CHAPTER III

ON THE RAMSEY NUMBERS N(ql.qa,..., q; 2)

3.0 Introduction

This chapter deals with the determination of the values of
sonie Ramsey numbers N(ql,qa,..., g 3 2) where 9 > 2 for all
i=1,2,0ee,{ . 1In showing that of the Ramsey numbers
N(ql,qz,..., a 3 2), we must find & positive integer n and show
that N(ql,qa,..., qy 3 2) >mn and N(ql,qa,...,qa ; 2)< n + 1.

When this is done, we can conelude that N(ql,qa,...,qf ;3 2) =n + 1,
Basic concepts of graph theory are introduced in section 3.1. 1In
section 3.2 we shall discuss a general method for constructing
chromatic graphs that will be helpful in showing the inequality
N(ql,qz,..., q 3 2).>n. In section 3;3 we derive some inequali-
tics on N(ql,qz,.,., a5 2). Thes¢ inequalities give us the

upper bounds of certain Ramsey numbers. Section 3.4 deals with

the determination of the values of some Ramsey numbers N(ql,qz; 2).
Section 3.5 deals with the determination of the values of some

Ramsey numbers N(3, 3,...,3 ; 2) .
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3.1 Basic Concepts

By a graph G we mean an ordered pair (S,I), where S is a

finite set and E is a set of 2-subsets of 3. Any graph (S,E) can
be represented geometrically by representing elements of S by points
and each 2-subset {x, y} in E by a line segment joining the points

X, Yo For example, G = (3, E) is a graph where
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& .
s =41,2,3,45,6}, |
E = {{1,2} o 2,3) 4 {3,4] ,{u,s5),5.6) , {6,1} ,{2,531,.
| Z 3
G
» .
L 3 4
Fig Bl
Note that a complete graph is a graph (S,E) in which E
consists of all 2-subsets of S.
By a subgraph of & graph G = (S,E) we mean any graph
G, = (84, BE;) such that 8, and E, arc subscts of S and I,
respectively., For example, Gl’ G2 are subgraphs of G.
-~ /////
d‘i Gl:
Fig. 3.2
If 5, is a set of points of a graph ($,5), the subgraph
(Sl,El), where E, = PZ(Sl) N E, is called the subgraph induced
by S,
Any subgraph (Sl, El) of a graph (S,E) such that 8, =8
will be called a spanning graph. In Fig. 3.2, G2 is a spanning
- subgraph of G.

By a union of the graphs (Sl’ E1), (5,, EE)”"’ (SX By )



X
we mean a graph (S,E) where S = U S. and E = U E.,. 1In
i=1 * j=1 *
Fig. 3.2, G is the union of Gl and Ga.
Two graphs (Sl,El), (SZ’E2) with 8, = S, are said to be

line-disjoint if E,0E, = 2 .

By a decomposition of the complete graph (S, P2(S)) we

mean an { -tuple of subgraphs((S,El), (s, EZ)""’(S’EAZ)) such
that
(1) each (S’Ei> is a spanning subgraph of the complete

graph (S, P2(S)) y 1 B2, 2 - ok

(2) P(8) = _AW/F..4
2 yo1 /&

(3) any two graphs/ .(8, Ei)’ (s, Ej) where i + j are
line-disjoint.
If each line of ‘the complete graph (S, P2(S)) is colored

by one and only one of the Q given colors, we obtain what is

known as a chromatic/graph. For such & graph, if we let Ei
consist of all lines colored by the ith £olor, 1 = 1,240, X ’
then ((S,El), (S,Ez),..., (S'EX.)> is a decomposition of the
complete graph (S, P2(S)). We shall refer to any decomposition
of the complete graph (3, P2(S)) as a coloring of (S, P2(S)).
Hence a chromatic graph can be view as an ordered pair (G; C),
where G is a complete graph (S, PE(S)) and C is a coloring of
(s, fz(S)), For convenience, we shall denote any chromatic graph
((s, P,(8));5 ((8, By), (8, Ej)yeeey (S, E g ))) simply by
((84E,), (S,Ea),..., (83,E¢ )). Observe that colorings are in
one-to-one correspondence with partitions of PZ(S) under the

correspondence
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(El,Ea,-'., El)e——*—e((s,ﬁl), (S,Ez),coc, (S’EK ))a

