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CHAPTER 2
PRELIMARIES G2

2.1 DEFINITION AND WELL-KNOWN RESULTS

The purpose of this chapter is to give necessary background

on probability theory needed in this work., By a probability space

we mean a triple (fl,gf, P), where
(1) 52 is a set called sample space.
(2) gg is a Borel /field of subsets of fL ,
i.e. E;. is a non-empty family of subsets of SV such that
(2-1) ifEeg,,thsnE €§,
(2-2) if E, e & Tona E,€ & » then ELJE, Gﬁ,

(2=3) if E;3E_,.ss is a countably infinite sequence of
1 2

o
sets belong to qg s then U E_ € §} :
n=1

(3) Pisa prgbability measure on gg,
i.e. P is a function from €§ into the set R of real number
such that .

(3=1) For any E € §§ s P(E) a’O;

(3-2) For any sequence of disjoint sets En€ g;,

n = 1’ 2,-.., we ha.ve

o0

o0
P E) = 3 P(E) .

n=1 n=1



(3-3) P(SY) = 1. S e
0% i
Any set in will be referred to as an event., If E is an
event, i.e. E € ég y the value of P at E, i.e. P(E), will be called
'the probability of the event E,

Now R(k) will be used to denote the set of all k-tuples of

real number. If a = (a,,,..., ak) € R(k),' b = (b‘l""’ bk)e R(k)
we define a § b to mean ai § bi for all i and define a ¢ b to

mean a, € b, for all i,
i i ]

-

The set ‘{x /% € R(k) and a< x ¢ b | will be denoted by
(a,b] , and the set { ¥ /'x € R(k) and x § a } will be denoted

by I&.

By a random vector X we mean a function X : §1 — R(k)

such that for any real number a = (a1,..., ak) € R(k), the set

{w /w(’ﬁ, X(w)'€ Ia}€g. For the case X : Sl -%3R we call

X a random variable,

For each random vector X we define a function

Fy R(El;q R by Fy(x) =, P({w / x(w) €1, DR Fy will be called

the distribution function of X. Note that if

xw) = VW, X,
(1) (k)

(1) :f =+ R is a random variable. Hence X geeey X

then each X

is also known as the joint

(1) (k)

distribution function of the random variables X geeey X R

are k random variables. The function Fx



If there exists a non-negative Lebesque-measurable function

(k)

f : R"~e—3 R such that

F(x1,-oo. xk) = J LY ( f(x1,...,xk)dx1... dxk ’
IX

we say that f is a density function of F. When this is the case,

k
2§F(x1,..., xk)
axk eee ax,l

we have = f(x1,..., xk) , at any point where

f is continuous, /

For any random vector X, the family ;) of all subsets

(k)

S' of R such that” X~ (5%) € §§ form a Borel field of subsets

/
ot R, 1¢ ye detine /bt by P(s") = P(x™(s')) then (R¥ Cg' Pt}

[
form a probability space. If g : R(El—ﬁ R 1is any measurable

/
function which is integrable on S' € Q% with respect to the

measure P' we have

/( g(X(1),.., X(k))d P o= 8(x 4000, xk) d p' .,
% . ¢

In case S' is of the form (a,b) and g is Riemann integrable we have

bk b1
g(x1,..., xk)d P! = df sieis Jﬁ g(x1,..., xk)dF(x1,..., xk).
St a, a,

If the integral )[ g(X(1),.., X(k))dP exists, and is finite we define

S
the expectation of g(X), denoted by E [g(X)], by



gx{V L xyg p

E [g(X)]

o = ° = i h
Let gp(x1, . Xk) X, If/xjé E [gp(X)] exists for eac

P =100y k, we define/lj = g‘ﬁ,.o,/(é) to be the mean vector of X,

Furthermore, if = E (X)= A ( (X)-/ij- exists for each
: G;q [(gp /Aé €q q J
Py @ = 14500, k; we define the matrix E: = ((;pq) to be the

covariance matrix of X. In general, if the expectation

k ej]
E { T (gj(X) - aj) exists, it will be called a product moment
j=1

of X about a = (a,,+., d/) of order n = e ,+... + €. « Note that
13 k 1 k

each G;pq is a product moment about the mean vector of order 2.

