompressibility and irrota-
tionality, we shall introduce the complex potential f = ¢+ 42 and the complex
velocity w = u—1v. Without loss of generality we choose ¢ = 0 at Cand ¢ =0
on the free surface AB. By the choice of our dimensionless variable ¢y = —1

on the bottom (see Figure 4.2). The kinematic condition on the bottom is

v($,%) =0 on =~1 (4.4)

We now reformulate the problem as an integral equation. First we define the
function 7 (e, B) — #9(a, B) by

We map the low domain onto the.lower half of the (- plane by the transfor-
mation ¢ = o+ i = ™. In particular, we have the relations o = e™cos(7¥)
and B8 = e™sin(m)). The flow in the ( - plane is shown in Figure 4.3. We
choose a contour consisting of a real axis and a half-circle of arbitrary large
radius in the lower half plane. Applying the Cauchy integral formula to the
function 7 — 26 in the complex (- plane. We have

L fre)-ue)
273 ¢'—C
Line integral on the path of half-circle vanishes as we let the radius 6f the half

CI

T—10=—

circle goes to infinity. Letting { approaches the boundary 8 = 0, we obtain
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Figure 4.1: Sketch of flow domain under the applied pressure distribution
between C and D. “
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Figure 4.2: The complex f- plane by the transformation f = ¢ + #3.
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1 f r(e) - #()

—if = —
Tt g o — o
-0
After taking real part we obtain
L[ 8@
—00

Detail of the calculation is closely related to the one described in chapter 2.
The kinematic condition (4.4) imply that

f(a) =0 for <0 (4.6)
Substituting (4.6) into (4.5), we will have

1 [ 8 )
T(a)=; a/(T)ada
0

We obtain another relation between 7 and 6 on the free surface by using

w=1u— v =€ That is u? + 12 = €?". Equation (4.3) then becomes

F2¢% 4+ 2y + F2p — 26&% =2+ F? (4.8)
Finally, the free surface profile is determined by integrating numerically the
identity '
dz —I-ifig oyl cos(f) + isin(6) ‘
d¢ do e’
That is
dy sin(h)
hl A 4.9
dé er (4.9)
or
s
dy _e sin(6) ' (4.10)

_ do T
Integrating (4.10) yields,

y(a) — y(0) 1/Mda ,0<a<c.



Since y — 1 as @ — 0, we have

dao , 0<op<a asa— oo (4.11)

1/ e~ sind ()
=1+4-=
yl@) =1+ - / p”
0
Equations (4.7), (4.8) and (4.11) define a nonlirear integral equation for the
unknown function §(a) on the free surface. This completes the formulation of

our problem.
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4.2 Numerical Procedure

We solve the system of integral equations (4.7), (4.8) and (4.11) numerically
by placing equally spaced points ¢; on 3 = 0. The transformation from f-
plane to (- plane gives

o= e (4.12)

We write 7/(¢) = r(e™), 0(¢) = 6("*) and y/(¢) = y(e™) for brevity. Equa-

tion (4.7) then becomes,

3 4 TPo
T(¢) = / %d% (4.13)

-—00

Similarly we rewrite (4.8) and (4.11) as

/
P2 4 2y (¢) + F2p — 2T‘ef(¢)%% =2+ F?, (4.14)
%
V(@) =1+ / e ®sing(¢v) déo. (4.15)
-0

Since we are interested in symmetric subcritical solutions, following conditions

must be imposed
0(~4) = ~0(¢). and 6(4=0) =0,

Using the above condition, the integral equation (4.13) can be rewritten as

[o.o] o

7"((15) :/M d¢0 — /w d¢o- (4.16)

e7r¢o - e7r¢ e—vrdso — e7r¢
0 0

Next we introduce the equally spaced mesh points
pi=G-1)E,i=12 .M

where E is the discretization interval. We evaluate the values 7,1 of 7'(¢) in
equation (4.16) at the midpoints

bird =¢‘+T¢‘“ i=1,2,.. M—1
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by using trapezoidal rule with the summation over the points ¢;. The sym-
metry of the quadrature and of the distribution of mesh points enable us to
evaluate the integral which is of Cauchy principal value as if it were ordi-
nary integrals (see Appendix). Next we evaluate y; = y/(¢;) by applying the
trapezoidal rule to (4.15). That is,

yM=1'01

and yin=yi—e “tsin(6_1)E,i=M—1,.,1.

