CHAPTER 4

APPLICATIONS

In this chapter we show that the limit theorem on the distribution of interactive quadruples a two-by-two table, as considered in [1], is a special case of our Theorem 3.3.2. Furthermore, we shall show that our theorem can be applied to obtain asymptotic distribution of certain non-parametric statistics.

4.1 DISTRIBUTION OF INTERACTIVE QUADRUPLES IN A TWO-BY-TWO TABLES

In [1], Arom consider independent identically distributed continuous random variables X_i , Y_j , Z_k and W_1 , for $i=1,\ldots,P$, $j=1,\ldots,Q$, $k=1,\ldots,R$, $l=1,\ldots,S$ and define I and J to be the numbers of quadruples (X_i,Y_j,Z_k,W_1) such that $X_i>Y_j$, $X_i>Z_k$, $W_1>Y_j$, $W_1>Z_k$ and $X_i< Y_j$, $X_i< Z_k$, $W_1< Y_j$, $W_1< Z_k$ respectively. It was shown that the joint distribution of $\frac{I-E(I)}{\sqrt{Var(I)}}$ and $\frac{J-E(J)}{\sqrt{Var(J)}}$ tends to a bivariate normal distribution as P, Q, R, S tend to infinity. We shall show that our Theorem 3.3.2 is applicable to this situation with a milder assumption.

Let

$$x_1, \dots, x_p$$
 y_1, \dots, y_q
 z_1, \dots, z_K
 x_1, \dots, x_p

be independent random variables such that the random variables in each row are identically distributed. Define

$$f_{1}(x,y,z,w) = \begin{cases} 1 & \text{when } x > y, x > z, w > y, w > z, \\ 0 & \text{otherwise}, \end{cases}$$

$$f_{2}(x,y,z,w) = \begin{cases} 1 & \text{when } x < y, x < z, w < y, w < z, \\ 0 & \text{otherwise}. \end{cases}$$

Let
$$U_1 = \sum_{l=1}^{S} \sum_{k=1}^{R} \sum_{j=1}^{Q} \sum_{i=1}^{P} f_1(X_i, Y_j, Z_k, W_l)$$

and
$$U_2 = \sum_{i=1}^{S} \sum_{k=1}^{R} \sum_{j=1}^{Q} \sum_{i=1}^{P} (X_i, Y_j, Z_k, W_1)$$
,

then $U_1 = I$, $U_2 = J$. By Theorem 3.3.2, we can conclude that $\frac{U_1 - E(U_1)}{\sqrt{\text{Var}(U_1)}}$ and $\frac{U_2 - E(U_2)}{\sqrt{\text{Var}(U_2)}}$ have a bivariate normal distribution when P, Q, R, S tend to infinity, hence $\frac{I - E(I)}{\sqrt{\text{Var}(I)}}$ and $\frac{J - E(J)}{\sqrt{\text{Var}(J)}}$

have a bivariate normal distribution when P, Q, R, S tend to infinity.

4.2 A BIVARIATE EXTENSION OF THE U STATISTIC

Let X, Y and Z be three random variables with continuous distribution function F, G and H. Whitney [3], propose a test of the hypothesis

$$H_o: F = G = H$$

against the alternatives

$$H_1 : F > G, F > H,$$
 $H_2 : F > G > H,$

or

by using two statistics U, V. To test such a hypothesis with a sample of 1 X's, m Y's and n Z's from three populations, we arrange the sample values in ascending order and let U count the number of times a Y precedes an X, and V count the number of times a Z precedes an X. The proposed tests use $U \leq K_1$, $V \leq K_2$ and $U \geq K_3$, $V \leq K_4$ as critical regions for testing H₀ against H₁ and H₂ respectively. The constants K₁ are chosen to give any required significance level. We shall use Theorem 3.3.2 to show that the joint distribution of $\frac{U-E(U)}{\sqrt{Var(U)}}$ and $\frac{V-E(V)}{\sqrt{Var(V)}}$ tends to a bivariate normal distribution when

1, m, n tend to infinity.

Let

$$X_1, \dots, X_1$$
 Y_1, \dots, Y_m
 Z_1, \dots, Z_n

be independent random variables such that the random variables in each row are identically distributed. Define

$$f_1(x,y,z) = \begin{cases} 1 & \text{when } y < x, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$f_2(x,y,z) = \begin{cases} 1 & \text{when } z < x, \\ 0 & \text{otherwise,} \end{cases}$$

put

$$U_1 = \sum_{k=1}^{n} \sum_{j=1}^{m} \sum_{i=1}^{1} f_1(x_i, y_j, z_k)$$

then

$$U = \frac{U_1}{n}$$
 and $V = \frac{U_2}{m}$

By Theorem 3.3.2 we can conclude that
$$\frac{U_1 - E(U_1)}{\sqrt{Var(U_1)}}$$
 and $\frac{U_2 - E(U_2)}{\sqrt{Var(U_2)}}$

have a bivariate normal distribution as 1, m, n tend to infinity, but

$$\frac{U_1 - E(U_1)}{\sqrt{Var(U_1)}} = \frac{nU - E(nU)}{\sqrt{Var(nU)}}$$

$$= \frac{nU - nE(U)}{n\sqrt{Var(U)}}$$

$$= \frac{U - E(U)}{\sqrt{Var(U)}}$$

and

$$\frac{U_2 - E(U_2)}{\sqrt{\text{Var}(U_2)}} = \frac{\text{mV} - E(\text{mV})}{\sqrt{\text{Var}(\text{mV})}}$$
$$= \frac{\text{V} - E(\text{V})}{\sqrt{\text{Var}(\text{V})}},$$

hence the joint distribution of $\frac{U - E(U)}{\sqrt{\text{Var}(U)}}$ and $\frac{V - E(V)}{\sqrt{\text{Var}(V)}}$ has a bivariate normal distribution as 1, m, n tend to infinity.

Observe that Theorem 3.3.2 can be applied to the case of k+1 populations as well. For each i, i = 1,...,k, let X_{ij} , $j = 1,...,n_i$, be sample from the ith population with distribution function F_i . The above test of H_0 against H_1 can be generalized to testing

$$H_0: F_0 = F_1 = F_2 = \cdots = F_k$$

against the alternative hypothesis

$$H_1: F_0 > F_1, F_0 > F_2, \dots, F_0 > F_k$$

To test the hypothesis with a sample of l_i X_{ij} s we arrange the sample values in ascending order and let U_i be the number of times an X_i precedes an X_0 , for $i=1,\ldots,k$. We can conclude that the distribution of $\frac{U_i-E(U_i)}{\sqrt{\text{Var}(U_i)}}$ for $i=1,\ldots,k$, tends to a k-variate normal distribution as l_i 's tend to infinity.