/
We shall use the symbol //QL > (F) to denote the product moment
1... k

k

€.
E (qT(gj(X));b of any -random vector with distribution function F.
J=1 /
In the case k = 11/11;(F) denote the eEE moment about the origin

of X.

DEFINITION 2.1,1 A random vector X =(X1,..., Xk) will be said to

have a non-singular normal distribution if it has a density function

1. .
-EQ(x1,...,xk)

of the form f(x1,.., xk) =c e , where Q(x1,,a, xk)

: -
= a,.(x,- b.)(x,- b,) is a definite positive quadratic form.
g; é; % A S A B ¥ .

It can be shown that the mean vector’/Ll = (b1,.., b, ),

k
-
the covariance matrix E: = (ngj) is related to A = (aij) by A =Z:



and the constant ¢ is given by ¢ = — e

Hence the distribution function of non-singular k-variate

normal distribution has the density function

1]
BN A UCKYSY
J 1

1
f(x,],oogjck‘) = —T—xe ?
CORYON
where 6ij is the ij = entry of E‘E1

Note that for the case of k = 1, the density function of a

_1(E:4ét)2 2
random variable X is/ f(x) = ' ¢ 2 © , where/LIand &
27

denote the mean and variance of X.
Normal distribution with mean O and variance 1 will play
an important role in the sequel., We shall refer to it as the

standard normal distribution.

DEFINITION 2.1.2 The characteristic function of a random vector

1t.X)'= e oeX dP, where i = 451 ,

(k)

X is defined as (0(1:) = E(e
R

(k)

t € R and teX = t1x1+...+ thk o

It can be shown that the characteristic function of the

k-variate normal distribution with the above density function is

k

k
- 1
W (t1’-.’tk) = exp(l I‘);_:]/,étp - '2’ Z 6p t t ) .



In the case of k = 1, the characteristic function of the
Vo2
—é't
standard normal distribution is Qﬂ(t) = e .
We can obtain the moments of the standard normal distribution by
' th

differentiation its characteristic function., We find that its m—~

order moment is given by

(
0 if m is odd integer ,
/(/(m - < mi
m " . .
= : if m is even integer .
2
2%y
C 2
DEFINITION 2.7,3 Let {Xn} be a sequence of random vectors. If the

corresponding sequence {:Fn} of distribution functions converges to
a distribution function F at every continuity point of F, we say that

{,Xnﬁ converges in distribution to F. In this is the case we shall

D

write Xn~—9'F or Fﬁ——-aF.

DEFINITION 2,1.4 A sequence of distribution function {;Fn} is said
to be convergent, if there is a function F such that

lim P (x) = F(x)
n—oo 0

at every continuity point of F,.

We then always find that F is a non-decreasing in each variable
xi and 0& F(x) $ 1, but it is not necessarily a distribution
function. Note that a sequence {]ﬂl) may be convergent without

converging to a distribution function.



10

We state without proofs two important theorems on characteristic

functions. For their proofs, we refer to [2].

THEOREM 2,1.1 (Uniqueness Theorem)

If X1, X2 are random vectors having distribution functions
F1 and F2 respectively, and characteristic functions 462 and <z72

respectively, a necessary and sufficient condition for F. = F is

1 2
that 452 = Q?a .

THEOREM 2.1.2 (Continuity Theorem)

Let {Xn} be a sequence of random vectors with corresponding
sequence of characteristic functions {(Z%}. A necessary and
sufficient condition for {Xn} to converge in distribution to a
distribution function F is that the sequence{({%% converges to a
limit QO, which is continuous at (0,...,0).

Under these conditions 957 is identical with the characteristic

function of F.