We use these values to evaluate y'(¢) at the midpoints by using four-points
interpolation formula. We now satisfy the free surface condition (4.14) by
substituting these values of 7'(#) and 3'(¢) at the midpoints. This yields M —1
nonlinear algebraic equations for the M unknowns 6;,7 = 1, ..., M. Finally, the

last equation is obtained by imposing the radiation condition defined as

gi— =0at i1=M-1.

L
2

This system of M nonlinear algebraic equations with M unknowns is solved
by Newton’s Method.
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4.3 Numerical Results and Discussions

We use the numerical scheme described in the previous section to compute
the gravity-capillary wave solutions for various values of 7* (Bond number).
Most of the calculations are performed with £ = 0.05, M = 199 and L = 3.0.
The numerical results show that, for a fixed value of 7 = 0.3 and ¢ = 5.0,
there are two families of solutions at the same Froude number (see Figure
4.7). One family is a purturbed solution of uniform stream (see Figure 4.4)
whereas the other is a perturbed solution of solitary wave (see Figure 4.5).
The upper curve in Figure 4.7 is a purtérbed solution of uniform stream while
the lower curve is a purturbed solution of solitary wave. The solid line in
Figure 4.7 represent gravity-capillary wave solutions. Solution on the lower
curve close to the solid line (perturbation of solitary wave) exhibit sharp and
narrow trough at the symmetry line as Froude number decreases. Finally, as
the Froude number decreases to its critical value F;, the limiting configuration
is reached in the form of trapped bubble. Figure 4.6 illustrates this trapped
bubble configuration. As depicted in Figure 4.6, this critical Froude number
appears to be insensitive to the pressure distribution (i.e. same critical Froude
number as for € = 0.0 and ¢ = 5.0). Solutions representing the perturbation
of uniform stream (upper curve closer to the F- axis) exist for 0 < F' < Fi.
As F' ) 0, the flow configuration approaches a uniform stream. In summry,
there are no solution when F., < F' < 0, one solution when F' < F,, and two
solutions when F,) < F' < F,.

The numerical results for 7* = 0.5, ¢ = 0.0 and ¢ = 5.0 are presented in
Figure 4.8. As we can see, the solutions in this case are qualitatively similar
to the case of 7* = 0.3 (ie. there are two families of solution). However,
the bahavior of solution at the critical value F,; does not approach a limiting
configuration with trapped bubble. Instead, the free surface profile is close to

the flow configuration due to sink as shown in Figure 49. We observe that
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for 7* > 0.5, no limiting configuration in the form of trapped bubble can be
found.

When 7 = 0.25, the typical free surface profile for ¢ = 0.01 is presented
n Figure 4.10. We found that the free surface profile develops a large number
of inflexion points as 7* decrease. The computation is very difficult to get
solutions when 7* is very small. This is because smaller discretization inter-
val is needed and more mesh points are required to achieve better numerical
accuracy.

Typical free-surface profiles for two different Froude number when ¢ =
—0.01 and 7* = 0.25 are illustrated in Figures 4.11 and 4.12. It is worthwhile
noting that, when 7* = 0.25 and F' = 0.5, the computed solutions are qualita-
tively similar to the case of supercritical flows with no surface tension, whereas
when 7% = 0.-25 and F' = 0.9592, our solutions develop more inflexion points
on the free surface.

The case of two-dimensional gravity-capillary solitary waves in water of
finite depth without applied pressure distribution was considered by Hunter
and Vanden-Broeck (1983). Fully nonlinear problem was formulated as a sys-
tem of integro-differential equations and solved numerically. Their calculations
showed that, for the case of gravity-capillary solitary waves, the critical con-
figuration in the form of trapped bubble at the trough can be obtained when
7" < i. They concluded that, the free surface profiles develop a large number
of inflexion points when 7* is smaller than 1. On the other hand, wave profile
becomes steeper and distance between the trough and the bottom decreases
as 7* > 1. Such wave profile shall approach a static limiting configuration
(distance between the trough and the bottom approaches zero) in which grav-
ity is balanced by surface tension. In general, Hunter and Vanden-Broeck’s
results described here are found to be similar to ours. However, we have shown

here that more solutions can be obtained when there is an applied pressure
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distribution in cornparison with Hunter and Vanden-Broeck’s results.
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Fig'ure 4.4: Typical free-surface profile for F' = 0.3742, ¢ = 5.0 and 7* = 0.3.

