ON THE RAMSEY NUMBER N(4,4;3)

5.0 Introduction

From Remark 2.5.4 we obtain the relation $N(4,4;3) \leq N(q_1',q_2';2)+1$ where $q_1' = N(3,4;3)$ and $q_2' = N(4,3;3)$. Since N(3,4;3) = N(4,3;3) = 4, then $N(4,4;3) \leq N(4,4;2)+1$. By Theorem 3.4.3, we have N(4,4;2) = 18. Hence we obtain $N(4,4;3) \leq 19$. In this chapter we shall show that $12 \leq N(4,4;3) \leq 18$.

5.1 Face-Coloring of 3-Graphs

By an r-graph G we mean an ordered pair (S,E), where S is a finite set and E is a set of r-subsets of S. According to this definition, graphs considered in the previous chapter are 2-graphs. Elements of S will be referred to as points and elements of E will be referred to as r-faces. For convenience, we shall refer to any 3-face simply by a face. If $(S,E),(S_1,E_1)$ are r-graphs such that $S_1\subseteq S$, $E_1\subseteq E$, we say that (S_1,E_1) is an r-subgraph of (S,E).

Any 3-graph (S,E) can be represented geometrically by representing points of S by points in space and each face $\{x,y,z\}$ in E by a triangle with x,y,z as vertices. The following Fig.5.1 shows geometrical representation of the 3-graph (S,E), where $S = \{1,2,3,4,5\}$ and $E = \{1,2,3\}$, $\{1,3,4\}$, $\{1,4,5\}$.

Fig. 5.1

By a complete 3-graph we mean 3-graph (S,E) in which E consists of all 3-subsets of S. If S contains n elements, we shall denote any complete 3-graph (S,E) by $K_n^{(3)}$.

If each face of the complete 3-graph $K_n^{(3)}$ is colored by red or blue. Let E_1 consist of all red faces and E_2 consist of all blue faces. Thus a red-blue coloring of faces of $K_n^{(3)}$ corresponds to a partition (E_1,E_2) of $P_3(S)$. By a coloring of a complete 3-graph $(S,P_3(S))$ we mean an ℓ -tuple $((S,E_1),(S,E_2),(S,E_3),\ldots,(S,E_\ell))$ where (E_1,E_2,\ldots,E_ℓ) forms a partition of $P_3(S)$. A complete 3-graph $(S,P_3(S))$ together with a coloring will be referred to as a chromatic 3-graph. By a $(q_1,q_2,\ldots,q_\ell;2)$ -coloring of a complete 3-graph $(S,P_3(S))$ we mean a coloring $((S,E_1),(S,E_2),\ldots,(S,E_\ell))$ in which each (S,E_1) does not contain any complete 3-graph $K_1^{(3)}$ as its 3-subgraph. Hence a (P,q;3)-coloring of a complete 3-graph $(S,P_3(S))$ is a coloring $((S,E_1),(S,E_2))$ in which (S,E_1) does not contain a complete 3-graph $K_1^{(3)}$ as its 3-subgraph and (S,E_2) does not contain a complete 3-graph $K_1^{(3)}$ as its 3-subgraph. In what follows we shall refer to faces in E_1 as red faces and faces in E_2 as blue faces.

Geometrically, we can think of a(p,q;3)-coloring of a complete 3-graph $(S,P_3(S))$ as a coloring of the faces (triangles) formed by all combinations of 3 points of S in such a way that no complete 3-subgraph $K_p^{(3)}$ of $(S,P_3(S))$ has all its faces colored red and no complete 3-subgraph $K_p^{(3)}$ of $(S,P_3(S))$ has all its faces colored blue.

Note that the Ramsey number N(p,q;3) is the smallest integer such that if $n \ge N(p,q;3)$ there exists no (p,q;3)-coloring of $K_n^{(3)}$.

5.2 Induced Line-Coloring

Assume that we are given a chromatic 3-graph ((S,P₃(S)); ((S,E₁),(S,E₂),...,(S,E₁))). For any $v_0 \in S$ let $S_0 = S - \{v_0\}$. We define the induced line-coloring of $(S_0,P_2(S_0))$ to be the coloring $((S_0,E_1),(S_0,E_2),...,(S_0,E_1))$ of $(S_0,P_2(S_0))$, where $(E_1,E_2,...,E_1)$ is a partition of $P_2(S_0)$ induced by $(E_1,E_2,...,E_1)$. In what follows we shall refer to colorings of complete 3-graphs and complete graphs as face-colorings and line-colorings, respectively.