202 RESULTS ON DISTRIBUTIONS FUNCTIONS OF RANDOM VARIABLES

In this section we shall assume that all distribution functions

under consideration are distribution functions of random variables,

THEOREM 2.2.71 Any sequence {Fn} of distribution functions has a
subsequence which converges to a non-decreasing function which is

continuous to the right.
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Proof Let {rn} be the enumerable set of all positive and negative
rational numbers, inclﬁding zero, and consider the sequence of real
numbers {Fn(r1)} . Since {Fnﬁr1) } is bounded, it contains a

convergent subsequence. Hence there exists a subsequence { Fn'} of
k

{F};X that converges at Toe By the same argument, we find that

{Fn'i contains a subsequence {F'# & which converges at r, and Tse
k

Keep going on, we get { an \ which is a subsequence of { Fnoi that
k k
converges at r1, r2 and r3. Repeating the same procedure, we obtain

successively the subsequeéence |F I\, Ful, F#\,.0., where F(i)
' Tk Pk Pk

is a subsequence of F(l-1) and F(l) converges at r_, r_jyeceqor.e
n n 1 2 i
k k ]
Define Fn = Fyv P PFwy, ' F = FAH yeeey we see that
R - N I

Y0 3/ i i

{Fn % is a subsequence of .{Fn .. Pat 1lim F_ (r,) = ¢ for
k .
i 1y 24064 then .{ci} is a bounded sequence, and since every Fn

is a non-decreasing function, it follows that we have cigck as soon

Now we define F(x) = greatest lower bound of c; for all r, 3 X,
It then follows directly from the definition that F(x) is a bounded
non~decreasing function., We shall now show that at every‘continuity

point x of F we have

lim P (x) = F(x),
Vo0 V

so that the subsequence { Fn s is convergent.
k
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If x is a continuity point of F we can, in fact, choose h% O
such that for any given €) O, the difference F(x+h)~-F(x-h) < € .
Let r, and r, be rational points such that r € (x~h,x) and rk€ (xyx+h),
so that

F(x=h) £ ey £ F(x) £ ¢ € Flx+h) o

k =

Further, for every Y we have

<
Fo(r) A SRR

As ¥/ tends to infinity, P _ (r.,) and F_ (r ) tend to the limits
» ny i ny k
cs and Ch respectively, The difference between these limits is smaller

than € , and the quantity F(x) is included between ci'and ¢+ Since

€ is arbitrary, it follows that = lim F (x) = F(x)o Thus the
J/_)oo B
subsequence {Fnk} is convergent.

THEOREM 2,2.2 Let {Fn} be any sequence of distribution functionse.
/
If//té(Fn) <k <99 for all n, then any convergence subsequence of{Fn}

converges to a distribution function,

Proof We have, for any x> o,

a0 oD
-X
© 2
an(x)+x° ] an(x) »
X

- QO o}

/
K >/u2(Fn) = xzan(x) > xi

Therefore, we may write

K
x2 > Fn(-xo)+ 1 - Fn(xo) 3 n = 1, 2,... .
(o]
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For a given £ > 0 s we can therefore choose xo) 0O so that
1 - [F (x)-F (-x)] <& for x> x_ and for all n.
n n o)

Let {Fn i be a convergence subsequence of'{Fn} which converges

to a non-decreasing function G(x) at all of its points of continuity,

Then clearly for x ) x, we have 1 - [G(x) - G(-X)J < €, that is

lim  [a(x)= 6(-x)] = 1, 51466 G0~ G(=9 = 1 and GE9) <1,

X 00

G(=) > 0. If G(~=9 > 0 or G(9) € 1 then G@0)- G(~=o9) < 1, which
is a contradiction. Hence G(-99 = 0 and G(@0) = 1. Therefore G(x)
is a distribution function., Hence the convergence subsequence of {Fn}
converges to a distribution function.

The following theorem is an immediate consequence of Theorem 2.2.1

and Theorem 2.2,2,

THEOREM 2.2.3 Let F be any sequence of distribution functions,

If,/(/(F ) { K £ for all n, then { n} has a convergence

subsequence,
THEOREM 2.2,4 Let F, F :n =7, 2,..., be distribution functions
’

such that /C( (F ) //( (F) and lim /Um(Fn) existe If {Fn} converges to F,
n—s

then 11m /KX (F ) = //élm(F).

Proof Since for any K3 O

oo
} ]xmd F_(x) - x'd F(x)
- o0

- o0




TR T
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where

=
n

K
1 fj x"d Fn(x) - f x"d F(x)
i -K

-K

5 [f x'd Fn(x) } .

