CHAPTER III {

MODEL FORMULATION

Introduction

As mentioned in Chapter Il;' a nonlineér programming problem
can be solved by any of the various methods or a combination of these.
However, for the purposes of this study, only twa methods will be
used to solve thls particular problem° Lootsma's mei:hovd(lO 11)
formulating penalty functlon and the Brooks—Rosenbrock s new direct
search method(g)for obtaining the minimum. This study will attenpt

to find the load distribution of an n=-unit plant for minimum energy

input.

(13,15)

Load Division with Minimum Fuel Consumption Problem

1. Station performance characteristics

The performance of any individual piece of power-plant
equipment such as a boiler, turbine, pump, fan, or heat exchanger
may be described byvan input-output curve. Since a statipn is
composed of several of these differenﬁ forﬁs of-apparatus, their
performanée characteristics must be integfated-so tha£ the per-
formance of the station as a ﬁhole may be expressed by a single

input-output curve. /

Fig. 3-1 shows the major curves for a steam station. The

energy required to drive an auxiliary equipment of the station
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3=-1 Input-output curves of component station equipment

and derivation of station input-output curve, and

cofi*esponding heat rate curve.
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3=2 Simpli\:atéd']s. one-line diagrani for each.u_n;_it of

power-plant.
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varies with the station load. The relation is often of the simplé

¥y = a + bx form, and the slope hay be relafiveiy flat (Fig.3-1c).
This curve, and the reiation of net load and éross_load as shown in
Fig. 3-2, may be‘regdily converted into the form dffthe station net
load plotted against the gross load as indicated in Fig.3-1d. Then,
by plotting net load (MW) against input (KCAL per hour) in Fig. 3-le,
the performancedcharécteristic of the station‘as an integral unit

is determined.

From the basic input-output curve the more famiiiar heat-rate
curve may be derived directly by taking from each load the corres-
ponding input; then

H, = ,.%_ KCAL per KiWhr (3-1)

where I:£ the input energy in XCAL/hr,and

L the gross load in MW

is plotted against the corresponding value of L as shown in Fig. 3-17.

2. Load division

A systen having more than one similaf.generating units has
the proper division of load as a problen. - Improper load division
may appreciably decrease the thermal effibiency of the system as
a whole. For maximum economy the total loazd should be divideq among
the units such that the combined input in minimum, It.was shown

in many texts that, for a minimum combined input to carry
a given combined output, the slopes of the inpﬁt-outﬁut curves for

each unit must be equal. This can shown ass
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The slopes of these curves are the incremental rates, IR.

For simplicity without loss of generaiity, only two>unitsr
in a plant are considered. An easy way for oBtaining an economic
operation can be found by plotting the incremental-rate curves.for
the two units, then the combined incremental-rate curve is plotted
by adding up the.loads at éaéh incremental rate and plotting the
sum against the particular incremental rate. The Load-division
schedule with the aid of these curves may be presented. This method

of Load division can be extended to include any number of the units.

7~

This graphical method looks simple but it is very rough
and cannot find out the exact numerical values for the given total
loz2d demand which is’ the computer.application of the economic dis-
patching. Since the input I and incremental rate IR are nonlinear
functions of load, it is very difficult to find load, L, for a given
incremental rate, IR. fhis thesis will show how to solve these

probléms.
" (8,11,16)

Mathematical Formulation

1. Variables and their characteristics

_ In a power-generation system, the following variables are

involved inithe model:
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the number of units of fﬁe piant;

the generatédJoutpﬁt,qf‘eéch unit of the
plantiwhere is= l,...,n;;

the generation capa&ity oﬁ all units of

plant where j = l,y...,20;

fhe energy input to each unit, a fﬁnction

of the generated output of the ithkunit;

the summation of energy input of all the units;
and, ‘

the given total load demand,the summation of

generated output of all units.

In fact, all the above variables must be positive numbers or zero.

