CHAPTER II

PRELIMINARIES

The materials of this chapter are drawn from references [1], [2], [5], [6].

To make this thesis essentially self contained, we recall some relevant notions and facts from group theory. However we first recall the all important Zorn's Lemma.

2.1 <u>Definitions</u>. A relation \leq on a set S is said to be <u>transitive</u> if for any a, b, c in S with $a \leq b$ and $b \leq c$, we always have $a \leq c$. It is said to be <u>reflexive</u> if $a \leq a$ for each element a in S; and it is said to be <u>antisymmetric</u> if for any elements a, b of S, $a \leq b$ and $b \leq a$ implies a = b.

A partially ordered set is a pair (S, \leq) , where S is a set and where \leq is a transitive, reflexive and antisymmetric relation on S. If no confusion can arise, we usually say that S is a partially ordered set.

A <u>linearly ordered subset</u> or <u>chain</u> of a partially ordered set (S, \leq) is a subset T such that, if a and b are in T, then either $a \leq b$ or $b \leq a$. In connection with subgroups of a group, a chain is a set of subgroups linearly ordered by inclusion; and the union of the subgroups of such a chain is an <u>ascending union</u>.

An <u>upper bound</u> of a subset W of partially ordered set S is an element u of S such that $w \le u$ for all w in W.

An element M of a partially ordered set S is $\underline{\text{maximal}}$ if M \leq s for s in S, implies that M = s.

2.2 Zorn's Lemma . A non - empty partially ordered set X in which every linearly ordered subset of X has an upper bound contains a maximal element.

We now recall some concepts from Group Theory.

- 2.3 Notations. Let A be a non empty subset of a group G. The set of finite products of elements of $A \cup A^{-1}$ is a subgroup of G; it is called the <u>subgroup generated by A</u> and is denoted by $A \cap A \cap A$. If A consists of a single element a, then $A \cap A \cap A \cap A$ is $A \cap A \cap A \cap A$.
- 2.4 <u>Definitions</u>. The subgroup of elements of finite order of an abelian group G is called the <u>torsion subgroup</u> of G, denoted by tG.

An element of finite order of any group (not necessarily abelian) is called a torsion element.

If all the elements of a subgroup are torsion elements, the subgroup is said to be <u>torsion</u>; if no element, other than the identity element 1, is torsion, the subgroup is said to be <u>torsion</u> - <u>free</u>.

- 2.5 <u>Definition</u>. A group G is said to be <u>torsion</u> <u>free in the</u>

 <u>strong sense</u> or <u>strongly torsion</u> <u>free</u> if for each non-zero

 integer n, and for any elements x, y of G, $x^n = y^n$ implies x = y.
- 2.6 Remark. (a) A group G is torsion free if and only if for any non zero integer n, and for any element x of G, $x^n = 1$ implies x = 1. Consequently, a group which is torsion free in the strong sense is torsion free.
- (b) Torsion free abelian groups are strongly torsion free; for if $x^n = y^n$ holds in such a group, then $x^n \circ y^{-n} = 1$, and by the commutativity of the group, $(x \circ y^{-1})^n = 1$. Since the group is torsion free, $x \circ y^{-1} = 1$; i.e., x = y.
 - (c) Let G be a torsion free group, and $1 \neq g \in G$.

Let

 $\langle g \rangle = \{ x \in G / x^m \in [g] \text{ for some non-zero integer m} \}.$ For any x, y $\in \langle g \rangle - \{1\}$, there exist non-zero integers m and n such that $x^m = y^n$; for if x, y $\in \langle g \rangle$, then there exist non-zero integers r, s, t and u such that $x^r = g^s$, $y^t = g^u$ and therefore $x^{ru} = g^{su}$, $y^{st} = g^{su}$. Hence $x^{ru} = y^{st}$, i.e., $x^m = y^n$ for m = ru and n = st.

Convention: For the remainder of the chapter, all groups are additive abelian.

2.7 <u>Definitions</u>. An abelian group G is said to be an (internal) <u>direct sum</u> of its subgroups A_k , where k ranges over some index set K, if

i.
$$G = \begin{bmatrix} \bigcup_{k \in K} A_k \end{bmatrix}$$

and

ii.
$$A_t \cap \left[\begin{array}{c} A_k \\ K \in K \end{array} \right] = \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\},$$

for each t \in K, where K* = K \setminus {t} and O denotes the zero of G.

In this case, we write $G = \sum_{k \in K} A_k$ and call the A_k (direct) summands of G. If $K = \{1, 2, ..., n\}$, we shall write $G = A_1 \oplus A_2 \oplus ... \oplus A_n$.