We shall refer to ((3,E., (S, EZ)""’ (s, E, )) as the coloring

11
induced by the partition (El,Ea,..., Ey ). If

((S,El), (S’EZ)""’ (S’Ei )) is a coloring of the complete
graph (5, P2(S)) such that for each i = 1,2,..., L there does
not exist any qi—subset of S which forms a complete suﬁgraph of
(S'Ei)’ we say that ((S,El), (S,Ea),..., (8,E4)) is a

(ql,qa,..., q, 3 2)-coloring of the complete graph (S, P2(S)).

When L 2, the first and the socond colors will be assumed to
be red and blue,respeetively. Hence a coloring ((8,E,), (8,E,))

is a (p, q; 2)-coloring of the complete graph (Ssz(S)) if no

red Kp or blue Kq ocours in the chromatic gréaph ((S,E1),(S,E2)). By

a (ql,qz,..., ay 2)=chromatic graph we mean a chromatic graph

in which its coloring is a (ql,qa,..., Gy 2)-coloring .
Let S1 be a set—of points of a chromatic graph
((SfEl), (S,Ea),..., (8,8 ")), the chromatic graph
((Sl,E;), (Sl,E;),..., (sl,ﬁl_)), where B = P,(8,) N E, ,
i=1,2, ..., ¥, will be called the chromatic subgraph of

((s, El), (s, E2),..., (s,E4 )) induced by Sl’

If { U, v} is a line in a graph G, we say that u and v

are adjacent points. Any set S of points in which no two are

adjacent is said to be an independent set. If u is a point and

x is a line such that u ¢ x, we say that u and x are incident.

Any two lines x, y are said to be adjacent lines if they are
incident with a common point. By a degree of a point v of a
graph G we mean the number of lines which are incident with the

point v. Two graphs (Sl,El), (32’E2) is said to be isomorphic
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if there exists a one~to-one correspondence f from Sl to 82 such
that {u, v} €5, if and only if {f(u), £} € E,, i.e.
adjacency is preserved under f. Hence isomorphic graphs must have
the same number of points and the same number of lines. As an
example, Gl and G2 in Fig. 3.3 are isomorphic under the correspon~

dence Vg = Uy 5 L= 15 25 3y %y 5y B

i
v
\ v, /V3 U, Ue
U, we
&,
W
uw

% Vs 9 4 o

Fige 33

3¢1s1 Remark Let f be an isomorphism from a graph G to another
graph G/. We have/the following.

(1) For any point v of G, the degree of v and the degree of
f(v) must be the same.

(2) For any set S, of points of G, the subgraph of G induced
by Sl. is isomorphic to the subgraph of G/ induced by f(Sl).

Two chromatic graphs ((S,El), (S,Ez),..., (S,Ey )) ,
((S,E;),(S,E;),..., (3, E;A)) arc said to be isomorphic if the
graphs (S, Ei) and (5, E;) are isomorphic for each i = 1,2,..., A .

By a complement of a graph (5,E) we mean a graph (S, E )
such that two points are adjacent in (S, E ) if and only if they
arc not adjacent in (S,E), Fig. 3.4 shown below is example of a

graph G and its complement G .
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Fig. 3.4

Note that the union of the graph (5,E) and its complement
S, E ) form a complete graph (3, PZ(S))' In any chromatic graph
((S,El), (S,E2)), the graphs (S,El) and (S,Ez) are complement of

cach other.

3e2 Construction of Chromatic Graphs.

