CHAPTER V

THE VARIATIONAL ' PRINCIPLE

2k

As pointed out by Halperin and Lax one can reach the
low ~ energy tail in two different but equivalent ways, ig,, by
letting B ——P-~= or by keeping E constant and reducing the
magnitude of the potenti&l fluctuationsand letting & —»O

Since p(E) has the\form ﬁ/E)exP(- (E)) containing the
J"‘} % =
limit ¢—>0C , we caﬁj;%;;gﬁzé p(B) by minimizing function
- "/,//(, FG ii‘f'

- B(E)/2¢ - ~ This co d tadncis correct in the limit where the
. & 5’

eigenfunctions are 100311§é% ‘\wtﬁapped in local potential

fluctuations u1thout derlépp&ng/spatlally . Typical value of

£ are 0.5, 9 atce karshown in Fl//}¢ % the unphysical

region occurs in the region where the curve bends down.
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Sayakanit 7 00 has used Halperin and Lax's limit to

maximized p(E) by minimizing the exponential term exp(- B(E z)\

To determine the best choice of z. He obtained the same results
as Halperin and Lax's. He also pointed out that Halperin and Lax's
limit is not based on the variational princip}e. He suggested -
that Lloyd and Best variational principle '~~~ could be used in

this connection.

In this chapter we determine the variational parameter =
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based on the Lloyd and Best variational principle and study the

asymptotic solution of z , n(v) , b(v), a(v) and T(V) .

27,33,3h

5.1 The Exact Variational _Principle,e

In quantum piechanics,

if we need to determine the ground

state energy of the system which has the Hamiltonian H, we can

assume the trial wave function ¢ (r,A ) where A is -a parameter.

2

We obtain the ground state

B "y
Nt—

.Qnep
Ny

-

o [ 1mg
E1 =4 56101
The above expressio
variational principle,i;
EO < E1 56102

where E  is the true ground

In a many fermion syst

state energy ‘of the system.

em, we can determine the ground

state energy Eo in term of the density of states,

[P
Eo = i+ E p(E)
J
where the density of states

as

1 .
N s X X -
p (%) g B¢ (E - g

dE 513

P(E) (from definition) can be written

L) 5.1.4
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and p in this case is the Fermi energy

If we assume the trial wave function Vo(ryz )-as the

single particle states, similarly as (5.1.4), we obtain

1
p(E1 ’) = ?2 g .G(E - <a‘{H, a)) 5-1.5

To obtain the true densiyy‘of states we have to choose the
most appropriate value of z- %of%bﬁtaining the best choice of 2
T —
L' oyd and Best . saggé/ ed that one should maximize the pressure

7 /7
P(E). The non - interacﬁéhgéma&y fermion equation c~1 be written in
77 ==

the form z ANE
) Y '+/, u‘_ G !

P(p) = 7 1WQ(E)“ﬂﬁln(1 + exp (= B(E = 1)) ) 5.1.6
B / i‘;l v}f_‘}' 'f";:j:'

&

Differentiatiééf(ﬁ?]:é) with respect to u under condition

of T(temperature) and & (volume) being constant , we obtain

, -B(E-n)
2 Fw) s g o(E)ag —EeS
LI B, 14 o~PE =)
T, 8
g o(E)dE
- 1 + e_B(u-E)

When B —po (T = 0) , We have
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P s )
& = )( o(E)AE =  N(p) 5s1a?
L =
where N(p) is the number of particles .
We can writa - P(u) as
u .
P(§) “= dE p(E)dm 5.1.8
= /__./
We notice that :Qg::gi—) in the form of
W\ ~
. R ‘
delta function, NN\ '
5:1.9
The above equation ¢ s of Heaviside step
function as
0 (B)