A group G is said to be <u>decomposable</u> if it is a direct sum of some of its proper subgroups. Otherwise G is said to be indecomposable.

2.8 <u>Definitions</u>. The subgroup of elements of p-power order, p a fixed prime, of an abelian group G is called the p-component of G.

If each element of any group G (not necessarily abelian) has order a power of p, then G is called a p-group.

2.9 Theorem. An abelian torsion group is the direct sum of its p-components.

Proof: Let G be an abelian torsion group, and for each prime p, let

 $G_p = \{g \in G / g \text{ has order a power of } p \}.$

Then obviously $0 \in G_p$, and for any elements x, y of G_p , there exist non - zero integers m, n such that $p^n x = 0 = p^m y$. Hence $p^{n+m} (x \pm y) = 0$, that is the order of $(x \pm y)$ is a power of p, that is G_p is a subgroup of G. Moreover, G_p is a p-corponent.

We will show that $G = \sum_{P \in P} G_P$, where P is the set of prime numbers.

a. Let g be a non - zero element of G. Since G is torsion, the order n of g is finite. Let

$$n = p_1^{\gamma_1} \cdot p_2^{\gamma_3} \cdot \cdot \cdot p_k^{\gamma_{\gamma_1}},$$

where $p_i \in \mathbb{P}$ and let $n_i = n/p_i^{\gamma}$, $i = 1, 2, \dots, k$. Then the greatest common divisor of the n_1, n_2, \dots, n_k is 1, and therefore there exist integers $\alpha_1, \alpha_2, \dots, \alpha_k$ such that $1 = \sum_{i=1}^k \alpha_i n_i$, then $g = \sum_{i=1}^k \alpha_i n_i g$. Now $p_i^{\gamma} \alpha_i n_i g = \alpha_i ng = 0$ so that the order of $\alpha_i n_i g$ devides p_i^{γ} , that is the order of $\alpha_i n_i g$ is a power of p_i , hence $\alpha_i n_i g$ belongs to G_{p_i} .

Thus g belongs to $\left[\bigcup_{p\in p}G_p\right]$, that is G is a subgroup of $\left[\bigcup_{p\in p}G_p\right]$. Since the reverse inclusion is obvious,

$$G = \begin{bmatrix} \bigcup_{P \in \mathbb{R}} G_P \end{bmatrix}$$
.

b. We are left to show that for each q $\in \mathbb{P}$,

where $g_i \in G_p$ and α_i are integers. The order of x is a power of q, while the order of $\sum_{i=1}^n \alpha_i g_i$ is a product of powers of p_i , $i=1,2,\ldots,n$. Thus $q^{\alpha}=p_1^{\gamma_i},p_2^{\gamma_2}\ldots p_n^{\gamma_n}$ for some integers α , γ_i , ..., γ_n , which can not happen unless $\alpha = \gamma_i = 0$ for all $i=1,2,\ldots,n$. Hence $\alpha = 0$, that is $\alpha = 0$ for all $\alpha \in \mathbb{R}$ and $\alpha = 0$.

2.10 Example and Definition. It is easy to see that the group \mathbb{Q}/\mathbb{Z} of the additive abelian group \mathbb{Q} of rationals modulo the additive abelian group \mathbb{Z} of integers is torsion so that, by Theorem 2.9, we have

$$Q/_{Z} = \sum_{P \in \mathbb{Z}} (Q/_{Z})_{P}$$
,

where P is the set of all primes.

A group is said to be of type \underline{p}^* if it is isomorphic to $(\mathbb{Q}/\mathbb{Z})_p$ and the symbol $\underline{\sigma(p^*)}$ will be used to denote any such group.

For each $p \in \mathbb{P}$, let $A^{(p)}$ be the set of all rationals T in [0,1[whose denominator is a power of p. Then clearly

$$A^{(p)} = \left(\begin{array}{c} \mathcal{O}_{\mathbb{Z}} \\ \mathcal{O} \end{array} \right) \cap \left[\begin{array}{c} 0 \\ 1 \end{array} \right];$$

i.e., $A^{(p)}$ is the set of representatives of the cosets of $(\mathbb{Q}/\mathbb{Z})_p$ which are in [0,1[. Thus the map $\overline{x} \mapsto x - [x]$, where [x] is the greatest integer less than or equals to x, from $(\mathbb{Q}/\mathbb{Z})_p$ onto $A^{(p)}$ induces an isomorphism of the group $(\mathbb{Q}/\mathbb{Z})_p$ and the group $A^{(p)}$ with the binary operation which is just the ordinary addition in \mathbb{Q} modulo 1.

