CHAPTER II

PRELIMINARIES

The materials of this chapter are drawn from references
-
(13 ,r23,[s5],.6].

To make this thesis essentially self contained, we
recall some relevant notions and facts from group theory.

However we first recall the all important Zorn's Lemma.

2.1 Definitions. A re¢lation s on a set S is said to be
transitive if for any/a, b, ¢ in S with a € b and b & ¢, we
always have a £ c.” It is said to be reflexive if a £ a for

each element a in S; and it is said to be antisymmetric if for

any elements a, biof S, a S b and b < a implies a = b.

A partially ordered set is a pair (S, £ ), where S is

a set and where < 1is a transitive, reflexive and antisymmetric
relation on S. 1If no confusion can arise, we usually say that
S is a partially ordered set.

A linearly ordered subset or chain of a partially

ordered set (S, £ ) is a subset T such that, if a and b are in
T, then either a £ b or b £ a., In connection with subgroups
of a group, a chain is a set of subgroups linearly ordered by
inclusion; and the union of the subgroups of such a chain is

an ascending union,
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An upper bound of a subset W of partially ordered set S

is an element u of S such that w £ u for all w in W,
An element M of a partially ordered set S is maximal if

M £ s for s in 8, implies that M = s,

2.2 Zorn's Lemma « A non - empty partially ordered set X in

which every linearly ordered subset of X has an upper bound

contains a maximal element.
We now recall some concepts from Group Theory.
2+3 Notations. Let A /be /a non - empty subset of a group G. The

set of finite products of elements of A U A-l is a subgroup of

G; it is called the subgroup generated by A and is denoted by

(Al . If A consists of a single element a, then [{a}] is

cyclic and will also-be denoted-byii[ al .

2.4 Definitions. The subgroup of elements of finite order of

an abelian group G is called the torsion subgroup of G, denoted

by tG.
An element of finite order of any group (not necessarily

abelian) is called a torsion element.

If all the elements of a subgroup are torsion elements,
the subgroup is said to be torsion; if no element, other than

the identity element 1, is torsion, the subgroup is said to be

torsion - free.



o

2.5 Definition. A group G is said to be torsion - free in the

strong semnse or shkpopgly toxsjon - free if for sach non- zero

integer n, and for any elements x,y of G, xn = yn implies x = .

2.6 Remark, (a) A group G is torsion - free if and only if for
any non - zero integer n, and for any element x of G, xt =1
implies x = 1. Consequently, a group which is torsion - free
in the strong sense is torsion (= free.

(b) Torsion-= freé abelian groups are strongly

torsion - freej; for if x4 yn holds in such a group, then

xn(> y"n = 1, and by the commutativity of the group, (xz?y—l)n= 1
Since the group is torsion - free, x 0 y-l = 1; die€uey, X = Y.

". (c) Let G be a torsion - free group, and 1 £ g ¢ G.
Let 4 ‘*u

{g7 = {xEG/xm ¢ {g] for[‘élfenon- o integer m}

r‘ ‘! /
For any x, y € g3 - {1} there ex1st‘ Qon ze)/o integers
//

m and n such that x" = yn; for if x, y ¢ <g) , then there exist
: b s t u

non - zero integers r, s, t and v such that x =g , y =g

and therefore x ° = gsu’ yst = gsu. Hence ¥ © = ySt, iees,

x" = yn for m = ru and n = st.

Convention : For the remainder of the chapter, all groups are

additive abelian.




2.7 Definitions. An abelian group G is said to be an

(internal) direct sum of its subgroups Ak, where k ranges

over some index set K, if

ie G = [&?ﬁvAk} /L%f/,j
and %;f 7
ii. Atﬂ { 2{\6%. Ak] = %o.s i :
for each t € K, where K* = ~K N-{t} and O denotes the zero
of G.
In this caseZ yé APANSIE = o K and call the A

k€K 'k k
(direct) summands of &./ 'Tf ¥ = { N2, ees 4 1 k , we shall
A
n

Write G = Al @ 1:\2 ED oo @

A group G is said.-to-be-decomposable if it is a direct

sum of some of itsyproper—subgroups.— Otherwise G is said to

be indecomposable,

2.8 Definitions. The subgroup of elements of p-power order,
p a fixed prime, of an abelian group G is called the
B—component of G.