561410

where © (X) is Heaviside step function defined for X < 0 ,

0(X) = 0 and in the domain X > O sy O(X) =

©

On integrating the above eauation,

We have
E.
(E) 4R § (E N { de (E-E"_‘)"
J 4 il o % a(E-E ) §

e

——
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1% o(E - E )
NE

51411

We repeat the above procedure and obtain

£ (E-E ) o(E - E ) 5.1.12
3

] | "
J dE j p(E)AE =1
It is convenient to study the function Xo(X) which has the property

that the "first and second derivatives are grgatér than: zero.The

function therefore belongs td a elass of convex function. According
to the convexity theorem which states that if f(X) is a convex

function then
< £(X) > a &3S Swile Th

From (5.1.14) we have the approximate value of p(E s &}y

and we can write,

E E
P(E, ®) = g dE ( aE' o(E) 2)
s -4
1
E ®
A
* a8 a8 sz (8- < wm )
- .J.(:; 9(‘1

5.1.15
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By using the above thaorem we get

¥
P (E) > max aF g ar" D(E”, z)

A

T e

e

-0

To simplify the above expression we integrate by part and

obtain
e of
\ A ' ' ! |
P(E, z) = :8’\\} Ar,‘// E, z)| - E o(E ,z)dE
=, é R
) / = &"
Since the firsfzg;;?;; § & “(\ 1nﬁ side can=be evaluated

by using the fact that Y. :"” 'TEQQ be chanzed, we have

|

N <3

P(v, z) -ES S’ (v=v) ,0 (W', z)dv ) P [
v

The best value of Z can be obtained by solving the equation

dP( v ,z2)

=0 561415
de

So  differentiating (5.1.14) » we obtain

"
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( . . :
LN D o ) v, O 5.1.16
dz v
: |
Next we consider %; K2 ) , it is convenient to determine i
dln p(\) Z) 4
—_ ; by using (4.5.6) for e (v, z) ,
dz

i Rl e o

d1ln ey, -1 20,2) 5.1.17
dz e, A
L
Considering the first . ,rlgh\\hand side of (5.1.17), :

we have

2y i e R

=D z2 )
“$#V ) « 61lnz - s = 21nD L(z))
-3

~

5wl 18

To evaluate (5.1.18) . we use the recursion formula for the parabolic

cylinder function

[T N/ YT PRI ST W Yoy o o ey Lo

de(Z)

dz

A -%z Dp(z) + pDP_1(Z) 5.1.19

Carrying out the differentiation and using (5.1.19), we can write

(5.1.18) as

d 1lna(v, z) B D_u(z) ot 1 e 1)

0 T_(2) 43,2 Relael]
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Next we consider the second term on the right hand side of (5.1.17).

We can differentiate 1n b(Vv,z) to get

d 1n b(v, z) < 1 db (vyum)
dz b(V,2.) dz T fﬁ
= e ( 21 (3 z_2+ ) -_Z-2"' 1nD 3( :)) :
dz 2 L

|
N\

4 S\

Carrying out the diffggﬁ%y///\ 1 N

.g& and uSikg the recursion formula
‘ o
(561.19), we can writé al Q:ﬁjequatlsn as

|
[\\\

5.1.21

o i e RSk ol wr)

2t

W T2 i‘._j 1
, L—._. *
g% >

S5:1a22
N . 4
On substituting (5.1;2Q),and§(5.1°21) in (5.1.17), we obtain
2p_, (2) -3 "
-k 3 z 2
dln p(v,2) = 3 ( = - 2 =5 -£)
A D_B(Z) 2(3/22 +Vv) % |
E(_\)’Z) ( _’E_-_L"(Z) ~ —2—2.-3 ) |
2 & D _(%) (2272, v) j
!
. 1 dP .
Since dln ply 2} /.= =« — (VYy2) We can write the
dz p(\),z) az -

above equation as

i i e
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8 (v,2) = 30,2 |

2

NN

L

b
D_5(2) 2(3/ ;2

b(v, z)¢ D ,(z) P
ol | Ve I } 561623
2€ D"B(Z) (éz-2+‘v )
2
Putting (5.1.23) in (5.1.16), we obtain
| TR L g2 fauedat gt e s
dz e~ \? ——
2D . (z) -3 f
[ elts g « =X % 5
D-B(Z> (gz- +\)> _J'