This solution is perturbed by uniform flow solution.
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Figure 4.5: Typical free-surface profile for F' = 0.3742, ¢ = 5.0 and 7* = 0.3.

This solution is perturbed by solitary wave solution.
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F‘igure 4.6: Typical free-surface profile in the case of approaching a limiting
configuration with trapped bubble when F' = 0.2345, ¢ = 0.0 and 7% = 0.3.
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Figure 4.7: Plot of &—1 versus F when 7* = 0.3 for two values of ¢ : (i)e = 0.0
is represented by solid line and (ii) e=50is represented by dot-dash line.
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Figure 4.8: Plot of a—1 versus F' when 7* = 0.5 for two values of € : (i)¢
is represented by solid line and (ii) € = 5.0 is represented by dot-dash line.
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Figure 4.9: Typical free-surface profile for F = 0.0977, ¢ = 0.0 and 7* = 0.5.
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Figure 4.10: Typical free-surface prqﬁle for FF = 0.9380, € = 0.01 and 7* =
0.25.
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Figure 4.11: Typical free-surface profile for F' = 0.50, € = —0.01 and 7* = 0.25.
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Figure 4.12: Typical free-surface profile for F' = 0.9592, ¢ = —0.01 and 7* =
0.25.
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Appendix

Monicella (1961) proved that a singularity in the Cauchy principal value
integrals can be ignored in the numerical integration. This is achieved by
spacing the mesh points symmetrically with respect to the pole. We show here
by using the trapezoidal rule to compute the Cauchy principal value integral.
We can also use the Simpson’s rule to approximate such integral.

Let f be a continuous function. We approximate the integral of f over a
finite interval [a, b] by partitioning [a,b] into N subintervals with i; = a and
ty = b. Thus

. N
/f(t)dt ~ Zf(ti)Wi- (1)
Here h = (b — a)/N and ‘

R ,i=0and N
W¢'= (2)

h , otherwise.
We consider a function {J_% with f(z) # 0 and z € (a,b). The integral of t%%
over the variable ¢ is of Cauchy principal value form. For any € > 0, we can
write this integral as '
b b
i
f()dt=1im[ f(t)dt+/&dt]. (3)
e—0 t—z

t—z
a a z+€

To compute this integral, we rewrite the integral on the left hand side of (3)

as

b
f(t /f(t) f(fﬂ)dHf(x)f 1:cdt‘ (4)

t— .'z:
Q a
Next we consider N + 1 equally spaced mesh point ¢;,2 = 0,..., N. Thus 7 is
the midpoint between ¢; and t;,, fori =0,1,..., N —1. There are two possible

cases to be taken into account: (i) z = (b —a)/2 and (ii) z # (b — a)/2.



Case (i) z = (b—a)/2.

b
It can ez\lsily be shown that [ td_—tr = 0. Thus (4) becomes

Using the trapezoidal rule, we a.pprox1ma.te the integral on the right hand

side of (5) by
/b (1)
-

Z )= f(x)W,-

R St
= t‘—.’l) = i—=x
N
e tf_ (_"lwi. (6)
i=0 '

Here W; and h are defined as in (1) and § ;‘—’—Z‘; = 0 because z is midpoint
of the interval [a,b]. Equation (6) suggesizszﬂtha.t the Cauchy principle value
integral can be approximated as if it were an ordinary integral.
Case (i) z # (b — a)/2.
Assuming that z is a midpoint on any interval [c,d] C [q,b]. We now
rewrite (3) as
tfftldt - tf_(t) dt + f (#) T 41+ / f®) e (7)

a a

The first and third integrals on the r1ght hand side of (7) are not Cauchy
principal values. Thus they can be approximated by the trapezoidal rule.
The second integral is a Cauchy principle value with z as a midpoint of the
interval (¢, d]. The discussion in case(i) shows that it can also be evaluated by
the trapezoidal rule. Therefore |
b f—(t)—dt & LITV_: MW

o T

t—z
a

83



Which is the same as (6). Thus, the singularity is subtracted from the Cauchy

principal value integral leaving nonsingular integrals to evaluate as claimed.
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