3.2.1 Theorem Let H be & multiplicative subgroup of a finite
field (F, +, - ) with —n elements suech that h ¢ H implies that

-h € H. Let the setlof all cosets of lH be partitioned into X

sets Sl,Sa,..., Sl.' Let us label the points of Kh be elements

of F. If for each pair of points, say x, y, the line xy is colored
by the ith color if and only if x - y belongs to some coset of Si’
ie -{l, 2lsieneiniy ﬁi. Then the coloring of lines of Kh is well-
defined.

Proof: Let x, y be any two points. Therefore, x - y belongs to
some coset, say xOH, in Si for some i ¢ {1,2,..., ,i » Then

X -y =xh for some h ¢ H. Sincey - x = xo(-h). Hence y - x
belongs to on. Therefore, y -~ x belongs to coset on of H in

Si’ that is the line xy and yx have the same color. Hence the

coloring of lines of Kh is well-defined. LD,




21

3.2.2 Definition The coloring of lines of Kh as given in Theorem

%.2.1 will be called an i.~coloring of K.n induced by (Sl,Sa,...,Si Ve

1t f= 2, 8 = { Hk , the coloring of lines of K_ will

be called a 2-coloring induced by H., In tﬂis case the first and

the second colors will be assumed to be red and blue, respectively.
If H has Q cosets and each Si contains exactly one coset,

the coloring of lines of Kh will be called a coloring induced by H.

3+.243 Theorem Let H be a multiplicative subgroup of a field F
with n elements such- that
(1) h ¢ H impliég/that - h € H,

(2) for any h,,/H/e H h,- by 1.

1) 72

Let K; have a coloring/induced by H., Then there exists no 3-subset
of F with all its lines c¢olored by the same color.

Proof : Assume that there exists 3-subset {a, b, c% of F with
all its lines colored by the same color. Then all a - b, a - ¢,

b - ¢ Dbelong to some coset, say on ¢ Hence all O - (a ~ b),

(a = 1) = (¢ - b)y 0= (c=1b) belong to cosect x H.  Therefore,
the 3-subset {o, (a ~ b), (c - b)} has all its lines colored by
the same color. Since (a - b) is not zero element in the field Ity
multiplication by (a - b)"1 is permissible. Let A = (¢ - b)(a - b)-l,
then a1l 0 - 1, 1 - A, O = A belong to the coset (a - b)_l x H.
Hence the 3-subset {O, Iy A& has all its lines colored by the
same color, Since - 1 € H, hence the coset (a - b)-l x H must

be H. Therefore, all 1, A, 1 ~ A belong to H. This contradicts
to the hypothesis of the theorem. Hence there exists no 3-subset

of T with all its lines colored by the same color. Q.E.D,
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3.2.4 Corollary Let H be as in Theorem 3.2.3 . Let K, have a
2-coloring induced by H. Then there exists no 3-subset of I with
all its lines colored red.

Proof : Let us recolor the lines of Kn by a coloring induced by
H. Observe that if in the original 2~coloring of K, we have a
3-subset {a,b,c& such that all the lines joining them are red,
then we have all of a -~ b, b = Cy ¢ - a belong to H, This
implies that all the lines joining these three points are colored
by the same color in the coloring induced by H, which is contrary
to Theorem 3.2.3. Hence wé¢ can not have any 3-subset of F with

all its lines colored red /in the original 2-coloring of Kn'

343 Inequalities for N(ql’qa””’qk 3 2)

3.3.1 Theorem N(gjso53wessy g —32>< N(qy-1,9,,..., a3 2) +

N(ql,qa-l,qB,...,ql‘; 2) % s

+ N(ql,...,qi_l,gz—l;B)-(Q -2)
for all q,»2 , 1 =1, 2,..., L.
Proof : Let S be any set of N(ql~l,q2,...,ql ; 2) +
N(ql,qa-l,qB,...,qx $2) + eee + N(ql""’qi-l’ql"l i 2) - (f-2)
points. We shall show that PE(S) has no (ql,qz,...,qﬁ_; 2)=parti
tion. Let (Ey,E,,..., Eg ) be any partition of P,(8). This
partition induces a chromatic graph ((S,El),(S,Ez),...,(S,Eﬂ‘)).
In this chromatic graph, points of S are taken to be the points
of our complete graph and any line Xy is colored by the ith color
if and only if %x s ¥ & S Ei' Select a point, say v, from S. For