Setting (5.1.24) equa1,£§%f£¥6; we obtain the variational equation
el

y
AN A T

Y
fOI‘ z L\ ~'-:,_, . ”,,‘\\.\_\‘ R ‘7/1
Jd\;(v-\i)a(v',z)e- " .
\Y]
i [ E_D_—Ll'(Z) | 1( T +2) B B(\)I’z)i E_’A_(z) B 2 -3 ._
DIg® (I - D_,(a) (7 +V))]
Where T = é 2-2 L 501:2.5
2

For comparison we study the further two cases :

Maximizing o (Vy2z) : case II

This case corresponds to maximizing P (Vv,z). As before it

is more convenient to maximize 1ln 01(\52). Thus we set (5.1.23)
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equal to zero and obtain

.
o Balodh B [E-h(") oz .
D_}(z) Z' T +v 25 D_B(z) (T % )

5.1.26

Here we neglected the constant faector which plays no role upon

differentiation

Minimizing b(v,z) : ease III

The variational equation is obtained by : ‘minimizing bv,z)..

‘Thus we set  (5.1.22)  equal .to zero and obtain %
D ,(z) -3
b e = 5.1.27
D_B(Z) (T+v)

It is interesting to note that if we neglected the first square

§a(v,z) _

dz

bracket term of (5.1.26) which correspond to setting 0

we then obtain (5.1.27). The expression plus one of the three
equation (5.1.25), (5.1.26) -or (5.1.27) completly determines

the density of states in the band tail region

By using the variational (5.1.27), Sayakanit:
showed in his works that this approaéh correspond to the Halperin

and Lax's results.
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5.2 Asymptotic Solutiong1
Following the same consideration as in Sayakanit's,work,

we consider two limiting values of Vv 3 ie,for v>>1 " and v<<1,

Case III (minimizing the exponent)

a \)>>1

This limit corresponds to the weak screening (Q —b0) or
E

i = ‘j- 3 t d us h
z —> 0 (since 2z LE\\ J)w le z —» 0 and use the

Dp(z) _ 50201
’ LA NN A S
. (5.2.7) becodé :7
M
:I.Jjn = 1 23(22-24- \)A)
2\2 6 2
1 [ 1
where D (z) » = j:—n and D q(z) Vo
=3 5 Y2 - 3
Rewriting the above equation, we obtain
Z3\) + gz‘ - 3 JTE = O 504.02
2

If zzv<<1 the first term of (5.2.2) can be neglected and

we obtain the solution z = 2 ,J% - However this solution is not
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an acceptable solution because it is in contradicts with our

assumption that z —» 0 . Thus the acceptable solution must come

form 22$>>1 - Indeed we obtain
1 ]
2 = (3\/12‘) 5 v 3 | 5.2.3
Physically the condition z2V>>1 implies the ratio of kinetic
energy of localization T = Jbz;/ is much less than. ¥
9, "”-/

\;:::3 § Zgii?:::
‘thus a(v,z) e 7//1 NN 5020k

Jgﬁ; expla 72) (0_,(2))?
/

~

and b(v,z) 5e245

We can calulate the aboaﬁ\llmliigg‘_xa&ﬁﬁﬁgy substituting (5.2.3) in

(5.2.4), (5.2.5) and use, the asymptotic -properties of parabolic

cylinder function (5¢2:1).  We get

8n JZ (= n)v 8“

Rewriting the above expression by using z2v>>1 we obtain

2

a(v,z) =

502.6



136

Similarly the limiting value of b(V,%) becomes

b v B (G a2y)2 22 @R
22 z
" \)2
Sele?

We can consider the limiting value of the logarithmic derivative of

the exponent b(v,z))iﬁ.,

n(v) é s57/6 9
d/lnwv
= Ay ib. (\),Z) 5.208
b(v,z) dv
To obtain: n(v) we differentiate(5¢2.5) and substitute
into (5.2.8). We have
3 =2
n{ v) o Ejb_ v €XDp (1/4z2)D_BQi) Sk Y) o
0 0 T 22 exp(z7h )D_, (%)
2 S
X 21V 5¢2¢9
(32724 v)

We can obtain the limiting value ofn(v) by substituting the

limiting value 'z into (5.2.9)
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n(v)