2. Objective function

The performance of any plant can be accurately described by

the input-output curve derived from tests of the individual equip-

ment. In many cases, the curve is of the form defined by

yi(xi)

or

yi(xi)

2 215 om -
¥ By gy b BioXL  BiaXKT +oeee + oA, X, (3=-3)
18 1’ooob,n;
a, x i 8 N iea it g (3-4)
5 o et o

where the values of the coefficient 2559 G Ligeeeslh @GNl J 5 0ye eyt

are constant.
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The function to be minimized, known as the objective

function of the cost function, is defined by

n t i { ”
¥ix) = 0 y.ix) (3-5)
- e (T
1= _ -
In the power plant generation problem, F can be the fuel consumption

which is the function of the load.

3 s
3, Formulation of comnsiraints
There are two types of linear constraints,

3.1 Inequality constraints

Since every unit of the power plant has capacity and stébi-
lity within its limitations, each can generate the output between
the minimum and the maximum value. Therefore, the eqﬁation hay

be written as

Xi max ) xi } Xi min i = 1,...,11; (3-6)
or
% max ~ %3 » 0
and i = 15ee0,n. (3-7)
X3 = %5 pin * O

3.2 Eguality constraint

‘Since the requirements of load in the system véry many times
during the day, the Central Dispatching Center (CDC) will inform the
power plant for the given total generation lcad. This given ‘total

load demand L, will be devided for n units within the plant.
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Thus, it can be written as

(3-8)

[N
M,
-
e
[y
1
[ o)

or
g ]
in -L = 0 (3-9)

1=73

Solution Procedure

The objective of this mathematical pfogramming is to mini-
mize the total energy input function, F (the fuel consumption, for
example). From the equality constraint of Eg. (3-8), it can be
seen that the total number of the unknown variables éan be reduced

from n to (n-1) by the equation

x = L-in (3-10)

The values of aij' 1 =1,4ee3n and j = O,...,m, in Egs. (3-3) and
(3-4) can be found by the Least-Squares Curve Fitting method which

will be shown in Chapter IV.

Nonlinear Progfamming Model

A general nonlinear programming problem can be stated in

mathematical terms as follows:

Minimize . Bx)
(3-11)
Subject to glx) % o

or in a symbolic form:

min {F(E) ' gl(;g) Y 0, i=11---aQ} 4 (3-12)
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wherein one or both functions of F(x) and g(x) must be nonlinear,

For thé load distribution problem, F(x) is derived from
Eqs.(3-4), (3-5) and (3-10) and the final equation, with its corres-

ponding derivations, is showa as follows:

* . -
y;(x,) = :E:aiaxg i=Tyaeey{n=-1) (3-13)
j=o ‘ .
m -1 k]
¥ e ___,anj[L-ixi] (3-1%)
j=o i=1 i
n-1
F(x) = i=1yi(xi) +y,(x) ke (3-15)
or
n-1 _m ) o n-1 3\j
F(E) = ZE: :E:ai.xg e :E:a L - zz:x. (3-16)
i=1 j=o 9 * §=o ™ i=1 Y

which is nonlinear.

The inequality constraints §(§) are linear as expredsed

in Eq.(3-17) and will be changed, using Eq.(3-10), into the following

form:
N dax T %Y
i=1,..-,(n-1) (3-17)
Koo e Bl )
5 i min
and
n-1 5
B pars géﬁxi - L A | - (3-18)
n-1 5
L-2 % =X, min @ (3-19)
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S7-12,16)

The Segquential Unconstrained Minimization Technique (SUMT

The basic idea of the SUMT method is the transformation of
the constrained mathematical problem in Eg.(3-11) or (3-12) into
a series of unconstraiéed minimization proﬁiem by using“certain
penalty functions for ?he constraints. To achieve this, one defines

- a modified objective function of the following form:
TR,
P(x,r) = F(x) ~r > 1n gi(g), : (3-20)
F¥=A
where r is a weighting coefficient. The summation term is the
Lootsma's penalty function. The SUMT algorithm proceeds in the
following way:

1. An initial point X within the region defined by the ineque-

" lity constraints,
gi(fo) > 0O, i=T1yee050y (3-21)

is 6hosen.

