CHAPTER II /// =

METHOD OF ANALYSIS

2.1 Proposed Deflection Function for Case 1

Taking the co-ordinate axes as shown in Fig.l and in view of
symmetry with respect to x and y axis, an approximate solution can be con-
structed by assuming the deflection function in the form of polynomials of
even degree as follows.
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Rotate the co-ordinate axes by 60 , w becomes, in terms of £ and n,
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and £,n denote the rotated co-ordinate axes. From Fig. 1, it is seen that
the deflection surface of the plate is also symmetrical with respect to the
E- n axes, hence only even functions of £ and n in the expression (2) are
kept. Therefore, the following results can be obtained.
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Substituting eq. (4) into the expression (1) and rearranging, one has

w =c, +cC, (X + y°) * C4(x2+y2)2 +C, (- 15057 oo 1aaft. oF)

The remaining four constants in eg. (5) must be so chosen that
the deflection function satisfy the boundary conditions and the equilibrium
equation. Consider one 6f the edges of the hexagonal plate, the exact

boundary conditions are
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To facilitate the solution, the boundary conditions (7) and (8)

are replaced by the vanishing of the total bending moment and the total

effective transverse shear force.
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Now, three of the remaining constants can be found by forcing the

deflection function to satisfy the

Substituting eq. (5) into egs. (6),

algebraic equations as follows :

boundary conditions (6), (9) and (10).

(9) and (10) yields three simultaneous
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Then the proposed deflection function becaes
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2.2 Solution for Case 1.

In terus of cartesian co-ordinates, the well-known differential

equation of bending of plates 18(2)
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where w = small def lection of the plate in the z-direction
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D = the flexural rigidity of the plate

Substituting eq. (20) in eq. (21), the coef ficient C1 can now be

determined as
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Cor :
1 540 Y, D

Upon the substitution of Cl' k, m and n into eq. (20), one obtains

the approximate solution of uniformly loaded hexagonal plates.
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The expression for the bending moment, twisting moment, shearing
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forces and effective transverse shear forcec are
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2.3 Proposed Deflection Function for Case 2.

The proposed deflection function of the hexagonal plates supported
at the corners and loaded at the center will now be constructed by assuming

the deflection function in the form
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The co-ordinate axes are located as shown in Fig. 1. The logarithmic

terms have been included in view of the singularity at the center of the

plate. By rotating the co-ordinates axes through an angle of 60" eq. (31)

becomes :
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From Fig., 1, it is seen that the deflection surface of the plate

is also symmetrical with respect to the £-n axis, hence only even functions

of £ .and n in the expression (32) are kept. Therefore, the following

results can be obtained
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Substituting eq. (33) into the expression (31) and rearranging, one has
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By employing the boundary conditions in egs. (6), (9) and (10)

the following three simultaneous algebraic equations are obtained as:
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or in the forms of egs. (17), (18) and (19), the constants k, m and n are

| 160[71I_§ i RO | 2%
3 5 +.31n (m 3)v -(5 + 3ln'/3)le

e ¢ 5
B i ] TSN ) v‘] 22 .
27 | /3 2 V3 2
2% 3029 2
2 [ s et PR ]
m = 73R 0B 3 (43)
128 531 33 _ 491 %7 3 2] 6
27 [3 F e %" g ’
% 2
K- e 16 [5 + 4v v ] 1 (44)
128 r 539 | 33 491 _ 7 87 o 2
—-27 [73— 2 v3— 45)v 2 Vv ] a
Finally the proposed deflection function becomes
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2.4 Solution for Case 2.

The energy method will be used to find the solution for the case

of a concentrated load applied at the center of the plate. The strain energy

in pure bending of the plate is
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Substituting eq. (44) into eq. (45), one gets
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To facilitate the solution, the integration limits of the loYarithmic
terms shall be replaced by those of a c1rcu1ar plate of equal area, i.e.
4 a and 1. Transformation from cartesian co-ordinates to polar co-

6
ordinates is accomplished by the following relationships.
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The potential energy due to the concentrated load P is
it b e LG (50)

therefore the total energy of the system for concentrated load P applied

at center is
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The coefficient Cl can now be determined by taking the derivative

of eq. (51) with réspect to C, and equating the result to zero. Hence one

1
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The expressions for the bending moments, twisting moment,
shearing forces and effective transverse shear force are
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The corner force is

R = Z(Mxy)a, 4
V3
For - v = 0,3
K = 0.1447 P (59)
which does not agreé with the equilibrium requirement, R = g:,because of

the approximate boundary conditions on bending moment and effective transverse
shear force. The other reasons are probably due to the energy method and

the selected deflection function which can not describe the behavior of the
plate under the concentrated load accurately, The total potential energy is

not minimized exactly. However, it will be shown later that the proposed
solution yields reasonable agreement with the experimental results, even

though the proposed approximate method of solution does not satisfy equilibrium

exactly.
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