2.11 <u>Definition</u>. A group G is said to be <u>p-cocyclic</u> if and only if G is isomorphic to $\mathcal{G}(p^n)$ for some $n=1, 2, \ldots, \infty$, where p is a prime and where $\mathcal{G}(k)$ denotes a cyclic group of order k.

2.12 Remarks: For each positive integer n, let

$$a_n = \frac{1}{p^n}$$

Then $pa_1 = 1 = 0 \pmod{\mathbb{Z}}$

and for n > 1, $pa_n = a_{n-1}$.

Hence a_n has order p^n so that $[a_n] = o(p^n)$ for each positive integer n. (We identify isomorphic groups).

(a) $0 \subset [a_1] \subset [a_2] \subset \cdots \subset [a_n] \subset \cdots \subset (p^{\infty});$ in fact, $[a_k] \subset [a_n]$ for any integers k and n with k \leq n.

<u>Proof</u>: The case k=n is obvious; assume k < n. It then follows that the element p^{n-k} $a_n = \frac{p^{n-k}}{p^n}$ of $\begin{bmatrix} a_n \end{bmatrix}$ is just a_k

so that
$$[a_k] \subset [a_n]$$
 as required.

(b)
$$\mathcal{O}(p^{\infty}) = \bigcup_{n=1}^{\infty} \mathcal{O}(p^n)$$

<u>Proof</u>: We only need to prove that $\mathcal{O}(p^{\infty}) \subset \bigcup_{n=1}^{\infty} \left[a_{n}\right]$, since the reverse inclusion follows from (a).

Let $x \in \mathcal{O}(p^{\infty}) = A^{(p)}$ (see 2.10). Then $x = m/p^n$ for some non - negative integers m , n with m $< p^n$, so that $x \in [a_n]$.

(c) The only non - zero proper subgroups of $\mathcal{O}(p^{\infty})$ are the finite cyclic subgroups $\mathcal{O}(p^n)$, for $n=1,\,2,\,3,\,\ldots$

<u>Proof</u>: Suppose A is a non - zero proper subgroup of $\mathcal{O}(p^{\infty})$. If A contains all the a_n , then

$$A \supset \bigcup_{n=1}^{\infty} \left[a_n \right] = O(p^{\infty}), (by (b))$$

so that we must have an n such that $a_n \notin A$. Let m be the smallest integer which $a_{m+1} \notin A$. Then $a_m \in A$ so that $[a_m] \subset A$. To conclude, we will show that $A \subset [a_m]$; i.e., $G(p^{\infty}) \setminus A \supset G(p^{\infty}) \setminus [a_m]$.

First, note that it follows from (a) and the choice of m that

$$a_n \notin A$$

for all n > m + 1.

Suppose to the contrary that there is a y in $\textit{O}(p^{\infty}) \quad \text{[a_m]} \quad \text{and in A. Then}$

for some k > m + 1 by (a) and (b). Thus

$$a_k \in [a_k] = [y] \subset A$$

contradicting the above remark.

2.13 Theorem . The additive group \mathbb{Q}/\mathbb{Z} of rationals modulo 1 is isomorphic to a direct sum of p-cocyclic groups, one for each prime. Moreover, group is isomorphic to a subgroup of \mathbb{Q}/\mathbb{Z} if and only if it is a direct sum Of p-cocyclic groups.

<u>Proof</u>: The first statement of this theorem follows from 2.10 and definition 2.11.

Thus it remains to prove the second statement. We have already shown in 2.10 that \mathbb{Q}/\mathbb{Z} is torsion; hence subgroups of \mathbb{Q}/\mathbb{Z} are also torsion.

Then by Theorem 2.9, we have that $\mathbb{Q}/\mathbb{Z} = \sum_{P \in \mathbb{P}} \mathcal{O}(p^{\infty})$ and that any subgroup H of \mathbb{Q}/\mathbb{Z} is the direct sum of its p-components: $H = \sum_{P \in \mathbb{P}} H_P$, where \mathbb{P} is the set of prime numbers. Hence each H_P is a subgroup of $\mathcal{O}(p^{\infty})$ and, therefore, is p-cocyclic by 2.12 (c).

Conversely, if a group G is a direct sum of p-cocyclic groups G_p . Then $G_p \subset \mathcal{G}(p^\infty)$ by 2.12 (a). This inclusion map then induces an isomorphism of $G = \sum_{p \in \mathcal{D}} G_p$ onto a

subgroup of $\sum_{p \in \mathbb{P}} G(p^{\infty}) = \mathbb{Q}/\mathbb{Z}$.

