CHAPTER II

REVIEW OF LITERTURE :

The analysis of the thinned array and the inaccurate positioning
in equally spaced array lead into the subject of nonuniformly spaced -
arrays. A number of studies on the property of these arrays have been
made, in which attempts were made to use the alditional freedom of tho
element placement to improve the radiation pattern and to reduce the
number of elements required.

Historically, the first significant work on nonuniformly spaced-

array was carried out by Unz. l 4%53/ as reported in his University
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paper dealt with the lines /ﬁqy% with ﬁr vitrarily distributed ele -
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ment, and the prescribed f&ct r was developed intc an  infinite
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Fourier series which is ﬁi;?ﬁpnroxl etcd by a finitz set of the seri-

but because of the need to ;hvert ﬁhe natrlx equal to the number of
elements contained in tng urray thls»method }s difficult to wuse in

practice.
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Later, Harrington R.F ; pointed- out that the sligh#d variations
of the element positions from those.oflequally-spaced arrays can reduce
the sidelobe level. This is an important property that leads to a number
of pattern synthesis by nonuniformly spaced array. Many techniques have
been developed mostly for producing a radiztion pattern with a specifi-
main beamwidth and low sidelobe level. The orthosonal and eigen value-
function method were also suggested by Unsz. H,i. The broadband nonuni—
formly spaced arrays were studied by Bruce J.D 4 4 {ing D.D , R.F Pack
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and Y.S Chen6.
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A more general approach has been described by Ishimaru , who
viewed the synthesis problem for nonuniformly spaced. array as.béing the
question of approximating to the continuous line source. An approximate
directional pattern was obtained by relating a pattern function obtained
from a continuous line source to a distribution function:of .the element
spacings. This technique was also examined in the case of constant amp-
litude tapering by C.H Tang ? and Doyle 9. The latter has shown that
the density-tapered pattern is equivalent to the leist-mean-square appr
oximation to the model contln\ouq scﬁ%%:/ﬂamplvtudo tapered)pattern with
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weighting proportional fo—f%fjipveﬂSO“squggg of the normalized pattern
/ .

argument.
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Further developmen ﬁﬂf gétt@rn svpth& based on the appr-
oximation theory has been ,c—cxlbed By C.H\Tang }O who selectéd the -~
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Chebyshev pattern as a model/p; ern tc bp realized by obtalnln first
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an unequally spaced array conalstmnp of~1sotrnn1c antenna elements of

vy

equal amplitudss and +H§r getting the exciaation condition for maximum

m

gain by keeping the ﬂooltloﬂs of the antenna elements unchanged.

When the number of elements axe large the statistical method of

designing nonuniformly spaced array was introduced by Skolnik, Sherman
11 : . ;

and Ogg , . In this approach, called :statistical density taper, the
model amplitude taper illumination function is employed to determined ,
on a probabilistic basis, whether or not an element should be Jocated
at a particular point within the arrsy. The model illumination function
serves as a rcle analcgous to that of the probability density function

of probability theory.
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Tn nonuniformly spaced array there should be no restriction on the
element: spacings. In practice, however, array clements can not be located
much closer. Closer spacing results in increased mutual sounling which
changes the array illumination. This ~case of study has been congidered

) 4 % o y i oL e
by Bruce J.D and Unz H,  and give the limitation to the minimum SDac
ing between adjacent element.

Recently the application of the gidital computer to the nonunifoxmly
gpaced array pattern synthesis was suggested. The technique of dynamic
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pregramning was 1n roduced by Skolnik , Nemhauser, and Sherman, ~.This
is a method for determining An optimum solution of many possible confi=
gurations of element locatiéng, /The exritereon for selecting the optinum

radiation pattern must be carefu;li'formulatcd and programmed into the-
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computer. One critereon that has been used with dynamic programming  is
\

that of minimizing the maximum sidelobe Tevedlpver a specified reglon -
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of angle. Dynamic programming applied to cesign of linear arrays of
unsqually spaced elements, has achieved rosults equal or more surerior
to results with array designed by other methods and is widely used tocaov.

4 veview of the development of the synthesis theoxy for nonuniformly
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spaced array has besn given by Merrill I.S5komik T and Ishimaru = .
Since a large number of contributions to this field have been mple

only aon important selected few of many different approaches that relate

to’ the basis of the thesis were gtated here.



Analysis of Nonuniformly Spaccd Arrays

For a nonuniformly spaced array of N identical elcements locating along

the Z axis as shown in Fig.l, the far field can be written as

N -

i
E (6,8) = £ (5.8) i .c73Kn ()
n=0 .'Cn

where f (e,¥) the radiztion pattern of each clement

i, nth  clement current

Trn distance from the nb® clement to the far field point
Also let Tn = T = 7Zpsin @ (2)
vhere 2, the Aistance of the nb'" element from the center

: o distance from/the center tc the far field point

and 4is/much grester than z, ( r$zy, ).

