CHAPTER III

A GENERALIZATION OF THE GEODESIC DIFFERENTIAL EQUATION

In chapter II, we mentioned that in differential geometry
geodesics satisfy a second order ordinary differential equation of

the form

wf i ook i, '
¥ = GER( )ij where ij is analytic on open

subset D of R for all X, YK /5 A4 2y ou o

and setisfy the functional equation given below

For each 1 <1 <n , ¢ (P,a¥,t) exists iff v (B, ¥,at) exists and

wi(iﬂeﬁ,t) = wi(?,'\?,at), S W S

Now, our problem is to determine if other types of second
order ordinary differential equations satisfy a functional equation
of this type. More precisely, we want to study the Qnd order
ordinary differential equation whose solutions satisfy a functional
equation of the form.wi(ﬁ,av,t) = wi(§,$,f(a,t)) for some function

£(a,t) for a1l i = 1,2,..., n.

Notation 3-1

3-1.1 For 211 i, 1 < i

IA

Jj(?ﬁ)tj . g J(ﬁ?)t‘j
§=1

n

35 3 J
('vr)w L'2. ¢ (Lf")q; t 2

3-1.2 For all i, 1 < i
1 5= 3 o 3132

|A
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Introduction to theorem

1 2n+l Y, 2 n
Let 'rrl(x se sk ) (J’C 93X 4e0s9 X )
e | 2n+l n+l n+2 en
“2(x 308 8) ) > (x ’x Seee) )
1 2n+l / en+l
w3(x pinnnn Y / &/P=x

+1

Let Q@ be an open connected subset of F€2n such that (?0,6,0)8 2 for all

n

P e nl(Q). Let § : @ + R® be analytic on @ . Then K determines

0

a Qnd order ordinary differential equation

(3.1.4) e B0, for 1<4i<n.

By the fundamental theorem of the 2nd order ordinary differential
equation which we proved in chapter I, there exist neighbourhoods

U of fo, VO of § in R" such that for any initial point P = (pl,...,Pn)

in U, initial vector V = (vl,...,vn) in VO’ there exists an interval
I in R such that I contains zerc and there is a unique function
B,V By

v defined on I into m (Q) satisfying the differential

3,¥ 3,3
equation (3.1.4) with %, 5(0) =P and ¥, ,(0) = V. Write
P,V P,V

3B, 0,t) = Vs o(t) .
P,V
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Th> fundamental theorem also says that there exists an open set
+
Ve pertl such that (ﬁ,?,O) € V and the map T :va wl(ﬂ) is

analytic on V

From now on we shall write & (? V,t) = ¢ L) (i.e. we

BV

shall not use the partiel derivative notation for ¢ (?,v,t))

Theorem 3-2

E Suppose there exists & neighbourhood W of (0,0) in R®
and en analytic function £ : W+ R such that $(%,a¥,t) = 3(3,V,2(a,t))
vhenever (P,aV,t) e V, (a,t) € W. Furthermore assume that f(a,0) = 0,
£(0,t) = 0 whenever defined.

¢ Then the differential equation must be either

@i = G;k(3)$3$k + c@i, ¢ # 0 where
1 &t £, .(8,0)
f(a,t) = = en(l-atae ) and ¢ = =r= v (8,0) ew, 8 #0,1
or
Ei = ¢ ($)5J$k where f(a,t) = at

ik
Tor- all 1 = 1.8,...5 B

Proof Since ¥ is analytic on Q, and A determine a 2nd order ordinary

differential equation wl = Hl($,$,t), i=1,..., n ., For each

- 5 b of i o'j 'j .‘j
i=1,2,..., n, let B (J,3,t) = 1) + GJ% @)L + J PR 1 -
1 192
i . J
cee + Gj 5 (0 P8 T E e
55 oy

o) . K J J
J; (P)t o J; 3 (D)d 2 oo o gt ($)¢ con B e

1 192 Jy+vdysy



Hence

. od =
Q) s Gmw(w *Gla@”‘"l 2 e ® j ('w SHE SO
b I

g J g J J
+ J (q,)t g J‘j J($)¢ . - J§ (TF)-:: l L
Iy 1% 179k

Li2siaes NG 0" satisfies

Since for each i

(2) o (B,a%,t) = 61 (B,V,2(ast)) for (B,a¥,t) e V, (a,t) eW.