Ey

Ay = ’[xmdF(x)’ ,

B

=
n

and EK is the set of 'values of x for which (x| > K. It follows

from Schwarz's inequality that

A% < fxamd F, (x). JaF (x) ,

B Ey

/

both integrals being non-negative. Since lim /Abgm(Fn> converges,
n— o0

there exists a constant Mi > O which bounds the first integral for

D

all n and K. Since Fn—n*e F , the second integral on the right,

and hence A2 can be made arbitrary small for all n by choosing K
sufficiently large.
' 4
Since‘/lx;(F) is finite, A3 can be made arbitrary small by K
sufficiently large,
Jﬁ /
Since F (x) =— F(x) and both /(.ﬁl(Fn) and

/

//b%(F) are finite, it is evident that for any fixed K, A1 can be made



I‘.
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arbitrary small by choosing n sufficiently large.

oL o0
Hence  lim ' x"d Fn(x) - x"d F(x) t = 0,
n-e¢0
P4 4
therefore lim //% (F) = //L((F) for each m.
m n m
n-— o0

THEOREM 2.2.5 Given a sequence of distribution functions‘&Fn} and
a distribution fvnction F. If every convergence subsequence of {‘Fn}

converges to F, then [Fn} converges to F,.

Proof Assume the conirary. Hence there exists a continuity point

x  of F such that { Fn(xo)} does not converge to F(xo). Therefore

{
there is a subsequence {]? (x )} of {F (x )} such that
n_ "o | 'n "o

n
Il w3y O k

lim F (x) = @4 FPlx) .  Sind® { F } is a subsequence of
o o ny
distribution functions, it has a convergence subsequence. Let { Fn }
i
be a convergence subsequence of {.Fn } « SO { Fn } is a convergence
Ik k
i

sequence but it is also a subsequence of {:Fni . Hence { Fn }
k

converges to F, therefore 1lim F (xo) =F(x)e But } P (x)
n -~y ed k e . *

i i

is a subsequence of {'Fn (xo)} , which converges to 1. So that
k

lim Fn (xo) = 1. Hence we have F(xo) = 1, This is a contradiction.
n— o0 ki

Hence .{F}l} converges to F,

[ Y Iy
tiei } 21'/78
du;u;b

R |
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THEOREM 2.2.6 Let F, Fn, n="7 24yee0e¢, be distribution functions

’ / ’ ;b ’
such that /{é(F), /Um(Fn) exist for all n and m. If/(,gl(Fn)—ﬁ//fn(F)

for each m then { Fn} converges to F.

/
/
Proof Since {//‘é(Fn)}- converges, SO //Cé(Fn) is bounded. By

Theorem 2.2.2 we know that every convergence subsequence of { Fn‘}
converges to some distribution function,

Let {ZF /§ ’ i an~ﬁ be any two convergent subsequence of {Fn}.
k |

Suppose {.Fnl‘,ééa PA / and {AFn; H —> F'" o where F' and F" are

are distribution functions. - Hence by Theorem 2.2.4 we obtain

/
lim M‘(Fl’{k) /(I(F') and ; Lin /(A(r ") - /U (F).

k-— 0

But from what are given, {/l/(F ‘1) } /[j(r:,) are subsequences

’
of the same convergence sequence {///(F )} s which converges to /Lﬁ(F).
Hence they converge to the same llmit,/LK(F), i.e. we have

/U(F)

F', F", F have the same characteristic functions, so by Theorem 2,11,

/U (1) ,U (F), this is true for all m. Therefore

F' = v

F. Hence every convergence subsequence of { Fna converges

to the same distribution function F. Hence by Theorem 2e2e5, {‘Fn }

converges to F,
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COROLLARY 2.1 Let {Xn} be a sequence of random variables.

If
, r 0 when m is odd integer,
11moo/(/il(xn) = < i,
e : when m is even integer,
3 .ny,
| 2 (2).

then { th converges in distribution to the standard normal

_t?
1

distribution é , where é(x) = 2 at .

ey — 2 e
Vzﬂ
- o

»
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