If each element of any group G (not necessarily abelian)

has order a power of p, then G is called a p-group.

2.9 Theorem. An abelian torsion group is the direct sum of its

p-components.



Proof : Let G be an abelian torsion group, and for each

prime p,y let

Gp = { g € G/ g has order a power of p }.

Then obviously O € Gp’ and for any elements x, y of Gp’ there
exist non - zero integers .i» , n such that ?nx = 0= p Yo
Hence pn+m (x + y) = 0, that/ is, the order of (x + y) is a
power of p, that is GP is—a subgroup of G Moreover, Gp <
a p~corponent,.

We will show that/ /G = :; G , wherc T 25 ths sot
of prime numbers.

a. Let g be a’/non = zers elcment of G, Since G is

torsion, the order un of g-dis—finite. Let

= =S Y.,
n pl - p2 v ° 0 pk‘ 9

o~

where p, ¢ Y and let n, = n/ ﬁz e = 1y 2, ees 5 ke Then
the greatest common divisor of the 0y nz,..., n, is 1, ~nd
O

therefore there exist integers T L A o such that

1 = ‘g‘fvn then = “§'“’n Now % o n =
£- Ny THER B o b A - R - L

cxing = 0O so that the order of ~n.g devides p}, that ic

the order of cKinig is a power of Py hence f'inig helongs

to G .

Py

tr Pl

Thus g belongs to l%J G | , that is G is a subgroup

of [éj Gp] « Since the reverse inclusion is obvious,
e



cC [P’%;@GP] ;

be We are left to show that for each g ¢ ﬁ’,

Gqﬂ[%(&% . %o}, where ﬂ)*= T \%qf)

Let x € G (}{U,GT . Then x =§:—O(g
a' 'l pep PJ

1::1 ii’

where 84 € Gp and =(; are integers. The order of x is a
i
n
power of q, while the order of ZZCXigi is a product of powers
=
of i=1, 2 . ~Thus G = X " n for some
Pi’ = Ly Cheeey o g9 = Py P2 seie Do >

integers X , ¥, , 7.¢#7%//, which ean not happen unless

X = '7; = 0 for ald A H7L2, ..s%n. Hence x = O, that is

Gqﬂ(p%}f Gp:‘ = {O} forall g € P and /E’{: ﬂ?\ %q’;’ .

2.10 Example and Definitieoms==Tt-is easy to see that the group
@?fz of the additiwe-abelian-—group @Q of rationals modulo the
additive abelian group Z —~of-integers' is torsion so that, by

Theorem 2.9, we have

Ch-z 0 ),

PR

where P is the set of all primes.

A group is said to be of type ﬁ“ if it is isomorphic to

(Qgézlpand the symbol (7fP®2will be used to denote any such

group.

(p)

For each p ¢P , let A be the set of all rationals

T in [O, 1[ whose denominator is a power of p. Then clearly



AP (%)Pﬂ ,[o , 1[ ;

is the set of representatives of the cosets of

(p)

i.eo, A
(@BQZ)P which are in [O, l[ . Thus the map X +~» x - EJ{H,
where K:xﬂ is the greatest integer less than or equals to x,
from (@%Z)P onto A(p) induces an isomorphism of the group
(Q%éz)Peznd the group A(p) with the binary operation which is

just the ordinary addition in (Y /modulo 1.

2.11 Definition. A group-G7/is said to be p- cocyclic if and
only if G is isomorphic to 6”(pn) for some n = 1, 2, seey ¢y
where p .is a prime and where & (k) denotes a cyclic group

of order k.