1 =1,2,000q L 1ot S, denote the set of all points such that the
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lines joining them to v are of the ith color, n, denote number of

points in Si* Thus

Dy+ Npteeet ny + 1 = N(ql-l,qz,...,qx ;s 2) + N(ql,qa—l,qB,...,q}Z 32) +
eeet N(ql,-oa,qu-l, q/z- = 1; 2)"('2-- 2).

Suppose that n, < N(ql,qa,..., q;-1, q +e9qy 5 2) for all

i+l?*’

i = l, 2, ceey 1 . Then
ny+ n,+ Dagteeet ng o+ (£ -1) <:N(q1-l,q2,---,q£ s2)

+ N(q ,q 'l’Q71'--’q, ; 2) + eee +
2 3 L

N(ql""!qg_]-? ql -1 H 2)'

So that we have

Dy+ Dotesey np 4 1< N(ql—l, Gpieeesly s 2) + N(ql,q2~l,q3,...,qxig2)
+eo/e t+ N(ql’ooo, qx_l, ql-l ; 2)"( 2— 2).

This is a contradiction. Hence

nig;.N(ql,..., qio—l, qio+l""’ 9y 2) for some iOE {1,2,...,1}.

Therefore, Si contains either
o

(1) a (q:.L - 1)-subset with all its lines colored by the izh
o
color , or

(2) some qi-subset, where 1 + io’ with all its lines
colored by the ith color.

If (1) holds, then this (q. - 1)-subset together with V
9
o

forms a qi_~subset of S with all its lines colored by the ighu
o)

color. Hence S contains some qi-subset with all its lines colored
by the ith color for some i ¢ ‘1,2,...,1 k , This shows that

PZ(S) has no (ql,qé,..., Ay 2)~partition. Hence
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N(qlaq29'-‘iqi 3 2) £ N(ql"lsq29"',qi ; 2) + N(qlsqz“lqu,"',qx;z)
toeoot N(ql"."qi-l’ql—l ; 2) — (x o 2)'

oH.D,

3.3.2 Corollary N(ql,q2 : 2)~S’N(ql-l,q2; 2) + N(ql,qz—l s 2)

mraﬂ.%ﬁqasmhtmm ql>2,q2>2,

Proof : Let S be any set of N(ql—l,qa; 2) + N(ql,q2~1 ; 2)
points. We shall show that PZ(S) kns no (ql,qz; 2)-partition.
Let (El’Ez) be any partition of Pz(S). This partition induces a

chromatic graph ((S,El), (s,E,))s Select one point , say v, from

5)
Se. Let Sl denote the set’ 0Of all points such that the lines
joining them to v are/rgd, S2 denote the set of all points such
that the lines joining them to v are blue. Let n, denote the

number of points in Si' Since all points other than v belong to

either S; or S,, hence nyt ma+ 1= N(ql-l,q2 s 2) + N(ql,q2~l s 2).

Case T : If n; <iN(q1—l,q2; 2), thenm o, > N(ql,qz-l; 2). Hence
either

(I-a) there exists a g -subset of S, with all its lines
colored red, or

(I-b) there exists a (q2- 1)-subset of 5, with all its
lines colored blue.

If (I-b) holds, then this (q,- 1)-subset together with v
forms a qz-subset of S with all its lines colored blue. Hence S
contains either a @fsubset with all its lines colored red or a
qa—subSGt with all its lines golored blue. This shows that P2(S)
has no (ql,q2 ; 2)-partition.

Case IT : If n; > N(q -1, 4, 3 2) , then either
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(ITI-a) there exists a (ql- 1l)-subset of Sy with all its

lines colored red, or

(II-b) there exists a qa—subset of Sl with all its lines
colored blue.