14

< I
0

5.2.10

The other quantity of interest is the kinetic energy of localization

T = 5z which can be obtained by using the limiting value of 2z
(5.2.3), ie.,
-1
/3
e i 2- = g 5.2.11
v 2 Vv

be ve< 1

This condition co 7sp6ﬁﬂéﬁto the strong screening case where
9/ s 1\

we can obtain the limit by/Leéti§§;£¥:>o and using the asymptotic

properties of the Parabollé{\} ‘irfunction
~ ' Vis)
g" T 72*7 ;if i/ zZ >> 1
Dplz) = it & 5.2.12
: 2% 2 /4 7 B=1 ePni z << 1
I(-p)
As in (a)

the asymptotic solution of Z can be obtained by

substituting the asymptotic values of the parabolic cylinder function

2 2
-z “/h ‘ -z “ /4
(5.2¢12) where (z) = € and D—Q(z) ~ @

z>>1 z3 zZ >>1 I

in (5.1.27) . Hence we obtain

Z o \/'J- 5.2.13
2v
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The limiting values of a(v,z), b(v,z), n(Vv) and T(V) can be

obtained by using (5.2.12) and (5.2.13). We have

a(\) ’Z) =

b(v,2z)

and n(v)

WIANNS

¥1,1
asymptotic behavior obtained by the path integral methcd and the

VTR
For compauﬁgﬁndLG§%1E%rigberesting to note that the
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S5e2e1k4

502015

5.2.16

52017

method of Halperin and Lax give the identical limiting values for

n(v) and %(v)

but slightly different values for a(v)

case IT (maximizing p(v,2)): .

Ao V>>1

We begin to study (5.1.26) that is

" _ ‘ ;
AT . 1 S T I T e S

and b(v )
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2p ,(z) , D ,(2) -3
[__u AT +2%_3_<_v,z)[_.z+ oz J_O

5 TR R 2z Lo ) (rawd

5.2:18

Following. the same procedure as in case IIIa, we let

% — 0 then the ahove equation becomes

2 J, giﬁ/- -2'3 = O 502019
M 3Vaa 2% |

3N® 2 sz Z /
//) -
/ ///",:’S R
4@;:/1
where we have us d/t )ggymptotlc properties of parabolic

’ 5% @ Q
cylinder function (5,2[{Y7}gn‘;fﬁe agsymptotic property of

B (et .
b(V,Z)(5.2.7)‘J@,b(v,2§*§§;§§§§;$6r 250 . Now if 22v <<,
the second term inﬁ;";_

& - >
situation , we fiﬁs\ﬁcﬁselutienf’/%@r Z v >>1 the third

term in the first bracket dominates and by inspection shows

obeﬁhﬁgéaékeﬁsafe—dﬁéinating « In this

that there exists solutions.' 'Since we know that the first
bracket is generally smaller than the second bracket, then the
first order approximation by iteration technique we can substitute

z in the first bracket. Using z obtain in (5.2.3), we have

1
2y /3 ’ Ly \/2 2
= 1 - - ¥ - + ) o = 0
(SHa 5. v 8- YE T ¢ 3
Z vy

Rearranging = the above expression we get the solution



second term in the bracket is much less then 1,
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1
: I 2 -3
s - 2 E s 3
z "(3\/1-‘)3\3’[1+-5—- ’3J’—‘)3' 5.2.20
2 . v/3 2 4

We can see that for & —p0O , Vv >>1 (5.2.20) the

tken reduces to

(5:2.3). Therefore the limiting values of a(V), b(Vv), n(v)

and ILX) must be equivalent to case III(a).

b. v << 1 ////

\\
ﬁ H use asymptotic propertles

As before we letv//’b
\
of the parabolic cy11?§§;;;;7

tlon (5 2 .12)e  We obtaln

b(v,z) = JE . 5¢2021
22 -
On substltuthg (5 ZWE;;EQ;T(S 2 1§) we have
_&- 3 + 2,2\))2,
z 2z (g + Z°V)
a-l .l— 1 -g } = .
N B % zzv)] # 0 5.2.22
3 o