5.2.1 Lemma Let $((s,E_1),(s,E_2))$ be a (4,4;3)-coloring of $(s,P_3(s))$. For any $v_0 \in S$ let $S_0 = S - \{v_0\}$, then the induced line-coloring of $(s_0,P_2(s_0))$ is a (4,4;2)-coloring.

 $\begin{array}{c} \underline{\text{Proof}}: \text{ Let } v_{\mathtt{i}}, v_{\mathtt{j}}, v_{\mathtt{k}} \text{ be any points of } S_{\mathtt{O}}. \text{ If the lines } \left\{v_{\mathtt{i}}, v_{\mathtt{j}}\right\}, \\ \left\{v_{\mathtt{j}}, v_{\mathtt{k}}\right\} \text{ and } \left\{v_{\mathtt{i}}, v_{\mathtt{k}}\right\} \text{ are red, then the faces } \left\{v_{\mathtt{O}}, v_{\mathtt{i}}, v_{\mathtt{j}}\right\}, \left\{v_{\mathtt{O}}, v_{\mathtt{j}}, v_{\mathtt{k}}\right\} \\ \text{ and } \left\{v_{\mathtt{O}}, v_{\mathtt{i}}, v_{\mathtt{k}}\right\} \text{ are red. Therefore, } K_{\mathtt{d}}^{(3)} \text{ with points } v_{\mathtt{O}}, v_{\mathtt{i}}, v_{\mathtt{j}}, v_{\mathtt{k}} \\ \text{ has all its faces colored red unless the face } \left\{v_{\mathtt{i}}, v_{\mathtt{j}}, v_{\mathtt{k}}\right\} \text{ is blue.} \end{array}$

Hence, if $\{v_i,v_j,v_k\}$ is a red triangle in the line-coloring, the face $\{v_i,v_j,v_k\}$ must be blue in the face-coloring. It follows that the induced line-coloring of $(s_0,P_2(s_0))$ can not contain any 4-subset which forms a red K_4 , otherwise this 4-subset will form a complete 3-graph $K_4^{(3)}$ with all its faces colored blue. Similary, the induced line-coloring of $(s_0,P_2(s_0))$ can not contain any 4-subset which forms a blue K_4 . Hence the induced line-coloring of $(s_0,P_2(s_0))$ is a (4,4;2)-coloring.

Q.E.D.

5.3 An Improved Upper Bound of N(4,4;3)

5.3.1 Theorem $N(4,4;3) \le 18$.

Proof: Let $S = \left\{v_0, v_1, v_2, \dots, v_{17}\right\}$. Suppose that there exists a (4,4;3)-coloring of $(S,P_3(S))$. By Lemma 5.2.1, v_0 induces a (4,4;2)-coloring on $(S_0,P_2(S_0))$, where $S_0 = S - \left\{v_0\right\}$. By Theorem 4.1.6, v_1 is joined by red lines to 8 points. We may assume that these 8 points are v_2,v_3,\dots,v_9 . The red lines interjoining these 8 points must have the configuration G_3 :

Fig. 5.2

Thus the blue lines interjoining the points v_2, v_3, \dots, v_9 must have the configuration G_6 :

Fig. 5.3

The following Fig. 5.4 shows the red lines interjoining v₁, v₂,...,v₉.

Observe that the followings are the only red triangles of this graph: $\{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}, \{v_1, v_4, v_5\}, \{v_1, v_5, v_6\}, \{v_1, v_6, v_7\}, \{v_1, v_7, v_8\}, \{v_1, v_8, v_9\}, \{v_1, v_9, v_2\}, \{v_1, v_2, v_6\}, \{v_1, v_3, v_7\}, \{v_1, v_4, v_8\}, \{v_1, v_5, v_9\}.$

In the proof of Lemma 5.2.1 we see that any triangle which is red in the line-coloring must be blue in the face-coloring. Thus the faces $\{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}, \{v_1, v_4, v_5\}, \{v_1, v_5, v_6\}, \{v_1, v_6, v_7\}, \{v_1, v_7, v_8\}, \{v_1, v_8, v_9\}, \{v_1, v_9, v_2\}, \{v_1, v_2, v_6\}, \{v_1, v_3, v_7\}, \{v_1, v_4, v_8\}, \{v_1, v_5, v_9\}$ are blue.