2,12 Remarks : For each positive integer n, let

I
a = =
n n
b
Then - pay U EENL IS0 H(mod Z )
and for n > 1, pa =" an—l .
Hence a  has order p” so that [2,] = G (p") for each

positive integer n. (We identify isomorphic groups) .

~ — - S o
(a) o [alj C[az] Coee C_[an'lc...co(p
in fact, [ak]c: [an] for any integers k and n with k < n,

Proof : The case k = n is obvious; assume k < n. It then
n-k
follows that the element pn-k a_ = £ of [a 1 is just a
n n n
B

k
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so that ‘[ag]c: [anl as required.

O N PR N S g ¢

oo
Proof : We only need to prove that o (p) i:{ [an] ;
since the reverse inclusion follows from (a) .

Let x € ¢ (p™) = AP) (gee 2.10). Then x = m/p" for
some non - negative integers m , n with m < pn, so that
x € [an] .

(¢) The only non-=-zero proper subgroups of O/(poo)

are the finite cyclic subgromps G (p), for n = 1, 2, 3, see

Proof : Suppose A is/a/non =/ zero proper subgroup of 6/(poo).

If A contains all the als then

A D &:{[-an] =0 ) , (by (b))

so that we must havejran n such that ‘an ¢' A . Let m be the
smallest integer which . SO é: A w Then a, € A so that
[am] C A, Togeonglude, we willypshow that, A [am] « fB0q

G (p™°) U A :j?((pw) \ (am‘} .

First, note that it follows from (a) and the choice of m

a (% A
n

for all n > m + 1.

that

Suppose to the contrary that there is a y in

¢ (>) N [a] and in 4. Then
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vo€ [ N[ay]
for some k > m + 1 by (a) and (b). Thus

2, € [3] = [v] C 4

contradicting the above remark.

2.13 Theorem . The additive group d%/i{ of rationals modulo
1l is isomorphic to a direct sum , of p=-cocyclic groups, one
for each prime. Moreover, group-is isomorphic to a subgroup
of a%/éz if and only if-it/is a direct sum Of p-cocyclic

groups;

Proof : The first statementof' this theorem follows from
2410 and definition 2411.

Thus it remaias to-prove-the second statement. We have
already shown in 231X0—that ZS&%Z is—torsion; hence subgroups
of Q%éz are also tlorsion,

Then by Theorem 2. we! havethat & = = G (p%)

y % N7 spC P
and that any subgroup H of QBGZ is the 'direct sum of its
p-components @ H = > H® , where ﬂ7 is the set of

e P
prime numbers. Hence each Hp is a subgroup of & (p>°) and,
therefore, is  p=-cocyclic by 2.12 (c).
Conversely, if a group G is a direct sum of p=-cocyclic

groups Gp. Then GP‘C: 6Yp°°) by 2.12 (a). This inclusion

map then induces an isomorphism of G ='%§éGp onto a
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subgroup of I%Pd’(p ) = @/Z ’

Thus the theorem is compietely proved.

2.14 Theorem. Let G be a decomposable p-group, for some
prime p. Then no two elements, different from O, from distinct
summands (of the same direct sum decomposition) of G can belong

to a common cyclic¢ subgroup |of G

Proof : Let A and B bﬁ:@ist;ndfiéﬁmmands of G, and
G=A @ B @ C..Supposs/there exist 0% a € A and
0 :#b € B with a, b/g 1t Afor some O #+ 8 € G, where [g]

- R | / /
denotes the cyclic group penerated by g. Let g = a + b + ¢,

/ / 7 ] 'A’ X

for some a in A, b 7ig B/and ¢ in C. Since a, b € [g}}then
a = mg, b = ng, for sbmé;nonésefé integers m and n. It then

N / V1 I /
follows that a = ma—and=—b=—nb 5 0(b)) divides m and 0(a’)

H, ,,\\\\__. / . ;]_/
divides n, where ol%) denctes the dBber of x. If 0(a’) = 0("),
then O(a’) divides m and O(v') divides n so that a = O = b,

/
contradicting the choice of a and b. Hence 0(a’) #‘O(b ).
: . / /
Without loss of generality we shall assume that 0(a”) < O(b ).
X /

Since both 0(a ) and O(b”) are powers of a fixed prime p, 0(a’)
divides m also, thus a = O, contradicting the choice of a.
Hence in any case, we have a contradiction, and the theorem

is proved.
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Corollary. Any p-cocyclic group is indecomposable.