2. An initial value of r,y i.e., rc is chosen. The actual value
of r, is immaterial; one may start practically with any L)
provided that it does not make the last term of Eq.(3-20) too

small at the beginning. The value of r, used in this study is

chosen to make the last term equal to 10 per cént of F(§).

3, A minimization method which will be described in the 'next
section is used to minimize the function P(§,ro), starting from

point x_ in the direction of decreasing the value of P(x,r J-

The minimum of P(g,ro) is assumed to occur at point Xj.
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a variety of unconmtrained minimizaiion methods may be(gé%éz
However, for this study, the Brooks=-Rosenbrock's direct search

method will be used for minimization of the function P(x,r).
L, A new value of r is computed in the following way:
o
g = ST (3-22)

Usually, one chooses C in the neighborhood of 4 or 5. It is
not advantageous to choose a C which is too large, say C > 10,
since it tends to decrease the last term of P(g,r) too much
prematurely. The new coefficient r, is substituted into Egq.
(3-20) , and P(§,r1) is minimized starting from point Xqe
5. Step 4 is repeated for smaller and smallér values of r, obtained

by the formula

Sepqeal) T (3-23)

The computation is terminated when the final convergence

criterion is satisfied; i.e., when

| Plxary_ ) - Par) | < €, e>o0 . (3m2h)

k-1

where ¢ is a prescribed small number fepending on the precision

required.

Looking at Eq.(3-20), one can see that as r becomes very

small and the constraints of the problem remain satisfied,

— . 2 \ =%
PinlXer) = F . (x)+ 5» : (3-25)
where 8 is a very small number which may be made as small as desired.
As it was pointed out, the algorithm always proceeds along the points

X

x, inside the region defined by gi(i) > 0, i=1y42.,0. If even one
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- of the inequality constraints gi(g)vcomes too closé to the feasiblg
boundary, iee. gi(g) comes too close to the feasible boundary, i.e.
gi(g) 0, one can see from Eq.(3-20) that P(x,r) = e, which is con-
trary to the minimization procedure. Therefdré, as long as P(x,r).
is being minimized, the ihequaiity constraints will be satisfied
automaticallye. ‘ . A

(9,16)

New Direct Search Method to Solve Unconstrained Minimization Problem

The SUMT method described in the last section, requires
numerous intermediate solutions of unconstrained extremization problem.
One of the possibilities of performing uncohgtrained extremization
is through airect search. The most elementary version of the direct
searéh method is to search sequentially along each of the n_coér-
dinate directions and to repeat the cycle till convergence is ob-
tained. But this method is highly oscillatory and has poor conver-

gence properties.

1. Modified Direct Search lethod

Rosenbrock, Hooke and Jeeves found that the line joining
the first and last points of search in the above method is a use-
(%)

ful search direction since the oscillatory is reduced and the con=-

vergence property is better than an ordinary one.

The method is illustrated for a two dimensional case in
Fig.3-3. An iteritioﬁ consists of two parts. Starting Irom én
iﬁitial approximation §°, each coordinate direction is searched
sequentially. This part is known as the exploratory move. If a

positive displacement of any point does not yield a reduction of
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objective function the opposite direction is tried. When an’improve-

ment is noted in a difection,the movement is continued till a minimum

is located in that direction. At the end bf the series of exploratory
moves we come to a point §1. How a search is made along §1- §S_and a7

is continued till a minimum is located in that direction. This search
is called the Pattern Search. At the end of the pattern search the

procedure is restarted.

FIG. 3-3%. New direct search method
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2. Random Search Method

Another very interesting method is the Random Search method

made by Brooks. This method is described below.