By Lemma 5.2.1, v_1 also induces a (4,4;2)-coloring on $(S_1, P_2(S_1))$ where $S_1 = S - \{v_1\}$. Since the face $\{v_1, v_2, v_3\}$ blue, hence $\{v_2, v_3\}$ is a blue line in the induced line-coloring of $(S_1,P_2(S_1))$. By the same reason it can be seen that {v3,v4}, {v4,v5}, {v5,v6}, {v6,v7}, {v7,v8}, {v8,v9}, {v9,v2}, {v2,v6}, $\{v_3, v_7\}, \{v_4, v_8\}, \{v_5, v_9\}$ are also blue lines in the induced linecoloring of $(S_1,P_2(S_1))$. Observe that these blue lines are precisely those red lines interjoining v_2, v_3, \dots, v_9 in the induced line-coloring of (So.P2(So)). Hence they form a graph isomorphic to Gz. Therefore, the blue lines interjoining points v2, v3, ..., v9 in the induced linecoloring of (S1.P2(S1)) contain a subgraph isomorphic to G2. But the blue lines interjoining points v_2, v_3, \dots, v_g must have the configuration G6. Thus G6 contains a subgraph isomorphic to G2. But G_6 is a subgraph of G_4 in Fig.4.9. Therefore, G_4 contains a subgraph isomorphic to G3, this contradicts to Theorem 4.1.7. Thus there does not exist a (4,4;3)-coloring of $(S,P_3(S))$ where S consists of 18 points. Hence $N(4,4;3) \le 18$.

5.4 A Lower Bound of N(4,4;3).

Assume that we are given a complete 3-graph $(S,P_3(S))$ where S consists of points 1,2,...,n. If i < j < k, the triple (j-i, k-j, n+i-k) will be called the shape of the face $\{i,j,k\}$. It can be shown that (a,b,c) is a shape if and only if a,b,c are positive integers such that a+b+c=n. We say that the shapes (a,b,c) and (a',b',c') are congruent if and only if (a',b',c')=(a,b,c) or (b,c,a) or (c,a,b). If the faces $\{i,j,k\}$ and $\{i',j',k'\}$ have congruent shapes, we say that they are congruent. It is clear from the definition that congruent is an equivalence relation.

In what follows we let P denote the set of all shapes of the faces of $(S,P_3(S))$. By a partition of P we mean an ordered pair (P_1,P_2) where P_1,P_2 are disjoint subsets of P such that $P_1 \cup P_2 = P$. To each partition (P_1,P_2) of P we let E_1 be the set of all faces whose shapes are in P_1 and E_2 be the set of all faces whose shapes are in P_2 . Then (E_1,E_2) is a coloring of $(S,P_3(S))$. This coloring will be referred to as the coloring induced by the partition (P_1,P_2) .

Then the coloring (E_1, E_2) of $(S, P_3(S))$ induced by (P_1, P_2) is a (4,4;3)-coloring.

^{5.4.1} Theorem Let $S = \{1,2,\ldots,n\}$. For each 4-subset $\{i,j,k,m\}$ of S let S(i,j,k,m) denote the set of shapes of faces $\{i,j,k\}$, $\{j,k,m\}$, $\{i,k,m\}$ and $\{i,j,m\}$. If (P_1,P_2) is a partition of P such that

⁽¹⁾ any shape in P₁ is not congruent to any shape in P₂,

⁽²⁾ $P_1 \cap S(i,j,k,m) \neq \emptyset$ and $P_2 \cap S(i,j,k,m) \neq \emptyset$ for all 4-subset $\{i,j,k,m\}$ of S.

