CHAPTER III
LOCALLY CYCLIC GROUPS

The materials of this chapter are drawn from referemce

[61].

The simplest groups are the cyclic groups and these are
either the additive group Z /of the integers or the additive
group ZZWLof Z module m for some integer m > O.

In this chapter, we¢ discuss another class of simple
groups and characterize/these as subgroups of the additive

rationals (Q or of the additive group i%éz.

341 Definition. A group.ds-said to be locally cyclic if

every finitely generated-subgroup-—of it is cyclic; or equiva-
lently, every pair/{or every finite!/nmumber) of elements of

the group is contained in a cyclic subgroup.

3.2 Exgmples. 1. Cyclic groups are locally cyclic.

2e QQ is locally cyclic.

Proof : Let = s % be in Q; « Then g and E are both in
— n
1
the cyclic subgrou [———] of .
y group | — Q
3.3 Lemma. An ascending union L)GN of locally cyclic

xER
subgroups %x of a group G is locally cyclic.
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Proof : Since an ascending union of subgroups is a subgroup,
we only need to check the condition of 3.1 .
Let a, b be in }E:‘AG"‘ . Then a € GB’ and b € G]3 for
some ¥ , PB €A, Ue may assume that G}CZ G, (see 2.1).

P

Then a, b € GB so that a, b € [c¢] for some ¢ €& GP . Since
[C] . \~}qx y the ascending union is locally cyclic.

XCA

3.4 Lemma. Locally cyclic groups are abelian.

Proof : This is an-immediate consequence of the fact that

cyclic groups are abelian.

3¢5 Lemma. Subgroups/ofrlocally cyclic groups are locally

cyclic.

Proof : Let A be'a-subgreup—ef -loeaglly cyclic group G. Let
a, b € Aj; then alllb € -feJfor some c € G. Therefore
a, b € [c] (] A" which is a subgroup of cyclic subgroup of A.

This proves that A is locally cyclic.

3.6 Lemma., Homomorphic images of locally cyclic group are

locally cyclic.

Proof : Let H be a homomorphic image of locally cyclic group

G, where © 1is the given homomorphism. Let ¢ c, € H, then

1* 2

cq = e(a) , c, = e(v) for some a, b€ G. Since a,b€ G, then

there exists d€ G such' that a, bg [d]. Let ¢ = 6(d) ; then
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¢ € H, Hence [c¢J is the homomorphic image of [d ] under ©

such that Ci1s C5 € [c¢] 4 that is, H is locally cyclic.

3.7 Lenmma. A locally cyclic group is either torsion or

torsion-~free.

Proof : If a is a non-zero element of finite order, and b an
element of infinite order, then the group generated by a and
b is not cyclic, for if-it(dis-a cyelic group [c¢] , then

a = mc, b = nc. Hence ¢ /is of both infinite and finite order,

which is a contradiction: ,"Therefore the lemma is proved.

Next we prove the main theorem of this chapter.

3.8 Theorem. A group’ is locally)cyclic if and only if it is
isomorphic to a subgroup of ‘a homomorphic image of the group

of additive rationals.

Proof : 1In view of the Lemmas 3.5, 3.6 and Example 3.2 a
subgroup of a homomorphic image of the additive rationals is
locally cyclic.

Conversely, suppose G is a locally cyclic groups. Then
by Lemmas 3.4 and 3.7 G is abelian and is either torsion or
torsion-free.

In the case that G is torsion, then by theorem 2.9 G

is the direct sum of its p~components Gp. Hence none of its
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primary components can be decomposable; by Theorem 2.1k .
Therefore Gp is p=cocyclic by Theorem 2,15.

It is resulted from Theorem 2.13 that G is isomorphic
to a subg*oup of a homomorphic image of the group of additive
rationals.

If G is torsion-free, then for any element a of G and
any n in ZZ , the set of hatufal nunbers, there is at most
one element x in G such-that)nx-=a ; for if nx = ny = a ,
then x = y, by 3.4 __and 2:/6 (b)

Now let ¢ # O’be/a’fixed element of G and define .

to be the element of /G/such that ncn = ¢ 1if there is such an

element ; otherwise define cn to be O, Then [{cn/n.GZZ}] G ;
for if x is in G, since [{x,c}] is cyclic, there is a
generator a of [{X, 0}] and-—a natural number n with na = ¢
it follows from the'above remark that a = c, so that x ¢ [cn] .
Now, for each integer i 7 1 Gi is the cyclic group
[{cl,..., ci}] 2 [ai] AN Hen Gi“vGi+l , and there are

natural numbers mi such that a, = m

.&. -« If follows that
i i7di+1

%)
there is an isomorphism between G = LJ Gi and
i=1

i=1
ﬁ;ﬂ mil// 3 = Ly 24 iy m, = lﬁj of the additive rationals,
=0

i-1 .
where a; corresponds to 'ﬂb mk1 . This proves the theorem,
k=

At last, consider the additive group of real numbers.

Since the additive group of real numbers is not isomorphic to
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any subgroups of the additive group of rationals, it then
follows by Theorem 2.0 that the additive group of reals is

not locally cyclic.

ML.’)
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