The direction of search at any point is'selected purely in
a random manner. Firstly, a unit vector for indepéndent varigbles
is chosen. The maximum step length at any move will not excéé@ the
quantity of this'unit vector and hence the maximum aliowable step
change can be fixed from practical consideration. Let U = (u1,u}§?n2’
be the step size vector. Now a sequence of n random.numbers r1,;.,r \
are generated. These random numbers between %1 are non—repetitiv;
and have a flat frequency.distribution. The components of the
search direction S are given by (u1-r1,...,unrn). If the funétion
does not show improvement in this direction the oppositeidirection
is tried. Once a decrease is noticed in a direction, movement is
taken along the direction till a minimum is boxed and theh the itera-

tion is started again..

If at a point both a random direction aﬁd'its opposite
direction do not show any decrease in the objective function, a new
random direction is geﬁerated. If (5¥n) randon directions togetﬁer
with their opposites do not yield improvement the step length is
reduced. The procedure is terminated when the sfep size is below
a speqified accuracy and the objective functioﬁ‘acéuraci and the obe~’

jective function accuracy is also achieved.
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3. New Direct Search Method

The new direct search method which is used in this study is
the combination of those two methods describéd ih the last two sec-
tioné. $he technique in the random search method is used for finding
optimum value but, instead of a random manner as the direction of
search, the modified direct search method is used. With the stép
length, Sy the step-size vectqr S = (s1, 52,...,sn) has s; g 5,
Starting from an initial approximation go; each coordinate direction
is searched sequéntially with § to a point 51 by exploratory moves.
Then, a pattern search is made along 51-50 and the procédure is
restarted. If both the exploratory move and the pattern search do
not yield improvement, the step length 8, is reduced. As in random
search method, the procedure is terminated when the step size and
the decreasing of objective function is smaller than the specified

accuracye.

The Decision Rule and Minimization Algorithm

The new direct search algorithm described here is the con-
bination of Lootsma's method and the Brooks-Rosenbrock's new direct
\search method. The Lootsma's method is a techmique for formulating
" the penalty function as deséribed in Eq.(3-20) of SUMT which used
Brooks-Rosenbrock's new direct search method described in the last
section for seeking the optimum point. The nonlinear programming
problen as formulated in the 'Nonlinear Progranmming Model' section

will be éolved.
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The result of this algorithm will be the load distribution -

operation of the power plant. The following variables are defined:

o a feasible solution before exploratory move with
dimension nj
b a feasible solution after exploratory move with

dimension nj

P(x) the augmented objective functionj

Ty the_penalty factor;

S . the step size vector which has (n-1) elements;
S0 a step length of step size vector; and

Sm the maximum element of X=X,

Then, the step by step procedure for this minimization

algorithm may be described as follows:

Step l.‘ Read 2ll the input data: the number of units of
plant(n), the given{total gross load (L), the capacity of plant
which is the miﬁimum generation (xi min) and the maximum generation
'(xi max)' the maximum degree of the polynomial.quation (n), coeffi-
cients (aij) of the polynomial equation whigh is the characteristics

of input-output equation of each unit of the plant.

Step 2. Set the starting point of generation load distribu-

tion (xo) within the capacity constraints, i.e., the region §(§0)> 0

or
X el SRR . s
i max io i min
and
: n-1
L 1 p-d > L - x
n min EE: io n max
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Step 3. Compute the initiai value of penalty factor,.re,A
to make the penalty term equal to ten per cent of the objective

function F. That is,

q | ; % BT, . v
ro = 1ng;(x) = 10% 02 Flx,)
1 F(§°)
i 10.
or
F(x,)/10.
Tr =
1/
> 1a g lx)
151
where
n-1 m j i} n-1 j
F(}fo) n Z algxio +Zan3(L -leo)
:1 J:Q 3:0 1:1
.and
f 3
x1 max x’Io
X(n=-1max ~ F(a-1)o
x10 = X1 min
§(§o) =2 3 :‘
Xen-1e, - X(a~1min G
: n-1 Pt
Fennedliive :E:xio_ B
A ]
B ok kI
L - ™ . - X -
: io n min
i=1 :

Step 4. Select the step length Sye The s?ep length 5 _= 1

is used hereins.

Step 5. Set the stepfsize vector S for.éxploratory moves,

1.4,
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So when i = number of moving co-ordinate
" 0 when i = other co-ordinate.

