#### UTILIZATION OF BREWERY YEAST AS AN INGREDIENT IN ARIMAL FREDS

Miss Rawadee Chirarattananon

A Thesis Submitted in Partial Fulfilment of the Requirement
for the Degree of Master of Sciences

Department of Chemical Technology

Graduate School

Chulalonghorn University

1975

# การใช้ที่สต์จากโรงงานเปียร์เป็นองค์ประกอบของอาหารสัตว์



นางสาวเรวดี จีระรัตยาแบล์

004308

วิทยานิทม ก็นั้นที่ยส่วนหนึ่งสองการศึกษากามพรักสูตรปรี พฐาวิทยาสาสกรมหาบั ผิด แผนกวิจาเกมีเพลนิด มัพโกวิทยาทัย จุฬาองกระเมหาวิทยาลัย พ.ศ. ๒๕๑๘ บันทิศวิทยาลัย จุสาลงกรณมหาวิทยาลัย อนุมัติให้เม็บวิทยานิพเต่อบันนี้ เป็นส่วนหนึ่ง ของการศึกษาตามหลักสูตรษ์ริโดูงามหาบัณฑิต



Salds:nr.

ลผมลืบันพิควิทยาลัย

คณะกรรมการตรวจวินยาปีหม่อ

... ประสานกรรมการ

Wor Ganaly inus

renuriations of Superior.

อาจารย์ผู้ควบคุมการวีจัย อาจารย์ คร. พงษ์ วนานุวัช

สิขสิทปิ์ของบัณฑิควิทยาลัย จุฬาลงกรณมหาวิทยาลัย หัวข้อวิทยานิพนธ์ - การใช้ยีสต์จากโรงงานเบียร์เป็นองค์ประกอบของอาหารสัตว์

ชื่อ <u>นางสาวเรวดี จิระรัตนานนท์ แผนกวิชาเคมีเพคนิค</u>

ปีการศึกษา - 2517

# บหคักยอ

เนื่องจากในปัจจุบันปลาปนและกากถั่วเหลือง ซึ่งเป็นวัตถุดิบของการทำอาหารสัตว์ มีราคาแพง และไมเพียงพอตอความต้องการ ในชณะเดียวกันยีสต์ ซึ่งเป็นผลพลอยได้ของโรงงาน เบียร์ ก็ยังไม่ได้นำมาใช้ให้เป็นประโยชน์เท่าที่ควร ยีสต์ประกอบด้วยโปรตีน 54-56 % ซึ่งสูง พอ ๆ กับปลาปน (55 %) และมากกวากากถั่วเหลือง (45 %) แต่มีไขมันและแคลเซี่ยมประกอบ อยู่น้อย คือ 2.54 และ 0.21 % จึงควรนำมาใช้เป็นองค์ประกอบของอาหารสัตว์ในแง่ให้โปรตีน

