CHAPTER IV
GROUPS WHICH ARE UNIONS OF THREE PROPER SUBGROUPS
The materials of this chapter are drawn from reference .

1 Introduction,

In this chapter we consider groups which can be
written as {set = theoretical) unions of three subgroups.

To specifie, suppose the group G is given by the non-
trivial union:

G/ = (AU BUC

where A, B and C are subgroups of G.

If A is a subgroup of B, we are effectively dealing
with two subgroups of G, and this is not possible by 2,1 of
ChapterIIT. Similar for the other cases. Hence we may
assume the configuration of the following Figure 1 where A’, Bf

and C must be nonempty sets.
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where A = A~(BUC), B = Bx(CUA), C = C~(AUB)
L = (ANB)~C, M= (CMNA)~B, N= (BNC)~A,
K = ANBNC.

For convenience, we will call such a group G a 3~-group,

Appling 3.1, 343, 345, 442, 4.3 and 4.5 of Chapter
ITI, we have the followings:

(a) L &8\MI/A#8 =4

(b) E: B, and C contain their inverses.

(c) If 4’As in A and v in B, then ab is in C.
(a) If 4 is in A, then a’2 is in BUC.

(e) If every element of a group G has Zlé reot

in G, then G can not“be an  irredundant union of three
subgroups.

(f) Let -G be a finite group of order N and let
3 be the smallest prime dividing N. Then G is not an
irredundant union of three subgroups.

2 Homomorphisms of 3 - groups.

To prove the main theorem, we will introduce three
lemmas as follows:

2.1 Lemma. If & and a;are in A, then éaH is dn K.

Proof. The element dﬁ; belobgs either to A or to K.
Suppose that it belongs to A, Let b'belong to Bt
Consider the element 6551 as follows:
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Apply (c) twice; we have (5&%51 is in B. By assumption
and (c) again, H(éé}) i1s in C. Hence we arrive at two

contradicting statements and éé1 must be in K.
2.2 Lemma. K is a normal subgroup of G,

Proof. It is clear that K is a subgroup of G,
/
Let a be in A and k in K. Then we have ka belongs

either to A or to K, If ka is in K, then k™' (kd) = 4 is in ¥
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Thus ka must be in A, By (b) and 2.1, we have a’1ka'is in K.

Therefore Ka' = ax,

Similary we can show that Kb = bK and K<
any'b!in B’ and ¢ in Q.

¢K for
Hence K is a normal subgroup of G,
2.3 Lemma. aK = A for any a in Ai

/ /
Proof. Let k belong to K. Then ak.is in A = AU K.’

If dk is in K, then (sk)k™' = & is i# K. Thus 4k is in A
Therefore akK is a subset of A. Suppose that there is an

element 51 in A  but not in éK, Then by (b) and 2.1 we have
d'1aH is in K. .Hence ag ='dk  'for some k in K, which 1is

a contradiction.
Hence the lemma is proved.

2e4 Difinition.Tf G is the group such that

G ='{1, a1y Ay, aj}with the relations a® = a

1 3
a8,= aa, = a3 > a-2a3 = a3a2 =a, , agay 4483 = a, ,
then G is said to be the Klein 4 - group and denoted by
V.

= a2 = 1 and

hao
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2.5 Theorem. A group G is an irredundant union of three
subgroups if and only if it can be mapped homomorphically
onto the Klein 4 - group.

Proof. The "if% part follows clearly from (e)y 241, 2.2
and 2.3.

To prove the converse, let ¢ be a homomorphism of
G onto V = {1, a4y 853 ajk Set

/ ~1

A = 501 (aq)

B’ = q?T (ay)

C = ¢ (a3)
and K = KFr ¢ .
Let A = AUK

B/, =" | BUK
and ¢ = cUk.

It is obvious to sce that A >, B and C are subgroups of G

and G = AUBUC 4 Since A', B and C are disjoint nonempty

sets, G is the irredundant union of subgroups A, B and C.
Hence the theorem is proved.