Proof: Let $\{i,j,k,m\}$ be any 4-subset of S. Thus, by (2), $P_1 \cap S(i,j,k,m) \neq \emptyset$ and $P_2 \cap S(i,j,k,m) \neq \emptyset$. Therefore, at least one shape in S(i,j,k,m) must be in P_1 and at least one shape in S(i,j,k,m) must be in P_2 . Hence the complete 3-graph $K_4^{(3)}$ with points i,j,k,m has at least one red face and at least one blue face. Thus every complete 3-subgraph $K_4^{(3)}$ of $(S,P_3(S))$ has both a red face and a blue face. It follows that no complete 3-subgraph $K_4^{(3)}$ of $(S,P_3(S))$ has all its faces colored red and no complete 3-subgraph $K_4^{(3)}$ of $(S,P_3(S))$ has all its faces colored blue. Hence (E_1,E_2) is a (4,4;3)-coloring of $(S,P_3(S))$.

Q.E.D.

For convenience, in what follows, we shall use the notation $\frac{i+j}{n}$ to mean the smallest positive integer k such that $i+j \ge k \pmod n$.

5.4.2 Lemma Let $i < j < k \le n$. Then the faces $\{i,j,k\}$ and $\{i+_n1,\ j+_n1,\ k+_n1\}$ are congruent.

Proof: Case 1 Suppose that k < n. Thus $i + 1 < j + 1 < k + 1 \le n$. Therefore, $i +_n 1 = i + 1$, $j +_n 1 = j + 1$, $k +_n 1 = k + 1$. Hence the face $\left\{i +_n 1, j +_n 1, k +_n 1\right\}$ has shape (j-i, k-j, n+i-k). But the face $\left\{i,j,k\right\}$ has shape (j-i, k-j, n+i-k). Thus the faces $\left\{i,j,k\right\}$ and $\left\{i +_n 1, j +_n 1, k +_n 1\right\}$ are congruent.

Case 2 Suppose that k = n. In this case we have i + 1 = i+1, j + 1 = j+1, k + 1 = 1, Therefore, the face $\{i + 1, j + 1, k + 1\}$ has shape (i, j-i, n-j). But the face $\{i, j, k\}$ has shape (j-i, n-j, i).

We see that the shape of face $\{i,j,k\}$ is congruent to the shape of face $\{i+_n1,j+_n1,k+_n1\}$. Hence the faces $\{i,j,k\}$ and $\{i+_n1,j+_n1,k+_n1\}$ are congruent.

Q.E.D.

5.4.3 Corollary Let $i < j < k \le n$. For any positive integer s, the faces $\{i,j,k\}$ and $\{i+_n s,\ j+_n s,\ k+_n s\}$ are congruent.

5.4.4 Lemma Let S,P, S(i,j,k,m) be as in Theorem 5.4.1. Let (P_1,P_2) be a partition of P such that any shape in P_1 is not congruent to any shape in P_2 . For any positive integer s if $P_1 \cap S(i,j,k,m) \neq \phi$ and $P_2 \cap S(i,j,k,m) \neq \phi$, then $P_1 \cap S(i+ns,j+ns,k+ns,m+ns) \neq \phi$ and $P_2 \cap S(i+ns,j+ns,k+ns,m+ns) \neq \phi$

Proof: Assume that $P_1 \cap S(i,j,k,m) \neq \phi$. We may assume also that i < j < k < m. Hence there exists a face $\{x, y, z\} \in P_3(\{i,j,k,m\})$ whose shape is in P_1 . By Corollary 5.4.3, the face

 $\{x +_n s, y +_n s, z +_n s\} \in P_3$ ($\{i +_n s, j +_n s, k +_n s, m +_n s\}$) is congruent to the face $\{x,y,z\}$. Hence its shape must be in P_1 .

Therefore, $P_1 \cap S(i +_n s, j +_n s, k +_n s, m +_n s) \neq \emptyset$. We have shown that $P_1 \cap S(i,j,k,m) \neq \emptyset$ implies $P_1 \cap S(i +_n s,j +_n s,k +_n s,m +_n s) \neq \emptyset$. Similarly, we can show that $P_2 \cap S(i,j,k,m) \neq \emptyset$ implies

 $P_2 \cap S(i +_n s, j +_n s, k +_n s, m +_n s) \neq \phi$.