ยีสต์จากโรงงานเบียร์จะนำมาล้างค้วยน้ำกอน เพื่อซะล้างแอลกอฮอล์และสิ่งปนเปื้อน จากนั้นก็กรองควยเครื่องกรอง และอบแห้งจนมีความชื้นประมาณ 6-7 % แล้วจึงนำไปผสมเป็น อาหารสัตว์ของไกกะทงพันธ์ "อาร์เบอร์เอเคอรส์" โดยใช้แทนปลาปนและกากถั่วเหลือง เปรียบ เทียบกับที่เลี้ยงค้วยสูตรที่ใช้ในปัจจุบัน ปรากฏวาเมื่อใช้ยีสต์แทนปลาปนา2.5 และ 25 % ใน อาหารสัตว์ น้ำหนักไกที่เลี้ยงในเวลา 56 วัน เป็น 1.75 และ 1.72 กก. ตอตัว อัตราแลก เปลี่ยนอาหารของอาหารที่ประกอบควยยีสท์มีกา2.34 และ 2.38 นอกจากนั้นก็เลี้ยงไกกะพงควย อาหารที่มียีสต์แทนกากถั่วเหลือง 24 % ในอาหารสัตว์ น้ำหนักไกที่เลี้ยงในเวลา 56 วัน จะหนัก 1.68 ตอตัว อัตราแลกเปลี่ยนอาหารมีคา 2.24 ซึ่งผลที่ได้ทั้งหมดไม่แตกตางจากเมื่อเลี้ยง ไกด้วยสูตรที่ใช้ในปัจจุบัน อยางไรก็ตาม เมื่อแพนกากถั่วเหลืองค้วยยีสต์ 24 % ผลการเลี้ยงไก ได้น้ำหนักสุดท้าย และอัตราการแลกเปลี่ยนเนื้อคีกว่าอาหารสัตว์สูตรที่ใช้ในปัจจุบัน ไก่ที่ทคลอง เลี้ยงควยอาหารที่ประกอบควยยีสฅ์แทนปลาปนและกากถั่วเหลืองในอัตราสวนดังกล่าว ไม่ปรากฏ วามีอาการผิดปรกที่ที่จะแสดงวา มีสาเหตุจากอาหาร เซน ตายมากผิดปรกที่ ซนรวง ฯลฯ คังนั้น จึงสรุปได้วา การใช้ยีสต์เป็นองค์ประกอบของอาหารสำหรับไกกะทงในอัตราสวนคั้งกลาว ได้ผลเป็นที่นาพอใจ แฅหากจะใชยีสต์แทนปลาปนและกากถั่วเหลืองในอัตราสวนสูงขึ้น จะต้องเพิ่ม ไขมันและแคลเซี่ยมให้เพียงพอกับความต้องการของไก และถ้าใช้ยี่สต์แหนปลาปนให้มากกวานี้ จะตองเพิ่มกรคอะมีใน สนิดเมหไหโลนีนลงไปดวย

Thesis Title Utilization of Brewery Yeast as an Ingredient in Animal Feeds

Name Miss Rawadee Chirarattananon Department of Chemical Technology

Academic Year 1974

#### ABSTRACT

Brewery yeast was intended to use as an ingredient in feed meal of broilers. The waste yeast from Thai Amarit Brewery Plant was utilized in this study. The yeast was washed with water and dried before used in feed meals. When the brewery yeast replaced fish meal at 12.5 and 25 % the broilers grew well to a weight of 1.75 and 1.72 kg. per bird respectively and the protein efficiencies of the feed meal were 2.34 and 2.38 correspondingly. When the yeast replaced soy bean meal at 24 % the weight of those broilers was 1.68 kg. per bird at the end of feeding and the protein efficiency of the feed meal was 2.24. It appeared that using brewery yeast replaced fish meal at 12.5 and 25 %, and replace soy bean meal at 24 %, growth of those chicks was compared well with the commercial feed meal. protein efficiency of the brewery yeast containing feed meals were indifferent from that of commercial ration feed meal. Replacing soy bean meal with brewery yeast at 24 % appeared very promising as the final body weight of broilers and the protein efficiency were better than those of broilers fed with commercial ration. No toxic effect was observed in chickens for the use of the brewery yeast at these percentages.

#### Acknowledgement

The author wishes to express her sincere gratitude towards

Dr. Pong Vananuvat for his constant inspiration and supervision. She

also wishes to acknowledge Mr. Chanvit Chiaravanont (Deputy Technical

Director and Director of Research, Chareon Pokphand Feedmill Co., Ltd.)

for his continued interest and advice. She thanks Mr. Kriangsak Boonmun,

Manager of Research Farm Station, Chareon Pokphand Feedmill Co., for help in

the feeding trials.

Special Thanks to Mr. Dumrong Amatavivat (Director of Analytical Department, Thai Amarit Brewery Ltd.) for providing waste yeast as a raw material in this study. She also wishes to thank Dr. Kidsana Chutima and Miss Juree Tungkitjavisud of Chemistry Department, Kasetsart University for analysis of amino acids.