Proof : This is just a consequence of Theorem 2.14 with the

aid of Remark 2,12 (b).

Moreover, the converse of this Corollary holds for
p~primary group.
2015 Theorem. A p-primary group is indecomposable if and only
if it is p=-cocyclic.

We shall devobe tHe remainder of this chapter to
complete the proof of this theorem.
Definitions. Let G be ja group, an element x in G is divisible
by an integer n if theré-exists én clement y in G with ny = x.

A group G isidivisible if forevery x in G, x is

divisible by every integer n.

A divisible subgroup is @ subgroup which considered as

a group is divisible.

A group is reduced if it contains no (non-zero) divisible

subgroups.

Remarks. a) The element O of any group is divisible by any

integer,
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b) If x is an element of a group G of order m, then
it is divisible by any integer prime to m; for if n and m are
relatively primes, there exist integers a, b such that

an + bm = 1, hence anx + bmx = x and we have n(ax) = x.

Lemma A. A divisible subgroup of a group G is a direct

summand ¢

Proof : Let H be a divisiblé/ subgroup of G. We consider
the set B of all subgreups L/ of G which satisfy H N L =§'O} .
B is not empty since ?O} is in B. We partially order B by
set-theoretical inclusion,, Suppose ?Li} is a chain in Bj; let
M be the set-theoretical union of the Li's. Two things need
to be verified. oA Yot
S PIRN

a) M is a subgroup of ‘G. We take x and y in M and
have to show that x - y is in M. Now-x and y are in M so
that x is, say, in Li' and .y in Lj' But Li and Lj are compa-
rable, say Li « Lj' Then both x and y are in Lj’ and so is
X - y. Hence x - y is in M.

b) HAM ={0]  This follows from the fact that every
element of M is in one of the Li‘s and H N Li = %O} .

Hence M is a upper bound for %Li}. By Zorn's Lemma,
we conclude that B contains a maximal element, say K. We are

left to prove that {H U K] = G . We suppose the contrary.

L 7288417
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Then there exists an element x in G which is not in [HL’KJ .
and it follows that x is not in K Let K = [KU{x}] . K
properly contains K, and in fact, K/ consists of all elements
k + nx where k is in K and n is an integer. By the maximality
of K we know that Hf7K<¢ 20} . Hence there exists a non-zero
element h in H(]K/such that h = k + nx « Thus it follows that
nx is in (HLJK]. We may suppose that n is the smallest posi-
tive integer such that nx ¢ [HUK] . Hence n > 1, let p be

a prime dividing n, and Wwrite y = (n/p)x. Thus y is not in
[HUKY , but py = nx'= %4 k. . By the divisibility of H we
Then z

may write h = ph_, “for some hlE H, Let z =y -h

1° 1°
is not in [HUK] whicH implies that z is not in K, but
(L pz = py - ph, =lpy =-ho - K
y
is in K. Since z(is not in K, we thea)have K = [K L)fz}]

7,
properly contains Kg) “Again HftK*-ﬂ%; hence we can find

(2) hy 5 k2 +-mz

with h, € H , hz# Ol {liky €K, and/miis an integer. It is
impossible for m to be a multiple of p, for then h2= k2+ ,sz
for some integer _[ , so that h_ is a non-zero element in

