CHAPTER V
ON THE RAMSEY NUMBER N(L4,433)

5.0 Introduction

From Remark 2.5.4 we obtain the relation N(h,h;});iN(q;,q%;2)+1
where q; = N(3,k;3) and q; = N(4,333). Since N(3,433) = N(4,3;3) = L4,
then N(4,4;3) < N(4,4;2)+1. By Theorem 3.4.3, we have (4, k4;2) = 18,
Hence we obtain N(4,4;3) <€ 19, 'In this chapter we shall show that

12 < N(4,4;3) <18,

5.1 Face-Coldring of 3=~Graphs

By an r-graph G we mean an ordered pair (S,E), where S is a
finite set and E is a set of r-subsets of S. According to this
definition, graphs considered in the previous chapter are 2-graphs.

Elements of S will bejmefered to as points and elements of E will

be refered to as r=faces. For convenience, we shall refer to any
3-face simply by a/face.  |If (S,E),(S1,E1) are r-graphs such that
Sig 8, B, € E, we say that (81,E1) is an r-subgraph of (S,E).
Any 3-graph (S,E) can be represented geometrically by
representing points of S by points in space and each face ix,y,z%
in E by a triangle with x,y,z as vertices. The following Fig.5.1

shows geometrical representation of the 3-graph (S,4E), where

s = 41,2,3,4,5} and E = “1,2,3} , i1,3,£+K . {1,4,5\\.
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By a complete 3-graph we mean 3-graph (S,E) in which E

consists of all 3-subsets of S., If S contains n elements, we shall

denote any complete 3=graph (8,E) by KéB).

(3)

If cach face of the complete 3-graph K is colored by red

n
or blue., Let E1 consist of all red faces and E2 consist of all
blue faces. Thus a red=blue coloring of faces of KiB) corresponds

to a partition (E1,E2) of P3(S)' By-a/¢oloring of a complete

3-graph (S,PB(S)) we mean ani ~tuple ((S,E,‘),(S,Ez),(S,EB),...,(S,Ei))
where (E1,E2,...,EL) forms a partition of PB(S)' A complete 3-graph
(S'P3(S)) together with a coloring will be refered to as a chromatic

3-graph. By a (q1,qa,...,qL;Z)-coloring of a complete 3-graph

(S’PB(S)) we mean a coloring ((S,Eq),(S,Ea),...,(S,Eg)) in which
Q.

1

each (S’Ei) does not contain any complete 3-grap as its

3-subgraph. Hence a (p,q;3)=-coloring of a complete 3-graph (S'PB(S))

is a coloring ((S,Eq),(S,Ea)) in which (S,E,) does not contain a

(3)

complete 3-graph KP

as its 3-subgraph and (S,Ea) does not contain
(3)
q

4 a8 red faces and faces in E2 as blue facese.

a complete 3-graph K as its 3-subgraph. In what follows we shall

refer to faces in E
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Geometrically, we can think of a(p,q;3)~coloring of a complete
3-graph (S’PB(S)) as a coloring of the faces (triangles) formed
by all combinations of 3 points of S in such a way that no complete

3-subgraph KKB) of (S'P3(S)) has all its faces colored red and no

b
complete 3-subgraph KéB) of (S’PB(S)) has all its faces colored bluec.
Note that the Ramsey number N(p,q33) is the smallest integer

such that if n N(p,q;3) there exists no (p,g3;3)=coloring of Ki3>.

5«2 Induced Line-Coloring

Assume that we are given a chromatic 3-graph ((S'PB(S)) i

((S,E1),(S,E2),...,(S,EL))). For any v, € S let Sg = 5 - {VO& .

We define the induced line-coloring of (50122§§01) to be the
7 / 7
coloring ((SO’E1)’(SO’EE)""’(SO'EK)) of (SO,PZ(SO)), where
/ ’ ]
(E1,E2,...,E1) is a partition of PE(SO) induced by (E1,E2,...,Ei).
In what follows we shall refer to colorings of complete 3-graphs

and complete graphs as face-colorings and line~colorings,respectively.

5.2.1 Lemma Let ((S,Eq),(S,EE)) be ‘a (4, 433)~coloring of (S’P3(S))'
For any v,e S let Sg = 5 - {vo'( » then the induced line-coloring
of (SO’PE(SO)) is a (4,4;2)~coloring.