Then t = 0, we get

o' (3,a%,0) = o1(3,9,2(c,0)) = o (3¥,0) = pi

Differentiate (2) with respect to t, we get

(3)  #4(3,a?,t)

#1(3,7,2(a,t)) £, (a,t)

t = 0,
81(3,a%,0) = #*(2,7,2(a,0)) £,(a,0)
e £,(0,0) for a1l ¥, (B,a¥,t) eV
Hence
£, (a,0) = «a v a where (a,0) € W.

Differentiate (3) with respect to t, we obtain

(8 o Fa¥,e) = 8H BT, 200,8)1200,0) + $1E T 0(0,8)) 2, 0st)

Since @i satisfies equation (1) for each i = 1,2,..., n.
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Hence

4 . i 3
sX(B,a¥,t) = ¢ (F(F,aV,t)) + sj; F(B,a¥,8))8 1(FB,aT,t)
1

3.3 . K Sl
et BE.TENG T D (BT, ) Y 14 2% RO DIC Rl Ky(B,o7,t)+..
J132 31"jk
1 3 91 Jp
+ 33 3BT, t))t T+ T5 , (3(P,a¥,t))é (B,a¥,t)t <+ ..u
1 J1do

. J J J
+ Jl (%(?,dﬁ,t))(é l...a k)(ﬁsaﬁ’t)t Kt + .
J1tdkn

. J
3 3.7,2(a,t)) = Gi($(¥,ﬁ,f(u,t))+ci G 3, 2(a,t))d (BT, 2a,t))
1

Jda..d
+ Gj chﬁﬁ,f(a,tn)(& 152y (3.3, £(a,t))+ ..o
g B

. 3
+ G; (3(8,7,£(a,t))) (2 1...&jk)(¥,?,f(a,t)) + v
3y 9k

J J 3
R R A RO i e 168 S L R AR L3.37,2(a,t))t o+ .o
J1 4132

J J b
N T AR CRORICERR. BILAZ PRI
ll. k+l

Substitute these two equation into equation (%) :

J Jae)
(5) Gi(m,ﬁ,t)>+G§c3(15,oﬁ7.t))é lti,av,t)mj J($<15,J,tmé 152y (3,a%,t)
1 1“2

oJ aJ i 3
o Gi 5($(?,av,t))(¢ 1 kB od, 004t 08 (B(BaT,et
1° "%k J1

oj J GJ tJ
= ST 16T R D O R L T i FP,a7,8))(8 t...8 k)(?,ﬁ,t)t“m
3132 jl"°3k+l
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- - °.']
= AET,0(a,00)12 0, 0)46] BR,T,0(a,8))8 1 E T, 2(a,0)) 85 (a,0)+
1

W - g
¢t (B@V,00a,80)) (8 10 2)(B,V,£(a,t))E2(a,t) + ...
3395 t

o‘j o'j -
+ Gj 3 (3(B,V,2(0,t)))(3 1...8 k)(ﬁ,V,f(agt))fi(a,t) + ees

3 o 2 b M 3
+ 3 BET e, 0))t 80, )40t BT, 0(0,1)))8 1B, T,8(0,8))t 222 (ayt )+
3 t 3% t

N AP J
+ 3 BE Ve, L B (e, 0 P e, )4
J1+*den

+ 87 (B0, 00,00, (a,t).

When t = 0, equation (5) becomes :

A " J J
Gi(§)+G3 ($)uvjl+gl (B)ay 1V32+...+Gi )’y 1...vjk+ i
1

J1da 3y+edy
: , 3 AN A .3
= @)t @) LaPeet | (B)ePv Ly %, 40t (B)aly L,..v 5 ...
Jl 3132 jl. ..Jk

+ i
v ftt(a,O)

'~ : J 3 354
Hence vif (x,0) = (1-a2)Gi(P)+(a—a2)Gl (?)v 1+(a3—a2)(}i (3)v 1, 2v 3

J J
oot (Gk-de)(% J(_ﬁ)v 1.v¥ ... foranl (_Is,a-\?,t) eV
It ™

and (a,t) e W

By corollary (1-2 5), we conclude that for all i = 1,2,...,n and for

all sufficiently small o



(1-0%) G(B) = 0
32(1_3)(1+a+a2+,,,+ak_3)G§ 3 (F) = 0 for allk = i e e
LY
7 J z
1 g i
a(l-a)cjl(§>v = v £,.(a,0)

Choose o > 0, a # 1 such that (a,t) € W,

Hence for 1 < i <n , we get
¢ (P)

i 3
Gjl..aii) ~

n
(=]

(5.1)

I

o
-

s

]

w
-

&=
w

Then again we choose # 0,1 such that (aU,O) e W.