2.6 Remark. It follows from 205 that
AB =Bf =¢, BO=CB=A", CA = AC = B
and A2 = B2 = 02 = K,

3 Decompositions of 3 - groups.

It follows from 2.5 that G is finite, it must be
order hm. Clearly there are many groups of order 4m which
are not unions of three subgroups . For example, the
cyclic group Chm of order Lm. DMore generally, no locally
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cyclic group can be unions of three subgroups , this
follows from 1 of Chapter III,

On the other hand there are many examples. of groups
of order Lm which are unions of three subgroups. We
shall consider a few examples., A decomposition of a group
G 1s a set of subgroups whose union is G and is irredundant.

Example 1. The Klein L - oup admits a decomposition
oxample | egr

{ 62, C2, 02} sy where as usual Cn denotes the cyclic group
of order n.

Example 2. There are five groups of order 8. Disregarding
Cq, we are left with Gy x Cy, C, x Cy x Cyy Dlf (the dihedral
group of order 4) and Q (the quaternian group
Ch X 02 admits a decomposition'[ch, Ch’ V}
02 X 02 X 02 admits a decomposition'{v, v, vV}
D, admits a decomposition'{ch, v, vV}
and Q admits a decomposition { Cpas Cps Gh}-

Example 3. For each positive integer m, the dihedral group
D2m of order 2m is the group generated by a and b with
relations

2%l - b° = (ab)2 = 1,

D2m admits a decomposition { sz, Dm, ij}.

Example 4. For each even m, the dicyclic group of order
Lm generated by a and b with relations

a®® = 1, a® = (ab)? =2

admits a decomposition consisting of a sz and two dicyclic
groupsy each of order 2m,
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Thus far we have characterized the groups which
are 3 - groups. The following questions are to be sattled.

Question 1, Can a 3 - groups have "different" decompositions?

Question 2. Can two " different" 3 - groups have the same
decomposition ?

As to be expected, both questions are answered
affirmatively by the following two examples.

Example 5. 82 3 Da has the two distinct decompositions
{c, xc,, D,» D} and/{C, x Cpy €y x G, x Cyy G, x C, x C,}

Example 6. The group of order 16 generated by a, b and ¢
with the relations

a2 = b2 = 02 =14 abc = bca = cab
has a decomposition 1 6, % €53 D,s/D, } » the latter is also
a decomposition of Cyx Dk (ef. Example 5).

If a group is non-abelian, then the subgroups of a
decomposition can be abelian () or non-abelian (7). This
give four possible types of decompositions; namely { @, o, Gt}
{Q,Q,n},{a,ﬂ,?’l} and{'Yz,'YL,,')’L}. The decomposition{&,&,n},
however, cannot occur.

3.1 Lemma. TIf the group G has the decomposition { A, B, C}
with A and B are both abelian, then C is also abelian.

Proof. TIet ¢, c; be in C and k in K. Then there exist
a in A;b’in B’ and k1 in X such that ¢’ = ab and cH = ck;.
Since A and B are both abelian, we have



)
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cy = (ab)k1

’ I ' ’ i J

cc% = (ab)(aﬁk1) = (5ﬁk1)(ab) = 015
and ck = (ab)k = k(ab) = kc.

Hence C is abelian.

The remaining three type of decompositions can all
occure as the following examples show.

Example 7. The group Q has the decomposition{(%ﬁ Ch’ Ch}
which is of the type {C&, G, C%i}.

o The group D has the decomposition {C, . D.»D.}
which is of the type {a’ o0 ,71} "

The group S3 x V. has the decomposition-{Dé, Dg s 06}
which is of the type {71,71,71} .

We summerize these results in the following theorem;

3.2 Theorem. Each decomposition of a 3 - group is one of

the type {®> Q,Q},{Q,?’(,’Q} and { M,M,M} .