P : . A
roof Let vi,vj,vk be any points of SO. If the lines {vi,vj} s

%vj,vk} and {vi,vk§ are red, then the faces ivo,vi,vj} . 4vo,vj,vk}

(3) . .
and {vo,vi,vk} are red. Therefore, qu with points VorViaVyeVy

has all its faces colored red unless the face %vi,vj,vk} is blue.
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Hence, if {vi,vj,vk}. is a red triangle in the line~-coloring, the

face {vi,vj,vk}. must be blue in the face-coloring. It follows
that the induced line-coloring of (SO’Pz(SO)) can not contain any

h-subset which forms a red K4, otherwise this 4-subset will form

(3)
L

a complete 3-graph K with all its faces colored blue. Similary,

the induced line-coloring of (SO’Pz(SO)) can not contain any 4-subset

which forms a blue K, . Hence the induced line~coloring of (S.,P.(S.))
h o 0'"2"%

2O ) Sy

is a (4,4;2)=coloring. iy o

L4/ Ra)
s =
AN
\\\ ”’ W :w,f"

5.3 An/Tmproved Upper Bound of N(k,b;3)

QOE.D‘

5341 Theorem N(4,4;3) £ 18,

Proof : Let S = évo,v1,v2,...,v17} « ' Suppose that there exists

a (4,433)-coloring of (S,Pi(8))." "By TLemma 5.2.1, v, induces a

o =

L.1.6, v, is joined by red limes to 8 points. Ve may assume that

(4,432)=coloring on (So’Pz(So))’ where S, = S - {VO} « By Theorem

these 8 points are v2,v3,.,.,v9. The red ‘lines interjoining these

8 points must have the configuration G3 :
AY) .
2 A
\YJ \Y
G 9 b
3
v
V% s
V? VL

Fige 5.2
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Thus the blue lines interjoining the points v2,v3,...,v must have

9

the configuration G6 :

\]% VS
“‘!!iiﬂ!!"'r
U4 Vb

Fige 5.3

The following Fig. 5.4 shows the red lines interjoining v1,v2,...,v9.

V\
\]‘L \‘3
N
Vg I
g, Ng
\7—{ \ib
Fige 5.4

Observe that the followings are the only red triangles of this graph :
W02 75} V050V b {0 vy vo o 905 Vg Lo (V0 ¥g 0 Vo 10 740V VgL

{vq,vg,vgk,{vq,v9,v2§,{vq,v2,v6},{v1,v3,v7f,{vq,vh,vsﬁ,iv1,v5,v9}.
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In the proof of Lemma 5.2.1 we see that any triangle which is red in

the line~coloring must be blue in the face-coloring. Thus the faces
'{v1,v2,v3},{v1,vs,vui,{v1,vh,v5},{v1,v5,v6},§v1,v6,v7§,§v1,v7,v8§ ;

' .
{v1,v8,v9},{v1,v9,v2},§v1,v2,v6},{v1,v3,v7},iv1,vq,v8},{v1,v5,v9%
are blue.
By Lemma 5.2.1, v, also induces a (4,4;2)=coloring on
(S1,PZ(S1)) where S, = 5 - iv1} . ;Since the face {v1’v2’v3} is
blue, hence {vz,VB} is-a blue liné in the induced line-coloring

of (51,P2(S1)). By the sem¢ reason it can be seen that
{ V30702 {u2 V) o { V50 Vgl TPl Vo0 Vg e (Ve Tg }a {Vgr ot {20 Vs |
ivz,v7},{v4,v8§,{v5,v9% are also blue lines in the induced line-

coloring of (Sq,P2(81)). Observe that these blue lines are precisely
those red lines interjoining va,v3,...,v9 in the induced line-coloring

of (SO'PZ(SO))’ Hence \they form a graph isomorphic to G Therefore,

3'
the blue lines interjoining points v2,v3,...,v9 in the induced line-

coloring of (5,,P,(8,)) contain a subgraph isomorphic t6 G But the

3°
blue lines interjoining points v2,v3,...,v9 must have the
configuration G6' Thus G6 contains a subgraph isomorphic to GB'
But Gg is a subgraph of G, in Fig.4.9. Therefore, G, contains a
subgraph isomorphic to G3’ this contradicts to Theorem 4.1.7. Thus

there does not exist a (4,43;3)-coloring of (S’P3(S)) where 5 consists

of 18 points. Hence N(4,4353) < 18,
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5.4 A Lower Bound of N(4,43;3),