Thus the theorem is completely proved.

2.14 Theorem. Let G be a decomposable p-group, for some prime p. Then no two elements, different from O, from distinct summands (of the same direct sum decomposition) of G can belong to a common cyclic subgroup of G.

13

Proof: Let A and B be distinct summands of G, and $G = A \oplus B \oplus C$. Suppose there exist $0 \neq a \in A$ and $0 \neq b \in B$ with a, $b \in [g]$ for some $0 \neq g \in G$, where [g] denotes the cyclic group generated by g. Let g = a' + b' + c, for some a' in A, b' in B and c in C. Since a, $b \in [g]$, then a = mg, b = ng, for some non-zero integers m and n. It then follows that a = ma' and b = nb'; O(b') divides m and O(a') divides n, where O(x) denotes the order of x. If O(a') = O(b'), then O(a') divides m and O(b') divides n so that a = 0 = b, contradicting the choice of a and b. Hence $O(a') \neq O(b')$. Without loss of generality we shall assume that O(a') < O(b'). Since both O(a') and O(b') are powers of a fixed prime p, O(a') divides m also, thus a = O, contradicting the choice of a. Hence in any case, we have a contradiction, and the theorem is proved.

Corollary. Any p-cocyclic group is indecomposable.

Proof: This is just a consequence of Theorem 2.14 with the aid of Remark 2.12 (b).

Moreover, the converse of this Corollary holds for p-primary group.

2.15 Theorem. A p-primary group is indecomposable if and only if it is p-cocyclic.

We shall devote the remainder of this chapter to complete the proof of this theorem.

<u>Definitions</u>. Let G be a group, an element x in G is <u>divisible</u> by an integer \underline{n} if there exists an element y in G with $\underline{ny} = x$.

A group G is <u>divisible</u> if for every x in G, x is divisible by every integer n.

A <u>divisible</u> <u>subgroup</u> is a subgroup which <u>considered</u> as a group is divisible.

A group is reduced if it contains no (non-zero) divisible subgroups.

Remarks. a) The element O of any group is divisible by any integer.

b) If x is an element of a group G of order m, then it is divisible by any integer prime to m; for if n and m are relatively primes, there exist integers a, b such that an + bm = 1, hence anx + bmx = x and we have n(ax) = x.

Lemma A. A divisible subgroup of a group G is a direct summand.

Proof: Let H be a divisible subgroup of G. We consider the set B of all subgroups L of G which satisfy H \cap L = $\{0\}$. B is not empty since $\{0\}$ is in B. We partially order B by set-theoretical inclusion. Suppose $\{L_i\}$ is a chain in B; let M be the set-theoretical union of the L_i 's. Two things need to be verified.

- a) M is a subgroup of G. We take x and y in M and have to show that x y is in M. Now x and y are in M so that x is, say, in L_i , and y in L_j . But L_i and L_j are comparable, say $L_i \in L_j$. Then both x and y are in L_j , and so is x y. Hence x y is in M.
- b) H \cap M = {0}. This follows from the fact that every element of M is in one of the L 's and H \cap L = {0}.

Hence M is a upper bound for $\{L_i\}$. By Zorn's Lemma, we conclude that B contains a maximal element, say K. We are left to prove that $\{H \cup K\} = G$. We suppose the contrary.

Then there exists an element x in G which is not in [HUK], and it follows that x is not in K. Let $K = [K \cup \{x\}]$. K' properly contains K, and in fact, K' consists of all elements k + nx where k is in K and n is an integer. By the maximality of K we know that $H \cap K \neq \{0\}$. Hence there exists a non-zero element h in $H \cap K$ such that h = k + nx. Thus it follows that nx is in [HUK]. We may suppose that n is the smallest positive integer such that $nx \in [HUK]$. Hence n > 1, let p be a prime dividing n, and write y = (n/p)x. Thus y is not in [HUK], but py = nx = h - k. By the divisibility of H we may write $h = ph_1$, for some $h_1 \in H$. Let $z = y - h_1$. Then z is not in [HUK] which implies that z is not in K, but $K = [K \cup \{z\}]$

is in K. Since z is not in K, we then have $K' = [K \cup \{z\}]$ properly contains K. Again $H \cap K \neq \{0\}$; hence we can find

(2) $h_2 = k_2 + mz$

with $h_2 \in H$, $h_2 \neq 0$, $k_2 \in K$, and m is an integer. It is impossible for m to be a multiple of p, for then $h_2 = k_2 + \ell pz$ for some integer ℓ , so that h_2 is a non-zero element in $\ell \in K$. Hence m is prime to p; we may find integers a, b such that am + bp = 1. We have z = amz + bpz; by (1) and (2), z is in [HUK], which is a contradiction. Hence G = [HUK].