If a 3 = group is abelian, then its center is G.
For non-abelian 3 - groups we have the following two results:

3.3 Theorem. A nonwvabelian 3 - group G has an abelian
decomposition (i.e., a decomposition of the type {Ch,fl,ci})
if and only if the center of G is K.

Proof. Let G have a decomposition{:A, B, C } and 7
be the center of G.
Firstly, suppose that A, B and C are abelian. Then
Z contains K. Suppose that Z # K; without loss of generality.
we may let-a;be in ANZ, For each ¢ in C there exists



a b in B such that ¢ = a;bi Since A, B and C are all
abelian, we have

] £ 4 7 ’
ch = (azb)b - b(azb) = be

for any b in B. Then elements of B and C’commute. it
follows that the elements of B and C commute

Similarly we can show that elements of A and B and
elements of A and C commute.

Hence G is abelian, which contradicts the assumption.,
Therefore Z = X,

Gonversely, let Z = K. For any 4, a) in f; k in K,
there exist a, in 4 and k1 in K such that a = agk and

4 ’

a = ajk,. Thus we have

I

r 7 ’ ¢ ’ ’ _
aay = (a1kpa1 a1(k§1) = aja

/

and ak = (azk)k = k(azk)

]
b
W

Hence A is abelian.
Similar arguements show that B and C are abelian,

3e4 Theorem. If G admits a decomposition { A, B, C}'of
the typef(}.,Tz,qq,} s then the center Z of G is contained
in A,

/ ’

Proof. Suppose that there exists a 5; in BNZ, let b,

b; be in B and k in K. Then there exist k1, k2 in K such
that b = b;k1 and b; = b;kz. S0 we have

’ i,

Lo / / ’ ’
bb, = (bzk1)(bzk2) = (bzkz)(bzk1) = b,b
and bk = (bzk1)k = k(bzk1) = kb .

Hence B is abelian, which contradicts the assumption. Thus
BMNZ = 4. Similary we can show that CNZ = dg.
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Example 8. For D6 which has the decomp031t10n{f00, 83’ S }
we have the center Z is such that AMZ # 4, that is the
center Z contains elements of A

If a group G has a decomposition'{ﬂ, B, Cﬁ} of the
type{7,M,M }, it is clear that Z can not contain elements
from A and B and not C, since ZNA and ZNB are groups and
a group can not be expressed as an. irredundant union of two
subgroups (2.1 of Chapter III). But there is the possibility
that Z contains elements of X, B and C in this case Z is
itself necessarily a 3 - group with decomposition { ZMA,
ZNB, ZNC } (2 may of course be a 3 - group in other cases).
The existence of such a decomposition requires that K be
non-abelian. Because if K is abellan, there exists an a
in ZNA and for any d, a} in A'and Xk in K, .there exlst
k1, k2 in K such that a' = azk1 and a} = ézkz. Then we have

f i/

aa, = (a k1)(a k2] = (a k ) (& k1) = a1a
/ ’ ! I

and ak = (azk1)k = k(azk1) = ka.

Hence A is abelian, which is a contradiction.

Example 9. For 83 x V has a decomnosmtlon{?D6, D6, Dé}
with none of ZNW, ZNB, zOC is empty.

L Groups of Thner Automorphisms of 3 - groups and Their

Degeneracies.

Let a 3 - group G have the decomposition{A, B, C}.
Let I(A) be the. set.of inner automorphisms of G defined by
elements of A; i.c.,
I(a) = {i(a) /ach and (i{a))(x) = a~'xa for any x in G }.
Then I (A) is a subgroup of I(G), the group of inner
automorphisms of G, Moreover
I(c) = I(A)UI(B)UI(C)
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L.1 Theorem. The group of inner automorphisms of a 3 - group
G with decomposition { A, B, C}'is a 3 - group or degenerated
relative to {A, B, C}, in the sense that it is one of T(A),
I(B) or I(C).