Assume that we are given a complete 3-graph (S’P3(S)) where
S consists of points 1,2,ee.,n. If i <J <k, the triple
(j-i, k~j, n+i-k) will be called the shape of the face {i,j,k% .
It can be shown that (a,b,c) is a shape if and only if a,b,c are
positive integers such that a+b+c = n. We say that the shapes (a,b,c)
and (a',b’,cl) are congruent if and only if (a/,b/,; ) = (a,b,c) or

/ / /
(byc,a) or (c,a,b). If the faces {i,j,k} and {i ,j ,k | have congruent

shapes, we say that they are congruent. It is clear from the
definition that congruent ig an equivalence relation.

In what follows we/let P denote the sct of all shapes of the
faces of (S,P,(S)). By & partition of P we mean an ordered pair

3 —

(P1,P2) where P,sP, are disjoint subsets of P such that P P, = P,
To each partition (P1,P2) of P we let B, be the set of all faces
whose shapes are in P1 and E2 be the set of all faces whose shapes

are in P,. Then (E1,E2) is a coloring of (S,PB(S)). This coloring

will be refered to as the coloring induced by the partition (P1,P2).

5.4.1 Theorem Let S = {1,2,...,n} « For each L-subset %i,j,k,m}

of S let S(i,j,k,m) denote the set of shapes of faces {i,j,k} 3
{dskam}, {ikyn} and {i,j,m} .- If (P,,P,) is a partition of P

such that

(1) any shape in P1 is not congruent to any shape in P2,
(2) Py N 8Gi,5,km) # & and P, N 5(i,j,km) # § for all

Lhesubset { i,j,k,m} of 3.

Then the coloring (E1,E2) of (S’PB(S)) induced by (P1,P2) is a

(ky4;3)=coloring,
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Proof : Let {i,j,k,m} be any l-subset of S. Thus, by (2),
P,nS(i,j,kem) $ & and P, n S(i,j,kym) #¢ . Thercfore, at least
one shape in S(i,j,k,m) must be in P, and at least one shape in
S(i,j,k,m) must be in P2' Hence the complete 3-graph KiB) with points
i,j4kym has at least one red face and at least one blue face, Thus
every complete 3-subgraph Kis) of (S’P3(S)) has both a red face and

a blue face., It follows that no complete 3=subgraph KﬁB) of (S’PB(S))
has all its faces colored red and no complete 3-subgraph K£3) of
(54P5(8)) has all its faces colored blue. Hence (E1,E2) is a (4,4;3)-
coloring of (S,PB(S)).

QeED,

For convenience, in what follows, we shall use the notation

i +nj to mean the smallest positive integer k such that i + j = k

(mod n).

504.2 Lemma Let i< j.< k < n. Thenithe faces {i,j,kg and

{i T 3 41 K +n1} are congruent.

Proof : Case 1 Suppose that k < n. Mmsi-+1<j+-1<k+‘15n.
Therefore, i +n1 = i+1, j +n1 = j+1, k +n1 = k+1. Hence the face

%i a1 341, k +n1} has shape (j-i, k-j, n+i-k). But the face
%i,j,k} has shape (j-i, k-j, n+i-k). Thus the faces {i,j,k} and

%i +,70 J +n1, k +n1} are congruent,
Case 2 Suppose that k = n, In this case we have i +n1 = i+1,
o+ 1= 3+, k +,1 = 1, Therefore, the face {i T 3 1 k +n1}

has shape (i,j-i,n-j). But the face ji,j,k| has shape (j=i,n~j,i).
{
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We see that the shape of face i i,j,k% is congruent to the shape of

face { i+, 3+ k +h1} . Hence the faces {i,j,k % and

§i +n1' j +n1, k + n1} are congruent.,

Q.E.D.