Lemma B Any group G can be written as a direct sum, $G = M \oplus N$, where N is reduced subgroup and M is a divisible subgroup of G.

Proof: Let M be the union of the divisible subgroups of G. Now [M] consists of finite sum $x_1 + x_2 + \ldots + x_k$ where each x_i lies in some divisible subgroup of G. Since each x_i is divisible by arbitrary n, so is the sum. Thus [M] is itself a divisible subgroup. By Lemma A. [M] is a direct summand of G; hence $G = [M] \oplus N$, where N is a subgroup of G. N can have no (non-zero) divisible subgroups, since such subgroups of N are also divisible subgroups of G; i.e., N is reduced.

Remark C. To classify all abelian groups it suffices, by
Lemma B, to classify the divisible and reduced abelian groups.

Lemma D. A divisible indecomposable p-group G_p is isomorphic to $G(p^{\infty})$.

<u>Proof</u>: We select in G_p an element \mathbf{x}_1 of order p. Using the divisibility of G_p , we find in succession elements \mathbf{x}_2 , \mathbf{x}_3 ,... with $p\mathbf{x}_2 = \mathbf{x}_1$, $p\mathbf{x}_3 = \mathbf{x}_2$, ..., and in general $p\mathbf{x}_{i+1} = \mathbf{x}_i$. Now map \mathbf{x}_1 into 1/p, \mathbf{x}_2 into $1/p^2$,..., \mathbf{x}_i into $1/p^i$,.... This gives rise to an isomorphism between the subgroup H generated by the \mathbf{x}_i 's , and the group $O(p^{\infty})$.

Since every element of H is of order a power of p, it is divisible by every integer prime to p. On the other hand, every element of H can be divided by arbitrary powers of p. On putting these two statements together, we establish that H is divisible. By Lemma A, $G_p = H \oplus R$, but G_p is indecomposable; thus $R = \{0\}$. Hence we have proved that G_p is isomorphic to $G(p^{\infty})$.

Definition. A subgroup H of a group G is pure if for any $h \in H$ and for any integer n, h = ny for some $y \in G$ implies $h = nh_1$ for some h_1 in H.

Lemma E. Let G be a group, H a pure subgroup of G, and y an element of G/H. Then there exists an element x in G, having the same order as y, and $x^* = y$, where x^* is the image of x under the natural quotient map from G onto G/H.

<u>Proof</u>: If y has infinite order, then any choice of an element mapping on y will do. So suppose y has finite order n. First choose any z in G with $z^* = y$. Then nz is in H. By the purity of H, there exists an element $h \in H$ with nh = nz Set x = z - h. Then $x^* = y$, and has order n.

Lemma F. Let G be a group and H a pure subgroup of G such that G/H is a direct sum of cyclic groups. Then H is a direct summand of G.

<u>Proof</u>: For each cyclic summand of G/H pick a generator y_i , by Lemma E, we can choose element x_i in G such that $x_i^* = y_i$ and x_i has the same order as y_i ($z^* = z + H = \{z + h/h \in H\}$). Let K be the subgroup of G generated by the elements x_i 's. We claim that $G = H \oplus K$.

- (a) G = [HUK]: Let t be any element in G. Then t* is a finite sum $\sum a_i y_i$ where a_i are integers. Then $t \sum a_i x_i$ maps on O in G/H, and so is in H. Since $\sum a_i x_i \in K$, we have $t \in [HUK]$.
 - (b) $\frac{\text{Hok} = \{0\}}{\text{Mos}}$: Let $w \in \text{Hok}$. Then $w \in K$ so that $w = \sum_{k=1}^{n} a_{i_k} x_{i_k}$

where the a are integers. Since we H also, we have $0 = w^* = \sum_{k=1}^{n} a_i x_k^*$ $= \sum_{k=1}^{n} a_i y_i$

Since $a_{i_k}y_{i_k}$ comes from distinct summands of G/H, $a_{i_k}y_{i_k} = 0$ for k = 1, 2, ..., n. If the order of y_{i_k} is infinite, $a_{i_k} = 0$; if the order of y_{i_k} is n_k , then n_k divides a_{i_k} so that $a_{i_k}x_{i_k} = 0$ since n_k is also the order of x_{i_k} by choice. Hence, in any case,

$$w = \sum_{k=1}^{n} a_{i_k} x_{i_k} = 0$$

so that $H \cap K = \{0\}$

Lemma G. Let G be a group, S a pure subgroup of G, and T a subgroup of G containing S such that T/S is pure in G/S. Then T is pure in G.