If Zav >>9, the second term in the first square bracket and

the second square bracket approach . zerc. Thus the above

equation becomes

=
no

) = 0 502023

Nf

Wbt 1/’_‘ LN
5
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Eg. (5.2.23) can be solved by using De moivre’s theorem and we

obtain three distinguish solutions of z 9 le.y

1
1 ]
-2/ f .
2, = B9y 3 (163 (1.2 |
T D 5
1/
1 3
= =2 2 1 .
82 = I 3y /3 (16\/5) (-5 + 1/5 )
BE. 1/
LR 4 j1.73
and ZB = - 53 v > “;Eijﬁﬂqb%é%;i: One can see that these

A

solutions cannot be cogéigef//

their values are compl

Aaéraééeptable solutions because

/

,éﬁfhg asymptotic solution of & can
Jjr

be obtained by taking the/1 %}%&b{%< 1 ,in(5.2.18). 1In this

I v, A
case we obtain trancenden ﬁiVéﬁgéfibh
LIRCOINLD)

- 2
7 §= O
(5.2.24)

It is clear from this equation that z is independent of v  but
depend on o It is interesting to confirm this result from the

numerical calculation.,

case I (Maximizing P(v,z))
a.\) >>1

We now consider (5.1.25),ie,
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" gl . =b(v,2)/2€ (=2D_,(2) __zéz'a
Jﬁ av (v-wa(v,z)e ; [ dh - _.kf_“ R %
v _ D_3(z) Z .gz-a+ g
! D ,(z) -3
- E(vyz) -4 ) .z_z.__-_a__. '] “ - 0 (5.2.25)
28 D_3(Z) 352+ V4
3/
where a(viz) = (27 v) 2/ 8ri2 2° exp (=2/,)0%,(2)
2

(5.2.26)
As in case II (a) we study the limit where z — O.

Using the asymptotic 1imit of parabolic cylinder function

siga D_B(Z) B g‘J;n B D-k(Z) ~ % then we obtain b(v) ~ v2 .

Now we consider terms in first QQuare bracket, by using the condition
Zav >> 1 and asymtotic limit of parabolic cylinder. function.This-term

L |2 3

becomes -——cf = - = — The second square bracket can also be
3N
3 T 2z Wj‘\ 2 D 2 2 2
considered as above, This term becomes v.-,.\_\/_ - = 1
3Nm= . vJ
/5
Next, the limit of a(v,z) can be written as b where

2 n2z

we use the condition zav >>1 and” the asymptotic behavior of
parabolic cylinder function.
From the above consideration, these asymptotic quantities can

be substituted in (5.2.26) and we obtain

@ &

i ' 3/ -‘JI/
Jd"("“’) b [ o Jg'é3 v;.(‘?J?-@ ')]:o
% T ZI\v

5 \ Lz Nm 227 3
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v

For the case Vv >> 15 4

drbpped out. Thus we can wr

in the first bracket can be L S

ite the above equation as

© 12
; v
e 4 =" f2%

.(dvl(v-v)v2 e (5\/3-3> = 0

< € n 3!
v LAY

2
We now change the variable ¥ =-x, or dy = E « dx .
2¢€ v :

Then the above equation becomes

3 J axe™ ( 2tx) 5/?[(3 \/

2 3

7/
34 b
2 2 2 4L 2 |2 :
- 4 - - - (2£x) - -\/- 2’;}{
T 23 ) 53 3 Tt( ) ']

"
o

(5.2.27)

Eq. (5.2.27) can be integrated by using the formula.22

unﬂ & dn a4 u,l-l)
m
u

We then obtain

: 5/
2R . 2 R "
(3 Jﬁﬁ)”w 28

foru >0, Ren >0

3/ 2 7/ 2
2,20 e,y o2 2 H iy
z L 2¢ 3 T L 2¢

4 O (502-28)

)
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where T (a, E) denotes the incomplete Gamma function. To obtain

the solution we use the asymptotic formula for the incomplete

gamma function,

M-1
-1 =u/ m

" B M=o (D" T(1-0)
\ J//‘
‘E‘l__) [ -}n<&gx<%=’l,2...