5443 Corollq;y Let i< j<kg n. For any positive integer s,

the faces %i,j,k% and {i *58 J +.59 k +ns§ are congruent,

Sekelt Lemma Let S,P, S(i,j,k,m) be as in Theorem 5.4.1. Let (P1,

be a partition of P such that any shape in P1 is not congruent to

any shape in P,. TFor any positive integer s if P1f\S(i,j,k,m) $ ¢

and Paf‘S(i,j,k,m) 0/, theniP, N 5(1 +n81 J .8, k +s, m +ns) # ¢

and PaﬂSﬁ.nﬁ,j-ms,k4h5,m-ms)#¢

Proof : Assume that P1f)S(i,j,k,m) ¥ ¢ . Ve may assume also that

2

i<j<k<m Hence there exists a face {x, y, z} € PB({i,j,k,mk )

whose shape is in Py, By Corollary S5.#¢3, the face
{x +, 81 ¥ +ns’:z +ns} € P3 ({ i +a5s .3 +.81 k +,S W +ns}) is

congruent to the face {x,y,z} « Hence its shape must be in P1.

Therefore, PN S(i tpSe J +p8s kK 4 sy m +ns) #¢ o We have shown

that P, N 8(i,j,kym) ﬁf& implies P,NS(i +pS13 +, 89k + sym + 5) 0o

Similary, we can show that PN S(iyj.kym) # ¢ implies

P, N 8(1 +4250 3 480 kK + sy m +ns) ¥ ¢ -

)



5.4e5 Theoren N(h,453) = 12,

Proof : Let 8 = {1,2,34400,11} « Then P = 1€(141459)4(1,9,1),(9,1,1),
(19248)4(24841)4(84142)4(35147)9(1,743) 4(74341) 4 (2,4,5) 4 (4,5,2) ,(5,2,4) ,
(3424604024643 5(65342)4014548)5(5,5,1)5(54155) 5025148 5(14852)4(8,2,1)4
(43146) 3 (1,6,4) 3 (6,44,1),(2,3,6) 4(3,642) 4(642,3) 4(343,5)4(3,5,3)5(5,3,3),
(19536) 4 (4y641) 4 (64105) 3 (2,5,4) 4 (5,442) 4 (442,5) 4 (3ol yi) g (b4, 3) 4 (4, 3,4),
(242,7),(2,7,2),(7,2,2),(1,3,7),(3,7,1),(7,1,3) }

Let B, = 1(1,1,9),(1,9,10,(9,1,137(1,2,8),(2,8,1),(8,1,2),(1,3,7),
(3,741)4(7,1,3),(1,6,4), (65534) , (4,1,6),(2,6,3),(6,3,2),(3,2,6),
(2,445) 4 (4,5,2), (5,2, 407 (25 4)51(5, 4,2) y (%, 2,5),(3,3,5),(3,5,3),
(5,3,3)} 4y and

P, = §(1,5,5),(5,5,1),(5:0,5),(2,2,7),(2,7,2),(7,2,2),(1,8,2),
(84241),(241,8),(1,7,3) , (7, 5xB5k531,7) , (1,4,6), (4,6,1) , (6,1, 4)
(213,6),(3,6,2), (6,23 5-(3sltyltl ey 23 (W, 3,00 |
Note that (P1,P2) forms' a partition of P. We shall verify that any
shape in P1 is not congruent to any shape in P2. First, we observe
that S(1,2,3,4) = {(1,1,9),(1,1,9),(2,1,8),(1,2,8%. By inspection,
we see that P, 5(1,2,3,4) 44§  and P,05(1,2,3,4) £¢ « By Lomma
Seltelty we have

P 0 8(2,3,445) + and P, N0 8(2,3,4,5) + ¢,

P1rws(3,4;5,6) & and P, NS(3,4,5,6) % ¢,

P N 8(5,6,7,8) =# and P, N5(5,6,7,8) % ¢,

P, N5(6,7,8,9) #

4
$

P ns(h,5,6,7) # & and P,n8(4,5,6,7) # ¢,
¢
b anda P,nS(6,7,8,9) # ¢,
$

P, N5(7,8,9,10) % and P, N8(7,8,9,10) # o
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P,N58(8,9,10,11) § ¢ and P,y 0 5(8,9,10,11) + ¢ ,
P, n5(9,10,11,1) ¢ ¢ and P,05(9,10,11,1) + ¢ ,
P, n5(10,11,1,2) # ¢ and P,05(10,11,1,2) +§ ,
P, n8(11,1,2,3) % ¢ and P, N5(11,1,2,3) #9 .