<u>Proof</u>: Suppose $t \in T$ and t = nx with $x \in G$. We have to prove that t is a multiple of n in T. Let t^* and x^* be the homomorphic images of t and x in G/S. Then $t^* = nx^*$. Since T/S is pure in G/S, there exists $y \in T$ such that $y^* \in T/S$ and $t^* = ny^*$. It follows that t = ny + s for a suitable element $s \in S$. Since s = t - ny = nx - ny, and since S is pure in G, we conclude that $s = ns_1 = for$ some $s_1 \in S$. This gives us that $t = ny + ns_1 = n(y + s_1)$ where $y + s_1 \in T$, as desired.

Lemma H. Let S be a pure subgroup of G with $nS = \{0\}$, where n is an integer and $nS = \{ns/s \in S\}$. Then $[S \cup nG] / nG$ is pure in G/nG.

Proof: Suppose x = my where $x \in [S \cup nG]/nG$, $y \in G/nG$, and m is an integer. We have to prove that x is a multiple of m within $[S \cup nG]/nG$. Let us take representatives s in S of x and t in G of y. Then s and mt differ by an element of nG:

$$s = mt + nz$$

for some $z \in G$. Let r be the greatest common divisor of m and n. Then $m = rm_1$, $n = rn_1$, with m_1 and n_1 relatively prime; we can then find integers a and b such that $am_1 + bn_1 = 1$. We have $s = rm_1t + rn_1z$. Since S is pure in G, we have $s = rs_1$ with s_1 in S. Hence

 $s = rs_1 = r(am_1 + bn_1)s_1 = mas_1 + nbs_1,$ and $ns_1 \in nS = \{0\}$, so we have $s = mas_1$.

Passing to the quotient $[S \cup nG]/nG$ with the notation

$$z^* = z + nG$$

we have

$$x = s^* = (mas_1)^*$$

= $m(as_1)^*$

with $(as_1)^* = as_1^* \in [S \cup nG] / nG$, as to be proved.

<u>Definition</u>. A group G is of <u>bounded</u> <u>order</u> if there exists a (positive) integer n such that nx = 0 for all x in G.

Lemma I. Let G be a p-primary group satisfying $p^rG = \{0\}$ for some integer r. Let x be an element of order p^r in G. Then the cyclic subgroup K generated by x is pure.

<u>Proof</u>: As remarked earlier, in a p-primary group, every element is divisible by any integer which is prime to p; thus to check the purity of K, we only have to deal with powers of p.

First we deal with elements in K which are of the form P^ix . Suppose $P^ix = P^jy$ for i < r and y in G. If j > i, then

$$0 = p^r y = p^{r-j} (p^i x)$$

so that the order of x is $p^{r-j+i} < p^r$, contradicting the assumption that the order of x is p^r . Hence $j \le i$ and, therefore,

$$p^{i}x = p^{j}(p^{i-j}x)$$

with $p^{i-j}x \in K$. Hence p^ix is divisible by p^j in K, whenever p^ix is divisible by p^j in G. Note that the important fact used is that the order of x is p^r .

Now for the general case, let nx be an arbitrary non-zero element of K. Then we can write $n=mp^{i}$ for i < r and m relatively prime to p. Suppose

$$nx = mp^{i}x = p^{j}y$$

for $y \in G$ and some non-negative integer j. Since m is relatively prime to p, the orders of mx and x are the same. By the above case, we can find an $\alpha(mx)$ in the cyclic subgroup [mx] such that $p^i(mx) = p^j \alpha(mx)$ and nx is divisible by p^j in K.

Hence K is pure in G.

Lemma J. Let G be a group, S a subgroup of G, and x an element of G. Suppose that x and y = x + S have the same order. Let K be the cyclic subgroup generated by x. Then $[S \cup K]$ is a direct sum.

<u>Proof</u>: We have to show that $S \cap K = \{0\}$. Suppose the contrary that there is a $rx \in K$ which is also in S. Since $rx \in S$, ry = 0. Thus r is a multiple of the order of y, so is also a multiple of the order of x; whence rx = 0.

Lemma K. A group G of bounded order is a direct sum of cyclic groups.

