CHAPTER II

MATERIALS AND METHODS

Materials

- 1.1. Vitamin B₁₂ contents were determined in meat, poultry and eggs, fishes and sea foods, vegetable, fruits, milk, dairy products and miscelleneous articles purchased from the local markets.
- 1.2. Vitamin \mathbf{B}_{12} (Cyanocobalamin) standard was purchased from British Drug Houses (BDH).
- 1.3. ⁵⁷Co-cyanocobalamin, intermediate specific activity ⁵⁷Co-cyanocobalamin, was purchased from the Radiochemical center, Amersham, England.
- 1.4. Norit "A" neutral activated charcoal was purchased from Amend Drug and Chemical Co, Inc, New York, N.Y.

1.5. Chicken serum

Chicken blood was obtained from a poultry plant. Serum separated from chicken blood which has been allowed to clot at 37°C. was suitably diluted with saline, and its unsaturated Vitamin B₁₂ binding capacity (UB₁₂BC) was determined.

- 1.6. 3.5% PVP (Polyvinylpyrrolidone) was purchased from CHI SHENG chemical works Co. LTD. TAIWAN. Republic of CHINA.
- 1.7. Sodium acetate, Potassium cyanide, Glutamic acid, Sodiumtetraborate and Glacial acetic acid. All chemicals were Analar grade.

2. Equipments

- 2.1. Auto-Gamma Scintillation Spectrometer Model 5200 (Packard)
- 2.2. International portable refrigerated centrifuge Model PR-2 (IEC)
 - 2.3. Spectrophotometer
 - 2.4. Beckman pH-meter
 - 2.5. Metler analytical balance
 - 2.6. Blender
 - 2.7. Low-temperature chest (-20°C)
 - 2.8. Mixer
 - 2.9. Water-bath
 - 2.10. Automatic pipette with plastic tip (100, 500, 1,000 ul)

3. Method of preparation of reagents

3.1. Vitamin D, (Cyanocobalamin) standard

10.0 mg of crystallized Vitamin B_{12} was accurately weighted out and dissolved in 10 ml volumetric flask with 25% ethyl alcohol. Further dilution were made in order to get 1,000 pg/ml solution. Standard solution was kept in the dark at -20° C.

3.2. ⁵⁷Co-B₁₂ solution

The ⁵⁷Co-B₁₂ solution obtained from Amersham, having a specific activity of 10 microcuries per microgram was diluted with distilled water to 1,000 pg/ml solution. This solution was kept in the dark at 4°C.

3.3. Specific binder-chicken serum

Stock solution 220 millitre of chicken serum was mixed with 0.2 ml of 20% sodium azide and stored at -20° C.

Working solution: The stock solution was freshly diluted to get 1: 250 solution with distilled water. The percentage of radioactivity bound in the absence of added cold Vitamin $\rm B_{12}$ for this dilution compared to the total counts was about 80%.

3.4. PVP Coated Charcoal

Five per cent aqueous suspension of Norit "A" charcoal was prepared by adding a portion of distilled water to 5 gm of charcoal. The solution was shaked well and diluted to 100 ml after the

addition of 7 ml of dialysed PVP solution.

3.5. 0.1 M Borate buffer, pH 8.5

 $38.137~{\rm gm}$ of ${\rm Na_2B_4O_4}$. $10{\rm H_2O}$ was dissolved in a 1,000 ml volumetric flask with distilled water. The pH was adjusted to 8.5 with boric acid solution and diluted to the final concentration of 3.8137 gm%.

3.6. Acetate buffer (1% solution)

Ten grams of sodium acetate was dissolved in distilled water and adjusted to pH 4.8 with acetic acid. The solution was diluted to a final volume of 1 litre.

3.7. Potassium cyanide solution (1% solution)

One gram of potassium cyanide was dissolved in distilled water and adjusted to a final volume of 100 ml.

3.8. Glutamic acid buffer

1.2 gm of L-glutamic acid was dissolved in 200 ml distilled water. This provided a solution of pH 3.3. One ml of 0.4% KCN solution was immediately added before using.