The numbef of moving co-ordinate is increased until the last co-or-

dinate has been moved. It is the end of exploratory moves.

Step 6f ‘Move x with the step size S from Eoldto X ew?

i.e.,
= S
Enew : Eold T E

and %

Step 7. Check P which is the function of X014 -new

for the success of decreasing value. If P(:_:new) <P(z_c°ld);sg

x to x .. then go to step 6; otherwise go to step 8(a).

moves

Step 8. If P(x) fails to decrease in the first move, go to
step 8(b), if it is not the first move go to step 9.

(b) Reverse the direction of step size vector

3 = -8

then go to step 6 to move x again.

Step 9. Check for exploratory move exit, then go to step
lO(a), otherwise go to step 5 to set § for moving x of the next

co-~ordinate,

Step 10. (a) If the pattern search has never been set up
after explorafory ﬁo&es, g0 td step 1Q(b); othetwise_gd to step
11(a). '

(b) Set the step size vector S for pattern search

i.eo, (

3 £
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0

o

I (52" 51)
, m
where So = ©Step length; §
X g
Sm = maximum value of elements in (52_54)' ‘4
X, = feasible solution before exploratory moves; and,

X, = feasible solution after explorétory noves.,

Theh go to step.6.

Step 11. (a) 1If P(E)ffails to degrease in both the explo-
ratory moves and the pattern search then go to step 11(b), if there

is some success go to step 11(¢).

(b) If the step length is smaller than the speci-

fied accuracy, then go to step 12(a); otherwise go to step 11(d).

(¢) If the decreasing value of P(x) before explo-
rétory moves and after the pattern search is smaller than the speci-

fied accuracy, then go to step 12(a); otherwise go to step 1l(e).

(4) Reduce the step length, i.e.,

2 'So old
0 new o
where
¢ ' q,

- The value of C chosen should not be too large; otherwise the number

of iterations will be greatly increased.

(e) Restart the first move of exploratory moves,

i.e., setting the number of moving co-ordinate = 1, then go to step’ 5.
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Step 12, ‘(a) If the final convergence is achieved, i.e.,
where the specified accuracy € » O, the;computaiion fs finished; |/
otherwise) go to step 12(b). ]

(o) Reduce the penalty factor T, iee.,

Tx

et 1T T
C > 1, then go to step &.
Usuéily C=1%4o0or 5. IfCY)10, it tends to decrease the penalty

term too much prematurely.

Considerationlof Emergency Conditions of Power Plant

Sometimes the generation load cannot be varied as required,
since there are some emergency conditions to limit the generation
load. For steam power plant there are two kinds of abnormal situa-

tions.,
" l. Routine

The machine must be tested periodicaliy t6 find abnormal
canditions. The generation load must keep constant in ihis condition.
The machine which musf be fested frequentl& and very.carefully is
the steam turbine. ﬁsually, thevoufput'is reduced to half generation

load.

Sometimes the periodic ¢éstingiof pathines; for.ekampley: the:-.

generator, boiler and air heater, could be carried out when a unit

| 17250751
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of the power plant is shutdown for the purpose of chécking.

Another example is the condenser backwashing which reduces
the efficiency of steam condensing, so that the generéting load
muét be reduced to the safety limit; otherwise a low condensep

vacuum is shown. This is an emergency condition.

2: Emergencz

In case of emergency,.the!generated load must be reduced
imam ~ " 7 *a the 8afety region, of unit is shutdown, if necessary.’
Exanples of emergency cases which may occur are low condenser
vaéuum, burner tripping and defects in some important parts of the

power plant.

Both routine and emergency conditions above must keep the
output within a limit or the unit shutdown if necessary, both of
which affect the calculation of the optimum load distribution. Fo:
the unit shutdown case the unkndwn variables are reduced to the
numbers of the unit remains. For the limitation of generation load
within the safety region, the inequality constraints have to be
reset. OSubsequently, the algorithm used is in the same manner ,

both in the 'Decision Rule and the Minimization Algorithm'.
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