If (II-a) holds, then this (q;= 1)=subset together with
v forms a ql-subset of S with all its lines colored red. Hence
S contains either a ql-subset with-all its lines colored red or a
qznsubset with all its lines cdlored blue.

In any case we sce that PZ(S) has no (ql,qa; 2)-partition.

Hence N(ql,qa;z) < N(ql-l,q2;2) + N(qp99,5-15 2).

Q.EeDo
kPR ENS
3e¢3+3 Corollary N(ql,q2;2)5' 4,1 for all dy19, such
that  q;> 2, q,> 2.
Proof : Let S = { (ql,qa)/ 4y > Z) Ay > 2 s and
4+ 4p=2
ql- 1

T £ S. Ve shall apply Theorem A~l of the appendix to show that

T = S, By Lemma 2,5.2 and Theorem 2.4,2, we have N(ql,2;2) = q

9 42
and N(Z,qz; 2) = d,. Since (ql" l) = q, and ( 1 ) = 4,
Hence we sece that
(1) if q; = 2 for some i, then (qy, q2) belongs to T.
To verify that T has the property (2) of the hypothesis of

Theorem A-l, we assume that qq D, 24 a5 > 2 are any positive

integers such that (ql- 1, q2) and (ql,qa- 1) belong to T,i.ec.



(g,=1)+q -2
N(ql'l’qz; 2)‘é ( L . )

\ (gq=1)-1 /
ql+(q2-1)-2
and N(ql,q2~1;2).$ .
ql-l /

(
Thus N(ql-l,q2;2) + N(ql,qa-l;a)é(

(g =1) + g,= 2 + (g=-1) - 2
Bt ( 1 2 ) } ( b5 P )

qy-1)+q,~2 ) ) (ql+(q2-])—2

(g= 1)- 1 a,- 1
(q;+ a,- 3)! (ay+ qy= 3)!

= +
(ql-Z)!(qa-l)! (ql-l)!(qz-z)!

(ql+ q2- 3)! [(ql-l) + (qu l)]

(ql-l)! (qz- 1)t

(q1+ 5= 2)8

(q,-1) (q,~1 )%

Ql+ qa' 2 )
ql— X

‘

H

From Corollary 3.3.2 we have
N(qy+a,532) € N(gy-1, a55 2) + N(a,a5-15 2).

ql+ q2-2

Hence N(ql,q252)<§
ql"l

) + Therefore, (ql,qz) belongs

to Te Thus T = S. Hence

ql+ qz- 2
N(ql,qa;Z)\( for all q,> 2, q,> 2.

q1~ 1

QeEeD,

26
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3.3.% Remark If we let P(f) denote the statement

1]

_ (q1+ q2+7..+ ay - Iy
h (ql-l)i(qz-l)ﬁ...(ql-])!

RUCIEL YRR PR 12 . Then the

above Corollary 3.3.3 says that P(2) holds. By using Theorem
A=1 of the appendi#, it can be shown that P(k) implies P(k + 1),
The proof of this implication is similar to that used in the
proof of Theorem 2.5.3. Hence P(?) holds for all { >2, i.c. we
have

(ql+ q2+...+ql-ﬂ )i

2F < for all
1 (ql-l)!(qa—l)i...(qi-l)s

N(qliqzi"'lq

L>e.

3.3.5 Theorem If N(ql—l,qz;z) = 2m and N(ql.q2—1;2) = 28,
then N(qi,qz;z) < 2m 4 2n. .
Proof | Let S be a set of 2m + 21 - 1 points. We shall show that
PZ(S) has no (ql,q2;2)-partition. Let (El’EB) be any partition

of PZ(S)M This partition induces a chromatic graph ((S’El)’(S'EZ))'

For each point A let r bA denote the numbers of red lines and

A?
blue lines which are incident with A.