2

HNK. Hence m is prime to p; we may find integers a, b such
that am + bp = 1. We have z = amz + bpz; by (1) and (2), z

is in (HUK] , which is a contradiction. Hence G = [HUK].
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Lemma B Any group G can be written as a direct sum,
G=M @ N, where N is reduced subgroup and M is a divisible

subgroup of G,

Proof : Let M be the union of the divisible subgroups of G.
g o alo

Now [M] consists of finite sum Xyt X% e + X where each

X lies in some divisible subgroup of G. Since each X, is
divisible by arbitrary n, so/is/the sum. Thus [M]is itself
a divisible subgroup. By Lemma A, [M] is a direct summand
of G; hence G = [M} @ N, where N-is a subgroup of G, N
can have no (non-zero) /divisible subgroups, since such
subgroups of N are glso /divigible subgroups of G; i.e., N is

reduced.

Remark C. To classify all abelian groups it suffices, by

Lemma B, to classify-the divisible~and reduced abelian groups.

Lemma D. A divisible indecomposable p-group Gp is isomorphic

to g (p*).

Proof : We select in Gp an element xl of order p. Using the

divisibility of Gp, we find in succession elements X5y X

zreee

with PX, = Xq, px3 = Xy eeey and in general pX, Now

l= Xio

map x., into 1/p, x, into l/pa,..., Xy into 1/p‘,... . This

1 2

gives rise to an isomorphism between the subgroup H generated

by the x,'s , and the group cf?p°°).
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Since every element of H is of order a power of p, it
is divisible by every integer prime to p. On the other hand,
every element of H can be divided by arbitrary powers of p.
On putting these two statements together, we establish that H
is divisible. By Lemma A, Gp = H & R, but Gp is indecomposa=
ble; thus R = §o§ . Hence we have proved that Gp is isomor-

phic to 6‘2p°0).

Definition. A subgroup-H of a‘group G is pure if for any
h € H and for any integer /n, h = ny for some y € G implies

h = nhl for some h1 in/Hi

Lemma E. Let G be & group, H a pure subgroup of G, and y an
element of G/H. Then there exists an element x in G, having
the same order as y, and x* = y, where x* is the image of x

under the natural quotient map from G- onto G/H.

Proof : If y has infinite order, then any choice of an

element mapping on y will doe; So;suppose y has finite order

n, First choose any z in G with z* = y. Then nz is in H.

By the purity of H, there exists an element h € H with nh = nz

Set x = z - h.e Then x* = y, and has order n.

Lemma F. Let G be a group and H a pure subgroup of G such that
G/H is a direct sum of cyclic groups. Then H is a direct

summand of G.
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25292 ¢ For each cyclic summand of G/H pick a generator yi,'
by Lemma E, we can choose element Xy in G such that x; =¥y
and X, has the same order as vy (z* = 2z + H = {z + h/h € H-}).
Let K be the subgroup of G generated by the elements xi's.

We claim that G = H & K .

(a) G = [HUK] : Let t be any element in G. Then t*

. fini . . ~ -
is a finite sum 'SZaiyi where ai are integers Then t 5:&1
maps on O in G/H, and so-is in-H,. -Since fi:aixi ¢ K, we have
t € CHUK] .

(b) HNK = $0}%//Letiw € HAK. Then w € K so that

n
L [32
w £ 2 X .
k=1 1k 1y
where the ai are integers. Since w € H also, we have
k n
0 =w* = ;?; e
k=1 3 "3

]
1t ’Vl
=

(W]
[y

<
[

Since a, y. comes from distinct summands of G/H, a. y. = O
i Y1 - §
k "k k "k
for k = 1, 2, «eey, n. If the order of y. is infinite, a, = O;
Tk *k

if the order of y. is n , then n divides a. so that a. x, = O
i k k 3 1,4
k k k "k
since ny is also the order of X, by choice. Hence, in any
k
case,



20
n
w = ;Ei a, X. = 0O
C= i i

k

=tk
so that ENK = {0}

Lemma G. Let G be a group, S a pure subgroup of G, and T a
subgroup of G containing S such that T/S is pure in G/S. Then

T is pure in G,

Proof : Suppose t € T and t/# ox with x € G. We have to
prove that t is a multiple Of min-T. Let t* and x* be the
homomorphic images_ of t 4nd x in G/S. Then t* = nx*. Since
T/S is pure in G/S, theve éxists y & T such that y* € T/S
and t* = ny*. It fo6llows that t = ny + s for a suitahle

element s € S. Sincé s =t = ny = nx - ny, and since S is

pure in G, we conclude that-s = ns, = for some sle S. This
gives us that t =ny + ns, = aly + Sl) where y + s, ¢T, as
desired.