Proof: We may assume that G is p-primary by Theorem 2.9.

A subset L of G will be called <u>pure-independent</u> if the subgroup [L] generated by L is pure in G and if

$$[L] = \sum_{x \in L} [x],$$

The direct sum of cyclic subgroups [x] as x runs over L.

Let $\mathcal B$ be the set of all pure-independent subsets of $\mathcal B$. Partially ordered $\mathcal B$ by inclusion. If $\{I_i\}$ is a chain in $\mathcal B$, then it can easily shown that $\mathcal U=\bigcup I_i$ is an upper bound for $\{I_i\}$ in $\mathcal B$. It then follows from Zorn's Lemma that $\mathcal B$ contains a maximal element $\mathcal B$. Suppose that

[M] \neq G and let S = [M]. then G/S is again a p-primary group of bounded order. Let $x \in G$ be chosen so that $x^* = x + S$ is of maximal order in G/S. By Lemma I, $[x^*]$ is pure in G/S. Since S is pure in G it follows from Lemma E that we may and shall assume that x and x^* have the same order. Since x and $x^* = x + S$ have the same order, Lemma J says that $[S \cup \{x\}]$ is a direct sum. Moreover since S is pure and $[S \cup \{x\}]$ is pure in G/S, it follows from Lemma G that $[S \cup \{x\}]$ is pure in G. Since $[M \cup \{x\}] = [S \cup \{x\}]$, we have that $[S \cup \{x\}]$ is a pure-independent subset of G and $[S \cup \{x\}]$ properly contains M. The latter contradicts the maximality of M and, therefore, we must have that [M] = G.

The lemma is now completely proved.

<u>Lemma L.</u> Let S and T be subgroups of G with $S \cap T = \{0\}$ and suppose that $[S \cup T] / T$ is a direct summand of G / T. Then S is a direct summand of G.

<u>Proof</u>: Let R/T be such that $G/T = R/T \oplus [SUT]/T$. We have $[R \sqcup [SUT]] = G$, $R \cap [SUT] = T$. We want to show that $G = S \oplus R$. Since $R \supset T$, we have [SUR] = [SUTUR] = G. Moreover, $R \cap S \subset R \cap [SUT] = T$, and hence $R \cap S \subset T \cap S = \{0\}$ by the assumption. Hence $G = S \oplus R$

and the lemma is proved.

Lemma M. Let G be a group and S a pure subgroup of bounded order. Then S is a direct summand of G.

<u>Proof</u>: Suppose $nS = \{0\}$. Then by Lemma H, [SUnG]/nG is pure in G/nG. Also, G/nG and all its homomorphic images are groups of bounded order. Hence it follows from Lemma K that the group

$$H = (G/nG) / ([SUnG] / nG)$$

is a direct sum of cyclic groups. By Lemma F, [SUnG]/nG. is a direct summand of G/nG. We next note that $S \cap nG = \{0\}$. For if $x \in S \cap nG$, x = ng for some integer n and for some g in G; by the purity of S, we have $x = ns_1$ for some $s_1 \in S$; but nS = 0 so that x = 0. Apply Lemma L with nG instead of T, we deduce that S is a direct summand of G.

<u>Definition</u>. Let G be a p-primary group, and $x \notin G$. We say that x has height n if x is divisible by p^n but not by p^{n+1} , and that x has infinite height if x is divisible by p^m for every non-negative integer m. We will use the symbol $h_G(x)$ to denote the height of x.

If S is a subgroup of the p-primary group G and x \in S, then it is clear that $h_S(x) \le h_G(x)$. However, if either the context of the height of x is clear or else all the heights, of

x concerned are equal, we will simply use h(x).

Note that $h(0) = +\infty$, therefore, when we say that a p-primary group G has no elements of infinite height we mean all non-zero elements of G has finite height.

Remarks. Let G be a p-primary group.

a) If x, y \in G and if h(x) \neq h(y) , then h(x + y) = min $\{ h(x), h(y) \}$.

If h(x) = h(y), then

$$h(x + y) \geqslant h(x)$$
.

- b) G is divisible if and only if $h(x) = + \infty$ for all $x \in G$.
- c) It follows from previous remarks that a subgroup S of G is pure in G if and only if $\mathbf{h}_{S}(\mathbf{x}) = \mathbf{h}_{\tilde{G}}(\mathbf{x})$ for all $\mathbf{x} \in S$.

Lemma N. Let G be a p-primary group and S a subgroup of G with $h_S(x) < +\infty$ for all $x \in S$. Suppose that $h_S(x) = h_G(x)$ for all $x \in S$ whose order is p. Then S is pure in G.