First, we shall show that there exists & point A such that
rA¢= 2m - 1, Assume the contrary. Hence all points A are such
that T, = 2m - 1. If we cut each red line into two half lines,then
each point is incident with 2m - 1 red half lines. Hence there are
(2m+2n-1)(2m-1) red half lines. This calls for an odd number of red

half lines. But since each line has two half lines, the number of

red half lines is required to be even. Hence the case r, = 2m - 1
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\. 4 LS -‘,»‘:\‘:'r 0
N )". "! »
can not hold for each péints of K2m+2n-1 . Observe that
T+ bA = 2m+2n=2. It follows that if rA<:2m-1, then bﬂ>- 2n-1,
4 $ ;-
Thus there exists a point A of K2m+2n-1 such that T, > 2m=1 or

bA> 2n-1,

Case I : Assume that r> 2m-1, Hénce r, > 2m., Let 81 be the set
of points that are joined to A by red lines., Therefore, the number
of points in 5y is greater than or equal to 2m = N(q;1, a5 3274
Hence either

(I-a) there exists a (q,~1)= subset of §, with all its lines
colored red , or

(I-b) there exists/a q,= Bubset of 5, with all its lines
colored blue.

If (I-a) holds, then this (q;1)-subset together with A forms
a qq-~ subset of S with all its lines colored red., Hence S contains
a qq- subset with all dits lines colored rved or a A= subset with

all its lines colored blue.

Case II : Assume that bA> 2n-1., Hence b, s 2n. Let S, be the set

2

of points that are joined to A by blue lines. Therefore, the number
of points in 52 is greater than or equal to 2n = N(q1,q?—1;2).

Hence either

(II-a) there exists a qq= subset of S, with all its lines

2

colored red, or

(II-b) there exists a (g5=1)~ subset of 5, with all its lines

colored blue.
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If (II-b) holds, then this (qa- 1)-subset together with
A forms a q2-subset of S with all its lines colored blue. Hence
S contains either a ql-subset with all its lines colored red or
a qa—subset with all its lines colored blue.
In any case we see that PZ(S) has no (ql,qz;a)-partition.
Hence N(ql, dps 2) < 2m + 2n = 1. Therefore ,
. N(ql, A3 2) < 2m + 2n.

QeEaDe

3.4 Special Values for N(qll“ﬁaiwé)

In this section/we shall determine the values of the

Ramsey numbers N(3,332), N(3,4;2), N(3,5; ) and N(4,4;2),

3e4.1 Theorem N(3,733.2) = 6,

Proof : This is already done in Chapter I.
Q.EQD.
3.4.2 Theorem N(3, 43 2) = 9 and N(3, 5; 2) = 1k,

Proof : By Lemma 2.5.2 and Theorem 2.4.2 we have
N(2, 45 2) = 4, N(2, 5; 2) = 5. By Theorem 3.4.1, we have
N(3,3;2) = 6. It follows from Theorem 3.3.5 that N(3,43;2) < 10,
i.e. N(3,43;2) < 9. Hence, by Corollary 3.3.2, N(3,5;2) < 1k.
First, we shall show that N(3,5;2)> 13, Let (F, +, ) be the
field of residue classes modulo 13, i F = GF(lB). Observe that
H ={l.5,8,12k is a multiplicative subgroup of F such that h & H
implies that - h € H, Let us label the points of K

“ 15
elements of F and its lines by the 2 - coloring induced by H.

by the
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Since h1— h2 A1 for all h1, hZE He It follows from Corollary 3.2.4
that there Qxists no 3-subset of F with all its lines colored red.