5.4.5 Theorem N(4,4;3) > 12.

Proof: Let $S = \{1,2,3,...,11\}$. Then $P = \{(1,1,9),(1,9,1),(9,1,1),(1,2,8),(2,8,1),(8,1,2),(3,1,7),(1,7,3),(7,3,1),(2,4,5),(4,5,2),(5,2,4),(3,2,6),(2,6,3),(6,3,2),(1,5,5),(5,5,1),(5,1,5),(2,1,8),(1,8,2),(8,2,1),(4,1,6),(1,6,4),(6,4,1),(2,3,6),(3,6,2),(6,2,3),(3,3,5),(3,5,3),(5,3,3),(1,4,6),(4,6,1),(6,1,4),(2,5,4),(5,4,2),(4,2,5),(3,4,4),(4,4,3),(4,3,4),(2,2,7),(2,7,2),(7,2,2),(1,3,7),(3,7,1),(7,1,3)\}.$

Let $P_1 = \{(1,1,9),(1,9,1),(9,1,1),(1,2,8),(2,8,1),(8,1,2),(1,3,7),(3,7,1),(7,1,3),(1,6,4),(6,4,1),(4,1,6),(2,6,3),(6,3,2),(3,2,6),(2,4,5),(4,5,2),(5,2,4),(2,5,4),(5,4,2),(4,2,5),(3,3,5),(3,5,3),(5,3,3)\}$, and

 $P_{2} = \left\{ (1,5,5), (5,5,1), (5,1,5), (2,2,7), (2,7,2), (7,2,2), (1,8,2), (8,2,1), (2,1,8), (1,7,3), (7,3,1), (3,1,7), (1,4,6), (4,6,1), (6,1,4) \right. \\ \left. (2,3,6), (3,6,2), (6,2,3), (3,4,4), (4,4,3), (4,3,4) \right\}.$

Note that (P_1,P_2) forms a partition of P. We shall verify that any shape in P_1 is not congruent to any shape in P_2 . First, we observe that $S(1,2,3,4) = \{(1,1,9),(1,1,9),(2,1,8),(1,2,8)\}$. By inspection, we see that $P_1 \cap S(1,2,3,4) \neq \emptyset$ and $P_2 \cap S(1,2,3,4) \neq \emptyset$. By Lemma 5.4.4, we have

 $P_1 \cap S(2,3,4,5) \neq \emptyset$ and $P_2 \cap S(2,3,4,5) \neq \emptyset$, $P_1 \cap S(3,4,5,6) \neq \emptyset$ and $P_2 \cap S(3,4,5,6) \neq \emptyset$, $P_1 \cap S(4,5,6,7) \neq \emptyset$ and $P_2 \cap S(4,5,6,7) \neq \emptyset$, $P_1 \cap S(5,6,7,8) \neq \emptyset$ and $P_2 \cap S(5,6,7,8) \neq \emptyset$, $P_1 \cap S(6,7,8,9) \neq \emptyset$ and $P_2 \cap S(6,7,8,9) \neq \emptyset$, $P_1 \cap S(7,8,9,10) \neq \emptyset$ and $P_2 \cap S(7,8,9,10) \neq \emptyset$, By using this type of arguments, it suffices to show that $P_1 \cap S(i,j,k,m) \ \, \neq \ \, \text{ and } P_2 \cap S(i,j,k,m) \ \, \neq \ \, \text{ for the following combinations } \left\{ i,j,k,m \right\} \ \, .$

 $\{1,2,3,5\}$, $\{1,2,3,6\}$, $\{1,2,3,7\}$, $\{1,2,3,8\}$, $\{1,2,3,9\}$, $\{1,2,3,10\}$, $\{1,2,4,5\}$, $\{1,2,4,6\}$, $\{1,2,4,7\}$, $\{1,2,4,8\}$, $\{1,2,4,9\}$, $\{1,2,4,10\}$, $\{1,2,5,6\}$, $\{1,2,5,7\}$, $\{1,2,5,8\}$, $\{1,2,5,9\}$, $\{1,2,5,10\}$, $\{1,2,6,7\}$, $\{1,2,6,8\}$, $\{1,2,6,9\}$, $\{1,2,6,10\}$, $\{1,2,7,9\}$, $\{1,2,7,10\}$, $\{1,2,8,10\}$, $\{1,3,5,7\}$, $\{1,3,5,8\}$, $\{1,3,5,9\}$, $\{1,3,6,8\}$, $\{1,3,6,9\}$.