Lemma H. Let S be a pure subgroup of G -with nS =§Qﬂ where
B e
n is an integer aand nS = {ﬂns/’s € S%’. Then [ S UnG] nG

is pure in G/nG.

Proof : Suppose x = my where x € [SUnG | /nG, y € G/nG, and
m is an integer. We have to prove that x is a multiple of m
within [S U nG]//;G. Let us take representatives s in S of

x and t in G of y. Then s and mt differ by an element of nG:
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8 = mt + nz
for some 2 &€ G. Let r be the greatest common divisor of m
and n. Then m = rmyy = rng, with m. and n, relatively

1 1

prime; we can then find integers a and b such that am,+ bn,=

1 1
We have s = rmlt + TNz Since S is pure in G, we have
8 = Trs, with s, in S. Hence
s = rs; = r(aml+ bnl)sl = mas,+ nbs,,

and nsl_é‘ns =%O} so we have s = masl.

Passing to the quotient [S L}nG]//nG with the

notation
2" = zZ # /G,
we have
x = 8*” ¥§ (masl)*
= m(asl)*
with (asl)* = @8y e fs U nG]‘//nG, as to be proved.

Definition. A group G is of bguygded order if there exists a

(positive) integer n such that nx = O for all x in G.

Lemma I, Let G be a p-primary group satisfying prG =;O}for
some integer r. Let x be an element of order pr in G. Then

the cyclic subgroup K generated by x is pure.
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Proof : As remarked earlier, in a p-primary group, every

element is divisible by any integer which is prime to p; thus

to check the purity of K, we only have to deal with powers of p.
First we deal with elements in K which are of the form

Pix. Suppose Pix = Pjy for i <r and y in G. If j > i,

then

0O = py = p 9 (pTx)

O % pr, contradicting the

so that the order of x-isp
assumption that the order of x is br. Hence j &£ i and,
therefore,

PiX Z /o (pi-jx)
with pi_jx € K. Hencé pix is/divisible by pj in K, whenever
pix is divisible by pj in-Gs ~Note that the important fact used
is that the order 6f % is p .

Now for the general case,-tet [nx be an arbitrary
non-zero element of Ki Then we¢ can write n = mpi for i « 7
and m relatively prime to p.  Suppose

nx = mpix = pjy
for y € G and some non-negative integer j. Since m is
relatively prime to p, the orders of mx and x are the same.
By the above case, we can find an O&((mx) in the cyclic
subgroup [ mx ] such that pi(mx) = pj@{(mx) and nx is

divisible by p° in K.
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Hence K is pure in G.

Lemma J. Let G be a group, S a subgroup of G, and x an
element of G. Suppose that x and y = x + S have the same
order., Let K be the cyclic subgroup generated by x. Then

[SUK] is a direct sum.

Proof : We have to show that SNK = {0} . Suppose the
contrary that there is a rx.¢ 'K/ which is also in S. Since
rx € S, ry = O, Thus r is a multiple of the order of y, so

is also a multiple of the/order of xj; whence rx = O.
Lémma K. A group G of bounded order is a direct sum of
cyclic groups.

Proof : We may assume that: G is p-primary by Theorem 2.9.