Next, we shall show that there exists no 5~subset of F with
all its lines colored blue, Suppose that there exists some 5-subset
{a,b,c,d,e} of F with all its 1i£es colored blue. Then all a-b, a-c,
a-d, a-e, b-c, b-d, b-e, c~d, c=-6 and d-e are not in H. So all '
0-(a-b), O-(a=c), O-(a=d), O-(a-e), (a-c)-(a-b),(a-d)-(a-b),(a=e)=(a=b),
(a-d)-(a=-c),(a~e)-(a-c), and (a=e¢)=(a«d) are not in H, Therefore, the
5-subset S = 50, (a-b),(a-c),(a-d),(g-e)§ has all its lines colored
blue. For convenience, let /A/= (a-b), B = (a-c), C = (a=~d), D = (a=e).
Hence S = %O,A,B,C,Df ./ $6/411 &,B,C,DysA-B, A=C, A<D, B=C, B=D, C=D
are not in H, :

Suppose that 2 € S, - Then 3,7 and 10 are not in S. Thus only
4,6,9 and 11 can be in S,

If 4 €8, then 9 ¢ 5. It follows that the only possible
elements of S are 0,2;h,6,11. Hence S = {0,2,Q,6,11 E. Observe
that 6,11 are in S, Thus 11=6 = 5 ¢ H, which is a contradiction.

Similary, we can show that each of the followings 6 & 3, 9 € S,
11 &€ S \leads to a contradiction. Hence the supposition that 2 € 8
leads to a contradiction., Therefore, 2 & S,

Suppose that 3 € S, Thus 4,71 are not in S, Therefore, only
6,749,710 can be in S.

If 6 &-S,lthen 7 ¢ Se. 1t follgws that the only possible elements
of S are 0,3,6,9,10. Hence S = §0,3,6,9,1o %. Observe that 9,10

are in S, Thus 10-9 = 1 4 H, which is a contradiction,
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Similary, we can show that each of the followings 7 € S,
9 € Sy, 10 € 8§ leads to a contradiction. Hence the supposition that
3 €S leads to a contradiction. Therefore, 3 ¢ S.

Suppose that 6 € S. Thus 7411 are not in S, Therefore, only
4,9,10 can be in S. Hence S = %0,4,6,9,10 }. Observe that 9,10 are
in S. Thus 10=9 = 1 ¢ H, which is a contradiction. Therefore, 6 ¢ Se

Suppose that 9 € S, Thus 10 $ S. Hence only 4,7,11 can be
in S, Therefore, § = { 0,4,7,9,11$ . Observe that 4,9 are in 5.
Thus 9-4 = 5 € H, which is a contradiction. Therefore, 9 %ys.

Hence S must be { o,u,7,1o,11% . “Thus 11=10 = 1 % H, which
is a contradiction. The;efore, there exists no 5-subset %O,A,B,C,D}
with all its lines colored blue., ' Hence there exists no 5-subset of F
with all its lines colored blue., Thus no 3%-subset of I' has all its
lines colqred red and no 5~subset of I has all its lines colored blue.
Therefore, N(3,5;2) >13, Hence we have N(3,5;2) = 14,

It follows from Corollary 3.3.,2 that
N(3,5;2) <N(3,4;2)+ N(2,5;2). Thus N(3,432)>9. Therefore,
N(3,4352) = 9.

QeEdDe,
3.4,3 Theoren N(4,Lk32) = 18,

Proof : It follows from Theorems 2.4.1 and 3.4.2 that N(3,4;2) =
N(Lk,332) = 9. Hence, by Corollary 3.3.2, we have N(4,4;2) < 18,

We have to show that N(k,432) >17, Let (F,+,°) be the field of

residue classes modulo 17, i.e. F = GF(17). Observe that

o= %1,2,4,8,9,13,15,16% is a multiplicative subgroup of F such that
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h € H implies that -«h € H. Let us label the points of K., by the

17
elements of F., Let the lines of K, be colored by the 2-coloring

17
induced by H,

Next, we shall show that there exists no 4-subset of F with all
its lines colored by the same color. Suppose that there exists some
Lesubset {a,b,c,d of F with all its lines of one color. By the sanme
argument as in the proof of Theorem 3.2.35 we sece that there exist A,B
belonging to F such that the Qgsubset {O,1,A,B% has all its lines of
one color. Then all of 1,A;B,1~A,;7=B and A-B are in Hor all not in H,.
Since H contains 1, hence all/ /of 1,4,B41-1,1-B and A-B are in H,