Extraction of samples

4.1. The general extraction was done by the method of Coates et al (1953). 50 ml of 1% sodium acetate buffer solution was added to each 10 gm of sample and 0.5 ml of cyanide solution. The solution was heated on steam-bath for 30 minutes, cooled and diluted if necessary. The extracted solution was filtered through a No.40 Whatman filter paper. The filtrate was used to assay for Vitamin B₁₂ concentration.

4.2. Milk and milk products extraction.

1 ml or 1 gm of sample was added into 4 ml glutamic acid buffer (pH 3.3). The solution was boiled in a boiling for 30 minutes, cooled and filtered if necessary. The clear solution was used to assay for Vitamin B_{12} concentration.

5. Measurement of Vitamin B₁₂ concentration in some foods.

The contents of Vitamin B_{12} in some Thai foods were assayed by a radioisotopic method using chicken serum as the Vitamin B_{12} binder and PVP coated charcoal to seperate free and bound Vitamin B_{12} . The principle of a radioisotope method depends on measurement of the dilution of added radioactive Vitamin B_{12} by unlabelled Vitamin B_{12} presented in the test sample. The test samples were deproteinized to liberate the Vitamin B_{12} from the binders. Radioactive Vitamin B_{12} (usually as ${}^{57}{\rm CoB}_{12}$) and a binder for Vitamin B_{12} were added. Free and bound vitamin were then separated by charcoal

method. By measurement of the radioactivity in the unbound supernatant, the radioactive Vitamin B_{12} could be calculated and therefore the unlabelled sample Vitamin B_{12} content was estimated.

5.1. Standardization of chicken serum

The unsaturated Vitamin B_{12} binding capacity (UB₁₂BC) of chicken serum was determined by a modified method of Lau et al, 1965. The chicken serum was appropriately dilute (1: 250) so that 0.2 ml would bind about 80% of 300 pg $^{57}\text{CoB}_{12}$ in this assay. In the presence of equal volumes (0.3 ml) of both cold Vitamin B_{12} (1,000 pg/ml) and hot Vitamin B_{12} ($^{57}\text{CoB}_{12}$ 1,000 pg/ml) the binding capacity was 50%.

Determination of chicken serum Vitamin \mathbf{B}_{12} binding capacity $\mathbf{UB}_{12}\mathbf{BC}.$

Duplicate tubes were used throughout the experiment.

- a. 0.3 ml of $^{57}\text{CoB}_{12}$ solution (1,000 pg/ml) was added to 0.3 ml of borate buffer in a 15 ml glass centrifuge tube.
- b. 1.5 ml of distilled water and 0.3 ml of cyanocobalamin standard solution (1,000 pg/ml) were added.
- c. Mix twice, various concentration of chicken serum were added to the mixed solution, and incubated for 45 minutes at room temperature.

002459

d. 0.5 ml of PVP coated charcoal was added, mixed and centrifuged at 2,500 rpm for 45 minutes. The supernatant was decanted into a counting tube and was counted in an Auto-Gamma Scintillation Spectrometer (binder supernatant cpm). The amount of chicken serum which had the binding capacity about 80 per cent of $^{57}\text{CoB}_{12}$ (300 pg) was used in the assay. On the basis of this determination, a dilution of the binder was made to that its 12 binding capacity was reduced to 200 - 300 pg/ml (Newmark et al, 1973). The UB $_{12}$ BC of the undiluted chicken serum used in the present study was diluted to 1: 250.

Calculation of B₁₂ binding capacity

The amount of Vitamin B_{12} bound in any tube containing binding protein was calculated as follow:

pg. Vitamin B₁₂ bound

- = binder supernatnant (cpm) -control supernatant (cpm) X pg 57 CoB 12 added
 Total radioactivity (cpm)
 - 5.2. Procedure for standardization of ⁵⁷CoD₁₂

Every new lot of CoB_{12} (1,000 pg/ml) prepared for use in the assay was standardized by reverse isotope dilution against the Vitamin B_{12} standard solution (1,000 pg/ml). The sequence of addition and ml of reagents added were shown in Table I.