A subset L of G will be called pure-independent if

the subgroup [L] generated by L 1is pure in G and if

(L= TR

xeL
The direct sum of cyclic subgroups [xf]as X runs over L.
Let 33 be the set of all pure-independent subsets of
Ge Partially ordered @3 by inclusion. If ? Ii} is a chain
in EB , then it can easily shown that U = [ I, is an
{ . D)
upper bound for 4 Ii} in jj « It then follows from Zorn's

Lemma that Q; contains a maximal element M. Suppose that
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M]F 6 and let s = [M] . then G/S is again 2
p=primary group of bounded order. Let x € G be chosen so
that x* = x + S is of maximal order in G/S. By Lemma I, (%]
is pure in G/S. Since S is pure in G it follows from Lemma E
that we may and shall assume that x and ¥‘heve the same order.
Since x and X' = x + & have the same order, Lemma J says that
[S L'ix}:] is a direct sums | Moreover since £ is pure and

[s u{x}] / S = [x"]ds pure imG/S, it follows from

Lemma G that [$ (J § x}_] is \pure din G. Since [Muf{x}] =
(s ix}] , we havethat// M) {x% “is a purc-independent
subset of G and M L}%x} properly contains M. The latter
contradicts the maximality of M“and, therefore, we must have
that [M] = G.

The lemma ils. now completely proved.

Lemma L. Let S and T be subgroups of G with SNT = 3()}
and suppose that [SLJTJ//E is a direct summand of G/T. Then

S i a direct summand of G.

Proof : Let R/T be such that G/T = R/T @ [SUT ]/ T. We
have [R L [SUT]] =G, RN [SUT] = T. We want to

show that G

S & R. Since R D T, we have (SUR]=

[SUTUR ]

u

G. Moreover, RNSCTRA[SUT] = T , and

hence RNSCTNS = {0} by the assumption. Hence G = S(DR
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and the lemma is proved.

Lemma M. Let G be a group and S a pure subgroup of bounded

order., Then S is a direct summand of G.

Proof : Suppose nS ="§(J} « Then by Lemma H, [SLJnG_]//nG
is pure in G/nG. Also, G/nG and all its honomorphic images
are groups of boundecd order. Hence it follows from Lemma K
that the group

H €G/nG) fCFsUnG T / nG)

is a direct sum of cyeli¢/groups. By Lemma F, [SUnG1/ nG.
is a direct summand 6f/ G/nG.,) We next note that SNnG = 50}
For if x € SN nG, x"= ng for @ome integer n and for some g in
G; by the purity of 2,/ we have -x = nsl for sone slG‘S; but

nS = 0 so that x = O, ““hpply Lemma L with nG instead of T, we

deduce that S is adirect summand of. G.

Definition. Let G 'be 'a ‘p=primary group, and x € G. We say

+1

1

that x has height n if x'is 'divisible by pn but not by pn
and that x has infinite height if x is divisible by pm for
every non-negative integer m. We will use the symbol hG(x)
to denote the height of x.

If S is a subgroup c¢f the p-primary group G and x & S,
then it is clear that hS(X) é'hG(x). However, if either the

context of the height of x is clear or else all the heights, of



x concerned are equal, we will simply use

Note that h(O)
p-primary group G has

all non-zero elements

Remarks. Let G be a

a) If x, y €G

26
hix},
= +o00 , therefore, when we say that a
no elements of infinite height

we mean

of G has finite height.

p=primary group.

and if h(x) %ﬁ h(y) , then

h(x + y) = min,% h(é@;ib(y)} .
If h(x) = h(y), them — & —
7

nix 4 y} /2 n(x).

b) G is lelsible 1f apd only if h(x) =

x &G, v /

5
+ 0O for all

P

4. N
\

o ,.A.-:_, ey
I

c) It follows from previous.remarks that a subgroup S

of G is pure in G af and only if b (x) =

rxx rv—v‘r‘I—,_/
h (x) for all x € S.

Lemma N.

for all x € S whose order is p.
Proof By Remark (c), we only

hs(x)

for all x € 8.

the above statement is true for

are less than or equal to pn.

n+l

P . Then px € S

The proof is by

has order pn

Let G be ﬁrﬁipr;mazapfaﬂfig'énd S a subgroup of G

with hs(x) £ +a0 forallx! € 3.