These can be done in the same way as for the combination $\{1,2,3,4\}$. In doing so, we see that for all 4-subset $\{i,j,k,m\}$ of $S P_1 \cap S(i,j,k,m) \neq \emptyset$ and $P_2 \cap S(i,j,k,m) \neq \emptyset$. It follows from Theorem 5.4.1 that (P_1,P_2) induces a (4,4;3)- coloring of $K_{11}^{(3)}$. Therefore, there exists a (4,4;3)- coloring of $K_{11}^{(3)}$. Hence $N(4,4;3) \geq 12$.

APPENDIX

In this appendix, we prove two theorems which justify the inductions used in the proof of Theorem 2.5.3 and Corollary 3.3.3 in Chapters II and III.

A-1 Theorem Let S = $\left\{ (q_1, q_2, \dots, q_m) / q_i \ge 2, i = 1, 2, \dots, m \right\}$.

If T is a subset of S such that

- (1) if $q_i \ge 2$ for all $i=1,2,\ldots,m$ and $q_i=2$ for some i, then (q_1,q_2,\ldots,q_m) belongs to T, and
- (2) for all $q_1 \ge 2$, i = 1, 2, ..., m if $(q_1-1, q_2, ..., q_m)$, $(q_1, q_2-1, q_3, ..., q_m), ..., (q_1, ..., q_{m-1}, q_m-1) \text{ belong to } T,$ then $(q_1, q_2, ..., q_m)$ belongs to T.

Then T = S.

Proof: Suppose $T \neq S$. Thus $S - T \neq \emptyset$. Let U = S - T. It follows from (1) that each (q_1, q_2, \dots, q_m) belongs to U satisfies $q_i > 2$ for all $i = 1, 2, \dots, m$. Choose (q_1, q_2, \dots, q_m) from U such that $q_1 + q_2 + \dots + q_m$ is minimum. Then $(q_1 - 1, q_2, \dots, q_m), (q_1, q_2 - 1, q_3, \dots, q_m), \dots, (q_1, q_2, \dots, q_{m-1}, q_{m-1})$ belong to T. Therefore, by (2), (q_1, q_2, \dots, q_m) belongs to T,

which is a contradiction. Hence T = S.

Q.E.D.

A-2 Theorem Let $S = \left\{ (q_1, q_2, \dots, q_m; r) / q_1 \ge r \ge 1, i = 1, 2, \dots, m \right\}$. If T is a subset of S such that

(1) $(q_1, q_2, \dots, q_m; 1)$ belongs to T for all $q_i \ge 1$, $i = 1, 2, \dots, m$,

- (2) if $q_i \ge r$ for all $i=1,2,\ldots,m$ and $q_i=r$ for some i, then $(q_1,q_2,\ldots,q_m;r)$ belongs to T, and
- (3) for all $r \ge 2$ and all $q_1 \ge r$, i = 1, 2, ..., m if $(\overset{*}{q}_1, \overset{*}{q}_2, ..., \overset{*}{q}_m; r 1)$ belongs to T for all $\overset{*}{q}_1 \ge r 1$, i = 1, 2, ..., m, and $(q_1 1, q_2, ..., q_m; r), (q_1, q_2 1, q_3, ..., q_m; r), ..., (q_1, ..., q_m 1; r)$ belongs to T, then $(q_1, q_2, ..., q_m; r)$ belongs to T.

Then T = S.

Proof: Suppose that $T \neq S$. Thus $S - T \neq \emptyset$. Let U = S - T.

Let r_0 be the smallest positive integer such that $(q_1, q_2, \dots, q_m; r_0)$ belongs to U for some q_1, q_2, \dots, q_m . By (1)

we see that $r_0 > 1$. Choose $(q_1, q_2, \dots, q_m; r_0)$ from U such that $q_1 + q_2 + \dots + q_m$ is minimum. By (2), we have $q_1 > r_0$ for all i.

By the choice of r_0 we see that $(q_1, q_2, \dots, q_m; r_0 - 1)$ belongs

to T for all $q_1 \ge r_0 - 1$, $i = 1, 2, \dots, m$. By the choice of (q_1, q_2, \dots, q_m) we see that $(q_1 - 1, q_2, \dots, q_m; r_0)$, $(q_1, q_2 - 1, q_3, \dots, q_m; r_0), \dots, (q_1, q_2, \dots, q_m; r_0)$ belong to T. Therefore, by (3), $(q_1, q_2, \dots, q_m; r_0)$ belongs to T,

which is a contradiction. Hence T = S.