Substituting the first tep fﬂ£ﬁé&ébove series in (5.2.28), we
// ' ’/, A \f\ S /Ag( { )
/IS5

have

we obtain

Rearranging the above expression,

The above equation has solution 2z =

1/ -1/
= (3\/E A 3 which is

the same as cace II(a) and case ITI(2).
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b, v %< 1

!
In this case we can neglect v compared to Vv and estend

the integration from zero to infinity then (5.2.25) becomes

©

“b( vez)/2 E 2D , (2) )
fd\’/v/a(v/,Z) 3 Vy [_ _-4 2 ( T _, 2) b(v, )

4 D-B(Z) Z. T4+ Vv 25

\

x(;/&)- -(;H,))] = 0 5.2.29

Since a(v,z2) = (T/4VY/ / % N2 Z exp (2 /2) D (Z) , the

7 .( ,
term 8nJ2 z exp(z /2) Da (z)\ cen be neglected. We then have

s

A B R a)/é‘;; """" (2) ¥
awi(r +v) °e ’ [" 4 'i(TTv + 2) o DL =)
) Yo ef) T ¢
ny/(
(Z) -3
x( L = )] = 0 5.2430
CTT¥v)
Proceeding further we write ELY,Z) = (T +v) c where
2%
‘ 2/ : (z)
a = ié fi 2 JZ exp (2 4) D-B(Z) , and B = 4
2¢ 3(8) 4 - (5.2.30)
w /
" a2 La(mem?
becomes v av(T +v) e
°
e[.gs Wi g | p(Te V)2 -2-%‘ (T + u’)] = 0 5.2.31
zZ T+ V 2z z '



\\v}

Rewriting the above expression, we have

': 5 , =ofT+ v')2
-(2B + —)‘f d ve V(T+Vv")
z

o]

i %2
- ap X ave "o+ V) (T+v)

-

z

7/,
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\:qd(T+V ) = x, and then

z ap
. Ghy 7
~op [(E LD
) 2(ax) z
(!T2

3/4

The above integrals can be evaluated by using the formula

to obtain

TR
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; - R ‘M7 2 T ‘.5 2
0= (@B + =) = ' , o) = = 5/, (= ,aT")
2 (:2(17/4 4 { 2a & 4 )

T (5/4 ’ TZ) | T(B/L", GT2)>

T
L % 3/
§ oq ¢ sa
‘ 2 2 o7 7/t daltl
aB ( I‘(z']/['_ QTZ) T r(7/)+) aT) . 2a(r (9/41 O.T ) T r( L"’a-k )
) B : "9/ AN T
19/ b4 z 9/h 7/
Pus L 2 a 20 St L

Rearranging the above expression, we get

oo 1 P(Wyer®) (2l 20 e I \r(5/,, a7°) (28 + 1)
7/ . 2”2 5/ :
20 8 20
= f ; 2
.1 N9/, a1) ap g O ™ T3/, 8 T)-2p O/t
9/4 =7 4 B/h -
2¢ = - zz G
5.2.%4
Next we use the relation T( a+1,x) = oa,x) + x%e™¥ ;
(5.2.34) Dbecomes
> .
0 = o I:’(2,<>‘T2)(r-r-l(2£3+1)+§-(B+§3)) g ik & £(2 , ar?)
4 2 z 4 z 2z b
? 2 2 15 2 7 - 7, 2
- (= , a9%) (z 4 =, + = B) + T a e (B(1--) + = )
4 z2 4 7 2 20

52035
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where o and B - have defined. We can see from (5.2.35) that

z 1is independent of Vv but depends on ¢ as in case II(b)

The value of z determined from the Lloyd and Best
~variational principle cannot be solved analytically. However we
can see that in the limit of very deep tail condition, the

three cases give the same asymptotic value of z. 1In considering
the limit ( v <<1) , we can see that Halperin and Lax's

limit gives the increasing wvalue of z. But in case of maximization
of pressure P(v,2) and p(v,z), the value of z becomes finite

also depending on & .,



	Chapter V the Variational Principle
	5.1 The Exact Variational Principle
	5.2 Asymptotic Solutions