Suppose that hs(x) & hG(x)

Then''S'is pure in G,

need to prove that

= hG(x)

induction on n. Assume that

all elements of S whose order
Let x be in & whose order is

so that ks(px) = hG(px) =



o
say; thus
r
PxX = DpPYy
. ( r-1 r-1 3
for some y € S. If either B (p”  7y) or hG(p y) is larger
than r -~ 1, then h(px) > r so0 that both ks(pr-ly) and

hG(pr-ly) are not larger than r - 1., Hence
rbly)

IA
2]

!
=

) h, (p

: 2y ~ %
f&elther h (x) or he {x) is 15;éer

rw 4(1; follovls that both h (x) and
/fg*ﬁ »/

n(&u@f{ On the other hand, we can

write
(VY
(*) x = (BE ==
Since the element JI B i a@ order p, we have
k = h(x = pr_ ¥ o= hs(x - pr-ly)

= b.(x - pr"ly)

< + 0d.
T q& r - 1, then both hs(x) and hG(x) equal to min (k, r-1),
which follows from equatiom (*) and Remark (a). Hence
h(x) = hsﬂx) = h,(x)

= mia (k, r = 1),
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if kX F r - 1. On the other hand, if k =r - 1, then it
follows from Equation (*) and Remark (a) that
o i v B :
k=r =1 X ks(x) : hG(x).
L X = Ly
where the last inequality had been observed earlier. Hence in
any case, hs(x) = h,(x).

The proof is now comp1é£§§jby induction.

Lemma O . Let G bQJafé%ﬁfimary group. and suppose that all

elements of G of ofﬁérﬁp QavéAinfinité height. Then G is

divisible, / 9.2«

Proof : It follows fro@ Réﬁérkf(b) that we only need to show

that hG(x) = + 0O for gifiifﬁgiﬁll The proof is by induction

f 4

on ne. Assume thaﬁiQpe“abOVE“statemenﬁJis true for all elements
D\

—

of G of order less than or equal to p . Let x €G be of order

pn+l and assume that hG(x) =m < +o¢ « Then px has order

pn and, therefore, h(px) = + ©0 by the inductive assumption.
Hence we can find a y € G such that
pPx = DPYe.

Me

i

where hG(y) > m, then h.(x - y) = min f hG(x), hG(y);
On the other hand, we have p(x - y) = O so that hG(x - y) = +ob
by assumption. Thus the assumption that hG(x) < +o0 led to

two contradictory statements so that we must have hG(x) = + OO,



29

The proof is completed by induction.

Lemma P. If G is a p-primary reduced group, then G contains

a finite cyclic direct summand.

Proof : Since G is not divisible, it follows from Lemma 0
that there is an x € G of order p whose height, say m, is
finite., Then

x =Sy
for some y in G. Let B//= [y} + . Since px = O, H is a
finite cyclic subgroup/of G We will show that H is a direct
summand. Since an /elemént of H is.of order p if and only if
it is of the form  kx °, where k is relatively prime to p, and
kx = p (ky) with ky €Hyd4t-4¢ immediate that the elements of
H of order p have-the-same—height—in/H and in G. Moreover,
since h(x) <« + 0@, no-element oflH can have infinite height.
Hence, it follows from Lemma N'that H 'is pure in G. Finally,
it follows from Lemma M that H 'is a direct summand of G, as

to be proved.

Proof of Theorem 2,15

It remains to prove that if G is an indecomposable
p-primary group, then G is p=-cocyclic.

Suppose G is an indecomposable p-primary group. We
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consider two cases.
If G is reduced, then G is a finite cyclic p-primary

group by Lemma P i.ee, G is a cyclic group of order a

.
power of p.

If G is not reduced, then G is divisible since G is
indecomposable, Hence G is isomorphic to 6/?p°0) by Lemma D.

Hence, in any case, G As p-cocyclic and the theorem

is proved.
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