In order that both A and 1<) are in H, Amust be 2 or 9 or 16, By the

same reason, B must be 2 or 9 or 16, Hence the only possibilities

are {A,B} = {2,9} or %2,16% or (9,16{ « In any case we see that

A=B 4 He Thus there exists no A,B €F such that the h-subsetiO,1,A,B
‘ (

has all its lines of one color. Hernce there exists no A-subset of F

————

with all its lines colored by the same color. Thus N(k,4k;2) > 17,
Therefore, N(4,432) = 18.

QeE.D.

[,

3.5 On the Ramsey Numbers N(3,3,.004332)

In this section we shall determine the values of the Ramsey
numbers N(3,3,33;2), N(3,3,3,332).
For convenience, we let t, = N(q1,q2,...,qx ;2), where

q; =3 for all i = - PP 3
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34547 Theorem ty.q S (X+1)(tl-1)+2.

Proof : By Theorem 3.3.1, we have

/ / ’
t2+1 = N(3,540004552) < qq+ Qpteset Q) g = ((f+1)-2) where
q/1 = N(2,3,o'o’3;2)g
/
q2 = N(},Z,},...,};Z),

!

qi+1 = N(B,..f'B'a;z).
It follows from Theorem 2.4%.,17and 2.4.2 that

Q1 = Ay = eeee = QY g o7 £ty « Therefore,
t < (:{(+’I)tl - L(L+1)=2)Y, “Hencé thq < (Q+1)(t£-1>+a.
Qn .Do
3.5.2.Theoren  f O T - R — L |

Proof : By Theorem 3,5.1, we have N(3,3,3;2) < 17. DNext, we shall

show that N(3,3,3;2) >16. Let (F,+,¢) be the field of 16 elements.,
1

' can be taken to be the residue class ring J[x] /(x+- x - 1),

where J = GF(2). The elements ole are 0,’!,x,x2,x3,1+x,1+x2,1+x3

5 3 2.3 3 2 .2 >

s r: 2 2
g X+X 4 X+X 4 X 4%, T4x +x7, x+x +x7, 1+xX+x +x7,

3 2

Observe that H = %1, X7, X+X7, x2+x3, ’I+x+x2+x3 l is a multiplicative

?

1+x+x2, T+x+x

subgroup of F such that h & H implies that -h € H., Note that H has
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3 cosets 1H, xiH, sz. Let us label the points of K16 by the elements
of Fe Let the lines of K16 be colored by a coloring induced by H,

Since hy- h, £ 1 for all h,y h, € Ho It follows from Theorem 3.2.3
that there exists no 3-subset of F with all its lines colored by the

same color., Thus N(3,3,3;2) > 16, Hence we obtain N(3,3,3;2) = 17,
Q.%.D.
3.5.3 Theorem M <N(343,3,352) < 66.

Proof : By Theorem 3.5.7, we have N{3,3,3,3;2) < 66. Next, we shall
show that N(3,3,3,332) > W/ Let (¥,+,+) be the field of residue
classes modulo 41, i.ed ¥/ & GF(41), Obscrve that

H = f1,4,10,16,18,23,25,31,37,40‘ is a multiplicative subgroup of F
such that h € H implies that ~h €& H, Note that I has 4 cosets 1H, 2H,
3H, 6H, Let us labelithe points of K) 4 bY the elements of I'. Let the
lines of K)q be colorediby a coloring-induced by H., Since h,- h2 A1

for all h h2 € He It follows from Theoren 34243 that there exists

'l!
no 3-subsgt of I' with all its lines colored by the same colbr.

Therefore, N(3,%,3,3;2) > 41, Hence we obtain 41 < N(3,%,3,3;2) < 66.

QeL.D.




	Chapter III On the Ramsey Numbers N(Q1,Q2,..., Qf ; 2)