Proof. We have T1(6) = T(A)UT(B)UT(C). If I(G) is the
irredundant union of the three subgroups f(A) I(B) and I(C)
then I(G) is a 3 - group. On the other hand , if I(G) is not
the irredundant union of these smbgroups, then by 2 1 of
Chapter III, we have I(G) is one of I(A) I(B) or 1(C).

We note that the degeneracy (as defined in L.1) does not
necessarily exclude I(G) from being a 3 - group, as is
shows by the next example. However, we are considering the
structure of I(G) relative to the decomposition {A, B, C}of
G so that the name "degenerate" is appropriate.

Example 10. Q has a decomposition { Ch’ Cb’ Ch} and

I(6) =V (nondegenerated).
C, x D, has a decomposition {Chx Css D,» D,}and

I(G) = I(Dh) = V (degenerate).

L.2 Theorem. A non-abelian 3 - groups has am abelian
decomposition if and only if the group of inner automorphisms
is the Klein 4 - group.

Proof. Let a non-abelian 3 - group G has an abelian
decomposition. By 3.3, the center Z of G is K. Lettf be such that

$: a—sI(0),
defined by g.—ei(g”).
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Then ¥ is an onto homomorphism. Thus G/Kercfis isomorphic
to I(G). To show that Ker ¥ = Z, let g be in Ker &
Then we have @ (g) = i(g"T) =1 is in @ (G) = I(G) so that
(i(g-1))(g1) = g, for any g, in G and therefore gg1g-1 = g1
which implies that 818 = 884+ Hence we have Ker® is a
subset of Z.

Again, let k be in Z = K, Since kg1k_1 = g4 for any
g, in G, (i(k_1))(g1) = gq» So we have §(k) =1 and k is
in Ker ¢ .

Hence Ker ¥ = Z so that

I(G) = G/Z = .G/K 5
which is the Klein 4-group by 2.5.

Conversely, let T(G) be the Klein 4-group. From
the "if" part, we have /¥ : G —»I(G) is an onto homomorphism.
If follows from 2.5 that G is a 3-group. By the proof of
2.5, we have constructed a decomposition{ A, B, C } with
K=ANBNC = ‘51(1). To show that K = Z, let k be in K
K = *@1(1). Then we have Y(k) = i(k™") = 1 so that
(i(k'q))(g) = kgk"1 = g and therefore gk = kg. Hence K is
a subset of Z.

Again, let z be in Z. 'Since zgz"1 = g for any g in G
(i(z-1)(g) = g. So we have i(271) = 9(z) = 1 and z is in
QJ(1) = K. Hence K = Z and it follows from 3.3 that G has
an abelian decomposition.

A relationship between the 3-group structure and
degeneracy of I(G) is given by

L+3 Theorem. Let{A, B, C} be a decomposition of the 3-group
G. The group inner automorphism of G is degenerated
relative to { A, B, C} if and only if the center
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of G contains elements other than from K = AMNBNC,

Proof. To prove the "if" part, we may, without loss of
generallty, assume I(B) is a subset of I(C) Then for each
b in B there exists a k in X or a ¢ in C such that i(b) = i(k)
or 1(b) =i(c)s If i(B) = i(k), then for any g in G we
have 5"1gb k™ gk Slnce Y is in B and k in K, there exists

a 51 in B such that b = 5 k . Then we have

1

678 = (00Tl k) = k™1 (87 gt k.
Therefore we have b11gb1 =g 50 that ng = ng Then 31 is
in ZNB.

If i(b) = 4(<), then for any g in G we have

b~ gb = 6_1gcﬁ Since b is in B and ¢ in C there exists an

5 in A'such that b = ac. It then follows as before that
s
a is in ZNA, Hence ‘the "if" part is proved.

Converqply, let a be in Zfﬁh. For any b in B, there
exists a ¢ in C such that b= caz and for any g in.G, we have

r=1

!-1 . - (clat )—1 g(c!afz) = é gcp;

which implies that i(b) = i(€)s Then we have I(B) is a
subset of I(C). Hence I(G) is degenerated.
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