Hence
. 3 e 1, J=i
ay(1-a)6t B = 2 (a,006" v vhere &) =
9 L) I (o, s#
Thus
; £  (a,,0) .
o, = 8
1 ao(lwuo) Jl
f (00,0)
Let ¢ = Then c is independent of o by theorem 1-3.7
l-ao % 0
i
( cdj , C#0
¢ J 1
i
Hence G (P) = }
Jy L 0 , ¢ =0

Casel c#0

Substitute (5.1) into (1) we obtain

e s 1 q'j j i ‘} i aJ j
o= c¢1 + G; j(ﬁ)w 1@ 247 (i)t 1,4 ()b 1, 24 o
192 ) J1dp
> o9 udi- )
* e~ s,

J
Jl"Jk+l
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Differentiate equation (2) with respect to o :

(6) oo J(Ba¥it) = $1(3,9,8(a,t))f (a,t)
avd W

Differentiate equation (6) with respect to a :

(1) vy 1-—"5.——(?,{1? £) = 8 (BV,f(a,t) f (a i) BN, £la,t)E (a,t)

v BV

Substitute o = 0 into equation (2), we get

¢i(§,6,t) = ¢i(?,?,o) = pi (since f£(0,t) = 0)
Hence
(8) o1®3,) = pt

¢ = 0, equation (6) becomes

i
v iig(ﬁ;ﬁ,t)

ov

_ai(isﬁ,f(o,tnfa(o,t)

I

51('?,?,0) fu(O,t)

vjai f (0,t)
J a

Hence
i .

(9) ¥ Bd,e) = £(0,t)8"

BVJ * J
Since
wi > > o1 i 192 L
8 (P, V,0(a,t)) = co ('ﬁﬁ,f(a,t))mj 3, @®.V,00a,t)))@ % )PV, la,t))

192

+J FEV,e(a t)))t +JJ 1 @EV,f(a,t))) § 1(M f(ust))t T s
l 1-2

J J
+ Ji GEY,t0 t))m 1.4 5EV,0a,t))t s
Jk+l
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Substitute this equation into equation (7), we get

° i :
(100 VI Bad,0) = £20a,0)eb (B3, 2(0,t))
avav g A '
J

+ £2 “(a t)GJ J(¢(§ ¥,2(a,t)))(d 1 2) BV, f(a,t))+ £ (o, t)J (@(P V,2(a,t)))t *

192

-+ = .Jl - 5 32

L {a t)JJ 3( (B,V,£(a,t)))e ~(P,V,f(a,t))t “+ ...

192

2 i 90 ) gty o Ik

+ £5(a,t)d @37, 2(a,t)))(d 1...8 5 ) (B,7,2(a,t))t “+...

Jye-dy
+ 85 (3,7, 0(a,8))2, (a,8)

a = 0, equation (10) becomes
viyk 2 2% (? 0,t) = 25 200,t)evdst & £%(0,t) (?)v vJ2
ijav J B - '11'1

J Jd
it 20, t)J (?)t o 2(0, t)J (?)v 2, = 2(0,t)at (?)v % R

J
(F)v l...vdk'ltjk+

2 i Joi
i f&(o,t)JJl...j IR WERTA EI(0,t)

Jaa
Rearrange terms, we obtain
. J
(10.1) w0 j L (,0,¢) = £2(0,8)3> (B)t' L
oV Bv ® J
g J
+ [(e£2(0,8)+1, _(0,4))8% +£2(0, T ) e
J1 19
d3., 91 9o
e [f (0,t)(¢% , (B)+g Bt )1 v iy

3.4, JlJJ

i 3
- ff (0 t)JJ J(§)t h} Jl 2y 3
1%
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9