The actual quantity of $^{57}\text{CoB}_{12}$ present could be calculated for any percentage change in the $^{57}\text{CoB}_{12}$ binding capacity of the chicken serum by using the following equation:

$$pg {}^{57}CoB_{12} = pg Cold B_{12} \frac{g'}{B-B'}$$

where

B = Net cpm of tube containing chicken serum and $^{57}CoB_{12}$

 $B^{'}$ = Net cpm of tube containing chicken serum, $^{57}CoB_{12}$ and standard cold $^{12}B_{12}$

This equation is derived from equation (5) shown under calculation of Vitamin \mathbb{B}_{12} concentration.

Assay Procedure

Table I Summarized the assay procedure. All tests were done in duplicate in 15 ml glass centrifuge tube. One half ml of extracted solution was used in the assay.

Calculation of Vitamin B₁₂ Concentration

The concentration of Vitamin B_{12} in the extracted solution was calculation from the following formula:

 $\mu g B_{12}$ in 100 gm of sample = 2 x $pg \frac{57}{CoB_{12}} \frac{B-1}{B'}$ x $dil^{\frac{n}{2}}$ x 10^{-4}

where

B = Net com of chicken serum tube

B' = Net cpm of tube with unknown sample

Derivation of Formula

Let

 $M = mass of {}^{57}CoB_{12}$ added and R is its radioactivity (cpm)

 $m = mass of {}^{57}CoB_{12}$ bound by chicken sorum and B is its radioactivity (cpm)

Specific Activity of 57CoB

$$\frac{R}{M} = \frac{B}{m} \tag{1}$$

$$R = BM \over m$$
 (2)

Let B = radioactivity (cpm) of ${}^{57}\text{CoB}_{12}$ bound by chicken serum after dilution of M by a mass of m cold B₁₂

New specific activity after radiodilution

$$\frac{R}{M+m'} = \frac{B'}{m} \tag{3}$$

Substituting for R from equation (2)

$$\frac{B \times M}{M + m'} = \frac{B}{m}$$

$$\frac{B \times M}{m} = \frac{B'(M + m')}{m}$$

$$B \times M = B'(M + m')$$

$$\frac{B}{B'} \times M = M + m'$$

$$m' = \frac{B}{B'} \times M - M$$

$$m' = M \left(\frac{B}{B'} - 1\right)$$
Thus pg Vitamin $B_{12} = pg^{57}CoB_{12} \left(\frac{B}{B'} - 1\right)$
(5)

 $\frac{\text{Table I}}{\text{Protocol for the standardization of }^{57}\text{CoB}_{12} \text{ and the assay of Vitamin B}_{12}$

Tube No.	Sequence and ml. of reagents added											
	Deionized Distilled water	Borate Buffer pH8.5	Cold Biz 1000 pg/ml	57 Co B ₁₂ 1000pg/ml		Chicken Serum 1:250	Ŧ	PVP coated charcoal		% Bound	57 _{CoB₁₂}	Card Bk
1	0	0.3	1.8	0.3	Mix for 10 seconds	0.2	Ire	0.5	Mix, centrifuge at 3000 rp.m. for 30 minutes Count radioactivity in supernatant	14.28	300	7.1
2	0.3	0.3	1.5	0.3		0.2	zratu	0.5		16.67	300	6.26
3	0.6	0.3	1.2	0.3		0.2	temperature	0.5		20.0	300	5.37
4	0.9	0.3	0.9	0.3		0.2		0.5		25.0	300	4.19
5	1.1	0.3	0.7	0.3		0.2	room	0.5		30.0	300	3,55
6	1.3	0.3	0.5	0.3		0.2	ubate at r 0 minutes	0.5		37.5	300	2.81
7	1.5	0.3	0.3	0.3		0.2	Incubate or 30 minu	0.5		. 50.0	300	2.16
8	1.6	0.3	0.2	0.3		0.2	Inc or 3	0.5		60.0	300	1.74
9	1.7	0.3	0.1	0.3		0.2	seconds,	0.5		. 75.0	300	1.37
10	1.8	0.3	-	0.3		0.2		0.5		100.0	300	1.04
11	2.0	0.3	-	0.3		-	for 10	0.5		0	300	-
Unk Sample	1.3	0.3	Extracted Solu 0.5	0.3		0.2	Mix fo	0.5		Unk.	300	

Unk = Unknown

cpm. = Count per minute

pg = picrogram

BF = Bound fraction