Proof: By Remark (c), we only need to prove that

$$h_{S}(x) = h_{G}(x)$$

for all $x \in S$. The proof is by induction on n. Assume that the above statement is true for all elements of S whose order are less than or equal to p^n . Let x be in S whose order is p^{n+1} . Then $px \in S$ has order p^n so that $h_S(px) = h_G(px) = r$,

say; thus

$$px = p^ry$$

for some y \in S. If either $h_S(p^{r-1}y)$ or $h_G(p^{r-1}y)$ is larger than r-1, then h(px) > r so that both $h_S(p^{r-1}y)$ and $h_G(p^{r-1}y)$ are not larger than r-1. Hence

$$r - 1 \le h_g(p^{r-1}y) \le h_g(p^{r-1}y) \le r - 1$$

so that

$$h(p^{r-1}y) = h_g(p^{r-1}y) = h_g(p^{r-1}y).$$

= r - 1.

Consider $h_{S}(x)$ and $h_{G}(x)$. If either $h_{S}(x)$ or $h_{G}(x)$ is larger than r-1, then h(px) > r. It follows that both $h_{S}(x)$ and $h_{G}(x)$ are not larger than r-1. On the other hand, we can write

(*)
$$x = (x - p^{r-1}y) + p^{r-1}y$$
.

Since the element $x - p^{r-1}y$ is in S of order p, we have

$$k = h(x - p^{r-1}y) = h_{S}(x - p^{r-1}y)$$
$$= h_{G}(x - p^{r-1}y)$$
$$< + \infty.$$

If $k \neq r - 1$, then both $h_S(x)$ and $h_G(x)$ equal to min (k, r-1), which follows from equation (*) and Remark (a). Hence

$$h(x) = h_{S}(x) = h_{G}(x)$$

= min (k, r - 1),

if $k \neq r - 1$. On the other hand, if k = r - 1, then it follows from Equation (*) and Remark (a) that

$$k = r - 1 \le h_{g}(x), h_{g}(x),$$

 $\le r - 1,$

where the last inequality had been observed earlier. Hence in any case, $h_g(x) = h_g(x)$.

The proof is now completed by induction.

Lemma O . Let G be a p-primary group and suppose that all elements of G of order p have infinite height. Then G is divisible.

<u>Proof</u>: It follows from Remark (b) that we only need to show that $h_G(x) = +\infty$ for all $x \in G$. The proof is by induction on n. Assume that the above statement is true for all elements of G of order less than or equal to p^n . Let $x \in G$ be of order p^{n+1} and assume that $h_G(x) = m < +\infty$. Then px has order p^n and, therefore, $h(px) = +\infty$ by the inductive assumption. Hence we can find a $y \in G$ such that

where $h_G(y) > m$, then $h_G(x-y) = \min \left\{ h_G(x), h_G(y) \right\} = m$. On the other hand, we have p(x-y) = 0 so that $h_G(x-y) = +\infty$ by assumption. Thus the assumption that $h_G(x) < +\infty$ led to two contradictory statements so that we must have $h_G(x) = +\infty$.

The proof is completed by induction.

Lemma P. If G is a p-primary reduced group, then G contains a finite cyclic direct summand.

 $\underline{\text{Proof}}$: Since G is not divisible, it follows from Lemma O that there is an $x \in G$ of order p whose height, say m, is finite. Then

$$x = p^{m}y$$

for some y in G. Let H = [y]. Since px = 0, H is a finite cyclic subgroup of G. We will show that H is a direct summand. Since an element of H is of order p if and only if it is of the form kx, where k is relatively prime to p, and $kx = p^{m}(ky)$ with $ky \in H$, it is immediate that the elements of H of order p have the same height in H and in G. Moreover, since $h(x) < +\infty$, no element of H can have infinite height. Hence, it follows from Lemma N that H is pure in G. Finally, it follows from Lemma M that H is a direct summand of G, as to be proved.

Proof of Theorem 2.15

It remains to prove that if G is an indecomposable p-primary group, then G is p-cocyclic.

Suppose G is an indecomposable p-primary group. We

consider two cases.

If G is reduced, then G is a finite cyclic p-primary group by Lemma P, i.e., G is a cyclic group of order a power of p.

If G is not reduced, then G is divisible since G is indecomposable. Hence G is isomorphic to $\sigma(p^\infty)$ by Lemma D.

Hence, in any case, G is p-cocyclic and the theorem is proved.