Combining Eq.(1) and Eq.(2)/ gives
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X Fig.l Nonuniformly spaced array



The associated polynomial in Fq.(}),sometimesacalled the array factor
RENE

n=0

is the far field pattern of unequally spaced array of isotropic elements.

£(9)

€ince the pattern has rotational symmetry about the z axis,the angle variable
is chosen for convenience as sin 6 instecd of sin © cos @ .This is equiva
lent to looking at the pattern in the xz or @ = O plane which is sufficient
in view of the rotational symmetry, .

The exponentials of Eq.(4)rhéVé§//é seriesg expansions
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esznsin 8 ng. J‘(kzn) (5)
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Combining Eq.(4) and ILq. fzj; ;vQ§ X
/ W 17 5 )
/4 ,vhﬁv N e <
£(0) /R 1h j Y dn v Ip(kay) (6)
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Since f(9) is periodic in © 4 1t ca‘-be expanded in the Fourier series

£(2) ] 1)
I
where &n =ff 16 (8)
Then from Fq.(6) andr(7)
g - (9)

Eq.(9) gives the coefficients 8y of the Fourier series cxpansions of

the far field pattern of BEq.(7) in terms of the element currents i, and the

n
distribution of the elements along the z axis.By using matrix notation Eq(9)
is | & | Jolkzg) I (kzy) ... .. Jo(kzy.g) i, |
&, . J(kzy)  Jy(kzqy) oo o Jq(kz,_ 1) ] iy
gm L Jm(kzo} lm(kZ]_) o s e o0 Jm(kzn_l) iN-—l {
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The power pattern of the array is designated as S(©), thus
s(e) = £06).£7(0) (10)
vhere £7(0) is the complex conjugate function of f£{0).
Then from Eq.(4)
- N
s(e) B E%:% . Jkz,sin © §4 "% -Jjkzpsin © 1
Ll ) 1nne . : » lm.O o
n=o0 m=o0
By letting Zym €qual to Z, = Zp s thus
N-1 N-1.%
5(e) = §—~' 5——:\\~n ﬁééiﬁggznm31n e (11)

n=0

B=0>C
The total radiated power;H{////
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where sinee dec. a9 is the -1cm@ﬁﬁ\of the' s0lid angle.
B 1 e F*WV/

Then 2 (U O N

From ¥q.(11)

Sx) = x ; i lm' cJkZnmeos e (13)

n=o o
Combining BEq.(12) and %q.(13) gives

N-1 N-1 . ﬁ
W = 211 ) E in i | edFFRCOSH sinecdee (14)

n=0 m=0
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The integral can be written as
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so that Eq.(14)

The directivity
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so that the directivity is
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Now consider the special case where the current at each elements aore

equal., The polynomial of Eq.(4) may be written as

ok Sxogsin 6
£(8) - ) edkEmsin (17)
n=0
By letting w = gin © and the spacing 1z, is expressed in wavelengths ,
£g.(17) becomes
e jeTiznu (18)
£(u) . ) Gl :
n=o
or f(u)
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Thus ' ’ T — - -1 4 4
‘f(u>§ 'ZE__ICOS‘2ﬁZnu )C - <E:::sin 2lizu )2 =
AN - (19)
/]G3 "
In general, this exPrGSSibﬁ/f}Qﬁgﬁéé%?he array factor is difficult  to
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hsndle analytically. For convenien
= =,

are arranged symmetrically inlpairs-about gpe center and that the center -

ee+y it is usually assumed that clements

o

. v, — A . . : .
element is the referenox?r om which the F$ée is mecesured ( Fig.2 ) which
. 4

these assumptions the array pattern of tq.(18) becomes

f(u) = 1 + 2 \ “‘oos 27z (20)
n=i

where the total number of elements is designated as 28 + 1 .
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Fig.2 Symmetrical arrengement of nonuniformly spaced elements.
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The problem in unequally spaced array design ie to select the M valucs

of element pair spacing to achive some desired radiation patterns . Thc

Zn
array pattern of Eq.(14) has N degree of freedom with which to specify the
pattern., In principle it should be possible to approximate a desired radia-
tion pattern with the expression of Bg.(19) just as with a conventional

equally spaced array of 2F + 1 elements.gccupying the same aperture . The

pattern of equally spaced array is
. N

e / -—"—"\ "
feq(u) P 10\ R Zn-l in.cos 27du (21

where 4 is the spacing between adjacent clements. In the equally spaced
array, it is the N values of the current i, at the element pairs that
are to be determined, . With the"unénglly spaced array, it is the N

values of 1z, . Fr— = (
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