By using this type of arguments, it guffices to show that
P,Nn8(i,j,kym) $¢ and P,n5(i,j,k,m) # ¢ for the following

combinations {i,j,k,m}

{1,2,3;55 » 11,2 3 6} , (%23, 7V4A41,2,3,8) , §1,2,3,9} , §1,2,3,10{,

{12,858 4 11,2,8,6 ), ek, 7) 11.2,4,8 ), 11,2,4,9) 4 §1,2,4,10],

£1,2,5,6} , {1,2 5 7} {1,2;5,8} , {152,5,9} 4, 11,2,5,10}, {1,2,6,7§ ,
{

\1,2,6,8} 1,2,6,9} +/47,2,6,10}, {1,2,7,9} , {1.2,7,10}, {1,2,8,10},

§103:5,7} 0 $14305,8) 4 {7,34549F ++{143.6,8} , 11,3,6,9} .

These can be done in the same way as for the combination 31,2,3,4% .
In doing so, we sece that for all L-subsct §i,j,k,m§- of

5 Pyn5(1,3,k,m) % §and, PyNS(iydekem) 4§ . Tt follows from

Theorem 5.4.1 that (P1,P2) induces a (4,43;3)= coloring of Kgﬁ).
(3)

11 ° Hence

Therefore, there exists a (4,433)- coloring of K

N(4,433) =12,
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APPENDIX

In this appendix, we prove two theorems which justify
the inductions used in the proof of Theorem 2.5.3 and Corollary

3e3¢3 in Chapters II and III.

A-1l Theorem Let S = {(ql,qa,...,qm) /qi} 2y L = 1,25000y I t e
If T is a subset of S such that

(1) if q;> 2 for all i =1,2,...,m and q; = 2 for some
i, then (ql’q2’°"’ qm) belongs to T, and

(2) for alleq.> 24 8 =/1,2,400y m if (ql-l,qa,..., qm).
(ql,qa—l,qB,..., qm),...., (q1’°’°°’qm-l’qm'l) belong to T,
then (ql’q2’°"’qm) belongs to T.
Then T = S,
Proof : Suppose T ¢ S. Thus S - T4 @, Let U =5 - T, It
follows from (1) that each (ql,qa,..., q,) belongs to U
satisfies q,> 2 for all i = 1,2,...,m. ~'Choose (d;,q;,--o;q;)
from U such that q&+ d;+...+ q; is minimume. Then

/ / . i , , £ / !

(a1=1y Ayreeesq ), (ql’qz'l’q3’°°"qm)"°°°'(q1’q2’°‘°'qm-1’qm'l)
belong to Te Therefore, by (2), (di,da,o--,d;) belongs to T,
which is a contradiction. Hence T = 8.

QeEeDe

y
A-2 Theorem Let S = { (ql,qa,...,qm;r) /ql,} r>l, i= 1,2,...,m§ °
If T is a subset of S such that
(1) (ql,qa,...,qm; 1) belongs to T for all q,> 1,

i = 1,2,0-., m,
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(2) if g3> r for all i = 1,2y.c.4m and q = r for some
i, then (ql;qa,..°, q,3 ) belongs to T, and
(3) for all r=> 2 and all Q4> Ty 1= 1,2y0c0ym if

® »* * ¥*

i
i=1y2y000ymy and (qy=1y Qpeeeerdys )y (Q1005=T00500000q§T) gueny
(ql,....,qm_l,qm-l; r) belong to T, then (ay995000099 5 T)

belongs to T.

Then T = S,

Proof : Suppose that T S, Thus § ~ T+ @, Lot U =S5 = T,

Let r  be the smallest positive integer such that
(ql’qa""’qm;ro) belongs to U for some GprGoreeesd e By (1)
we see that r > 1. Chogse (q&,éz,...,d;; ro) from U such that
q;+ 42+... {; is minimum., By (2), we have Ji> r, for all i.
By the choice of r_we sece that (53,&2,...,3;;r0- 1) belongs
to T for all ;;;,ro- Iy i =Xy25eeeytts /By the choice of

| ! ! { ¢ !
G39959c005Q we sec that (q1~1, Appecey Qi ro),

rk ] / 1013 A |

(dy285=Ly Ggreeosq s T )veney(aqry0e0e1q, 19 =15 © ) belong
ORN '

to Te Therefore, by (3), (ql,qa,....qm; ro) belongs to T,

which is a contradiction. Hence T = S.
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