Appreciations are accorded to the technicians in the Department of Chemical Technology for the help received.

## Content

|             |                                                    | Page |
|-------------|----------------------------------------------------|------|
| บทคัดยอภา   | ษาไทย                                              | i    |
| Abstract    |                                                    | ii   |
| Acknowledge | ement                                              | iii  |
| Tables      |                                                    | Ý    |
| Figures     |                                                    | viii |
| Chapter 1   | Introduction                                       | 1    |
| Chapter 2   | Review Literature                                  | 7    |
| Chapter 3   | Experimental                                       | 20   |
|             | Preparation of Brewery Yeast                       | 20   |
|             | Chemical Analysis of Dry Brewery Yeast& Feed Meals | 24   |
|             | Nutritional Assessment with Broilers               | 28   |
| Chapter 4   | Results                                            | 45   |
|             | Preparation of Brewery Yeast                       | 45   |
|             | Chemical Analysis of Dry Brewery Yeast             | 45   |
|             | Chemical Analysis of Feed Meals                    | 45   |
|             | Amino Acid Composition                             | 50   |
|             | Feeding Trials with Broilers                       | 50   |
| Chapter 5   | Discussion                                         | 66   |
| Chapter 6   | Conclusion and Recommendation                      | 76   |
| บรรณานุกรม  |                                                    | 78   |
| Reference   |                                                    | 79   |
| Appendix    |                                                    | 83   |
| Vita        | 이 사용되었다면 하면 하는 것이 모든 그는 생각하셨다.                     | 89   |

## Table

| No. of Tables |                                                       | Page |
|---------------|-------------------------------------------------------|------|
| 1-1           | Amino acid content of fish meal and soy bean meal     | 2    |
| 1 - 2         | Five large ready - mixed feed mills and their actual  |      |
|               | production in 1972                                    | 4    |
| 1 - 3         | Demand of some ingredients used in feed meal          | 5    |
| 2 - 4         | Protein content of some animal meat and brewery yeast | . 9  |
| 2 - 5         | Amino acids and protein content of various yeasts     | 10   |
| 2 - 6         | The vitamin content of some food yeasts               | 12   |
| 2 - 7         | Requirement of essential amino acids by broiler       | 13   |
| 2 - 8         | Requirement of minerals by broiler                    | 16   |
| 2 - 9         | Requirement of vitamins by broiler                    | 17   |
| 2 - 10        | Percentage of ingredients used in commercial feed     |      |
|               | meal for broiler                                      | 19   |
| 3 - 11        | Formulation of feed meal containing brewery yeast     |      |
|               | replaced fish meal at 12.5 and 25 %                   | 29   |
| 3 - 12        | Formulation of feed meal containing brewery yeast     |      |
|               | replaced soy bean meal at 24 %                        | 30   |
|               |                                                       |      |
| 3 - 13        | Chemical composition of the initial feeding period    |      |
|               | for control feed meal                                 | 31   |
| 3 - 14        | Chemical composition of the initial feeding period    |      |
|               | feed meal containing brewery yeast replaced fish meal |      |
|               | at 12.5%                                              | 32   |
| 3 - 15        | Chemical composition of the initial feeding period    |      |
|               | feed meal containing brewery yeast replaced fish meal |      |
|               | -+ 054                                                | 33   |

| 0. | of Tab | le Vanaganina                                        | Page |
|----|--------|------------------------------------------------------|------|
| 3  | - 16   | Chemical composition of the final feeding period for |      |
|    |        | control feed meal                                    | 34   |
| 3  | - 17   | Chemical composition of the final feeding period     |      |
|    |        | feed meal containing brewery yeast replaced fish     |      |
|    |        | meal at 12.5%                                        | 35   |
| 3  | - 18   | Chemical composition of the final feeding period     |      |
|    |        | feed meal containing brewery yeast replaced fish     |      |
|    |        | meal at 25%                                          | 36   |
| 3  | - 19   | Chemical composition of the initial feeding period   |      |
|    |        | feed meal containing brewery yeast replaced soy bean |      |
|    |        | meal at 24%                                          | 37   |
| 3  | - 20   | Chemical composition of the final feeding period     |      |
| ×  |        | feed meal at 24%                                     | 38   |
| 3  | - 21   | Experimental design                                  | 43   |
| 4  | - 22   | Preparation of dry brewery yeast                     | 46   |
| 4  | - 23   | Chemical analysis of dry brewery yeast               | 47   |
| 4  | - 24   | Chemical analysis of feed meal containing brewery    |      |
|    |        | yeast replaced fish meal at 12.5 and 25%             | 48   |
| 4  | - 25   | Chemical analysis of feed meal containing brewery    |      |
|    |        | yeast replaced soy bean meal at 24%.                 | 49   |
| 4  | - 26   | Amino acid composition of brewery yeast, control     |      |
|    |        | feed meal, feed meal replaced fish meal with yeast   |      |
|    |        | at 12.5 and 25%, feed meal replaced soy bean meal    |      |
|    |        | with yeast at 24%.                                   | 50   |

| o. of Table |                                                      | Pag |
|-------------|------------------------------------------------------|-----|
| 4 - 27      | The number of alive broilers fed with feed meal      |     |
|             | containing brewery yeast replaced fish meal at       |     |
|             | 12.5 and 25%                                         | 53  |
| 4 - 28      | Feed consumption, broiler's body weight and protein  |     |
|             | efficiency of feed meal containing brewery yeast     |     |
|             | replaced fish meal at 12.5 and 25%                   | 57  |
| 4 - 29      | The number of alive broilers fed with feed meal      |     |
|             | at 24%                                               | 60  |
| 4 - 30      | Feed consumption, broilers's body weight and protein |     |
|             | efficiency of feed meal containing brewery yeast     |     |
|             | replaced soy bean meal at 24%.                       | 62  |
| 4 - 31      | Summary of results of feeding trials with broilers   | 65  |
| 5 - 32      | Nucleic acid content of foods and microorganisms     | 71  |
| 5 - 33      | Cost of feed meal containing brewery yeast replaced  |     |
|             | fish meal at 12.5 and 25%                            |     |
| 5 - 34      | Cost of feed meal containing brewery yeast replaced  |     |
|             | soy bean meal at 24 %.                               |     |

## Figures

| 10. | of Fig     | ures                                                 |    |
|-----|------------|------------------------------------------------------|----|
| 3   | - 1        | Preparation scheme of dry brewery yeast              | 21 |
| 3   | - 2        | Filter press                                         | 22 |
| 3   | <b>-</b> 3 | Compartment tray dryer                               | 23 |
| 3   | - 4        | Lay out of chicken feeding house                     | 40 |
| 3   | - 5        | Lay out of each room in feeding house                | 41 |
| 4   | - 6        | In the first week, broilers were given feed meal     |    |
|     |            | containing brewery yeast replaced fish meal at 12.5% | 54 |
| 4   | - 7        | Six-week old broilers fed with feed meal containing  |    |
|     |            | brewery yeast replaced fish meal at 12.5%            | 55 |
| 4   | 8          | Six-week old broilers fed with meal containing       |    |
|     |            | brewery yeast replaced fish meal at 25%              | 56 |
| 4   | - 9        | Body weight of broiler fed with meal containing      |    |
|     | -          | brewery yeast replaced fish meal at 12.5 and 25%     | 58 |
| 4   | - 10       | Comparison of ten-day old broilers fed with feed     |    |
|     |            | meal containing brewery yeast replaced soy bean      |    |
|     |            | meal at 24% and with control ration feed meal        | 61 |
| . 7 | - 11       | Body weight of broiler fed with feed meal containing |    |
|     |            | brewery yeast replaced soy bean meal at 24%          | 64 |