3
® [0, 800 - ) v F Tt
J1+-dgn

Next, we shall prove that
(a) ()£2(0,t) 3% ($,3,t)
a f 0,t = t

:'l‘j 3vJav
(b) cfs(o,t)+faa(0,t) = 10

() 3ty #0,2(0,t,) # o,

Since & (B,V,t) = (B ¥ t)+cJ J(¢(§ V,t)) (8 l@ 2y (33,t)
192

+ J (3BT t))t + J (¢(§ v t))¢ 13,7 t)t L. e
31 3192

t = 0, we get

o] i > o ] nJ
FET,0) = b B T,00) (BET,006 % 2R T,0

12

it %G s et edt | BRLE
Jids

Substitute a = 0 into (7), we get

21 .
Wt 28 38.4) = 5i(§,$,f(0,t))fz(0,t)+ il(ﬁ,ﬁ,f(o,t))fau(o,t)

ijavk

31(?,?,0)f§(0,t)+ éi(ﬁ,ﬁ,o)faa(o,t).
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Substitute (11) into the above equation we obtain

2.1

. . R
A 2% (B8.0) = [evi+ &b L (B)v I 21e2(0,0)+ i (0,t)
ot 319 g o4

Hence

s
(12) viv¥ 2° ° 22 _(33,0) = [cf (0,8)+¢_(0, ) vi+ Ga J@)f (0 t)v 1,
3V 3v 1v2

Thus, by corollary 1-3.5 we conclude that

121
J(?)f (0,t) ————~§{§,3,t) v t
31 avIay

2
and cfa(O,t) + faa(o,t)

n
o

wt

Then (a) and (b) are proved.

In order to prove (c), let us first prove the following

lemnmas,

Lemma 3-2.1 For each i = 1,2,...,n ; %" satisfies the functional

equation (2)

i, 2>
o*(P,a¥,t) = o (B,V,(a,t))

then &~ satisfies equation

3 J z > k-l o
(13)  vi.v “‘j(P"Wst) = £ (0,8) 23 7,0(a,1))
e R k-1
e stV aa

k-1\ k=221 af (ayt) [k-1y,.k-3:1 32f (ayt)
+( }i—i-(’ﬁﬁ,f(a t)) —o— ( 22BN plaay) o

1 }o kw® P 2

1o da o)
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3 Jk=2
ke1y gk=bai | 37t _(a,t) 5% £ (a,t)
+ i—r( V(e b)) —a——+, —(f V,f(a,t)) ———a——
k-1
37 f (a,t)
+{k P BT,0(a,0)) —a;ﬂ_;—a-— for all k = 2,3,...

Proof. We will prove this lemma by induction on k. From equation (7),
we get

3 ° MERIRD

$2 3.7, 2(a,6))22(a,0)4 (B, 7,2(a,t))f_(a,t)
v Bv a o

1}

o1
£ (a,t) 2(B,¥,0(a,8)) 48  (B,V,2(a,8))2 (a,t)

Hence equation (13) is true for k = 2,

Assume eq (13) is true for all k = 2,3,.,.., n.
Hence equation (13) is true for k = n, replaciug k in eq (13) with n

and call the new equation (13%),

Since
192 dna ™ iBaV,e) . 5, 91 dn 0%H(B,aV,t)
vov S == (v ©,,.v " — )
. Rwiadagaiue J1 , 9n
v ~,..0v v T...9v
=9 *
o (RHS of (13%))
Hence

5 3 J n l i Nei
Jrde dan et BaT,e) (a,t) 22 (B3 ,1(a,t))

P
ale...avjn+l %
/=1 n-l*' Af (a,t) - -1o af ( ,t)
+{) (ﬁvfat "'"""'{i‘— 5 "il"*—l‘hvf(at)) -
Lo/ 2 (0,
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ln_l\an -2:1 32 £,(a,t) n-2¢1 ) f (a,t)
J—-—-——-—(P V,£(a,t)) 2 ( 5 )-——-{1'5 V,f(a,t))
\1 Hlem: da 30
3
‘de. n- 3 i 33f (a,t) n—3e1 3 f (a,t)
+ B.3,£(a,t)) —2 +( )3 o
1' 2)3{1 e 30;3 3 Bun & 3(:

{ -1y, 5P % (o) i 3% ls taield
99 > o el 3¢ = g
+{{n Eléa—ﬁs,v,f(a t)) - s + ‘n_l) (B,V,£(a,t)) By = }

in=-1 g 9 f (Cist)
+ tn—l) _15 V f(a,t)) —';3—
n! n!
i tha"'(;l)*{:) = (o) {1071 Took) 11
_ nlk + nl(n-k+l)
T (n-k+1l)! k!
_ _n!(n+l) (n+1)!
= (n-k+1)!k! (n-k+1) k!
Hence
' n n n+l
Lm\,*(k} N )
Thus,
(14) vjl...vjn+l 3nsl ir? JV 3t
av T, .av oL
yny . h~l 3f (a,t)
b a,t)——(ﬂf{at) 1)3 %ﬁf\.,t))*—-a
Bu qu
(n n—2-1 % 3 f (a,t) n—3°1 33 ij (a,t)
+ ‘2)3 ( of(a,t)) —— au l3 ——"‘( WV, f(a,t)) —ag
f(a,t) 3 f (a &)

+“'+(n-l)8u (3,7,£(a, &) - ~

| BT ,00) 5



Hence (13) is true for k = n+l, Therefore, (13) is true for all

= 2,3,4,.... The proof of the lemma is complete.

k

Lemma 3-2.2 If f (0,t) = 0, then 3 £(0,t) = 0
aa

for 211 k = 2,3,...

Proof We will prove this lemma by induction on k.

Assune fa(O,t) =0

k = 2, we get from equation (7) by substituting o« =0 :

j1 2 3%1(3,5, 5

H(3.7,00£%00,40)+ 3L E.T,00¢ (0,8).
Jl J2 o ao

v

Hence from the assumption we obtain

J, J
e o (? 0,t) = T (0,t).
Jl 32 oo
v T3V
2 i
By corcllary 1-35, we have J (ﬁ‘B t) = 0 and faa(o’t) =
1, 92
av v
Hence k=2, f (0,t) = 0,
o
8kf(0 t)
Now let us assume that for all k = 2,3,...,n ~— U= 0
lo
For k = n+l, equation (13) is true; hence
+1 1, o4
vjl dpe1 o® l@‘(ﬁ,d%,t) o F ) Bnﬁl(g,ﬁ,f(u,t))
v 3 J a' ? n
) v l...Bv Pkl o0
2
n,.n-1 of (a,t) jn 3°f (a,t)
d of > > ot ’
+{ TERR ORI | ) <15 £)) —2
1 n=-1 sV s ) Cf-
oa 90 2 a 3u2
Bn_lfa(a,t) e O t)

7S = )@ (E v ,£(a,t))
du BT aa

39



40

Substitute o = 0 intc the above equation, we obtain

J J n+ l i Nei
S TR L g o4 303 7 2(0,1))
& Jn+1 B "
AV T L..0V
2
n-1-1 af (0,t) ;ny  n=-2¢i 3°f (0,t)
H——(?vﬂo £)) o { J————‘L(?vﬂo £) ) ——S
\1{ S 3 n-2 2
By a3t o™ e (0,8) . 3"t (0,t)
+o.0+ 22 B ¥,e(0,8)) — % VBV, e(0,8))—2
n-l;a* n-1 t n
da \ aa
;)2f( ) an
5y assumption, f£(0,t) = 0, fa(O,t) = ——éo’t E e B _f_;(o,t) =0
Ja Ju
Hence
J 3 o+l i a'r (0,t) J+L
S1 0 ol d (§3t‘=vi o 2 _ 127 (0,t)
1 In+l N Tt
IV ...0V
n+1 i n+l
Thus, (B.0.8)  _ g L Ll0t) . 4
Jl Jn+l 3.n+l
oV T ...0V =
n+1
That is, for k = nt+l f(O t) = 0
n+l
o
k
Hence é—é(o’t) =0 Ferl eIV BERSIBY3,.. o0
0.

This completes the proof.

Lemma 3-2.3 If f(a,t) is enalytic in a neighbourhood W of (0,0),

n \
0 4+
and £(0,t) =0, ——ﬁ( st 2 o s ne?Z, then f(a,t) = O.
e
Proof. Let t, be an erbitrary fixzed element of ne(w) such that

f(a,to) is defined in a neighbourhood of o = 0,

Let fla,t.) = Fy (¢). 1In this case the subscript does not mean
0



b1

differentiate with respect teo t,. Hence F (¢) is analytic.

6]
Now, we apply the Taylor theorem for function of one variesble to Ft .
0
This yields
F_(a) = F,_(0) + F' (0) %, + F'(0) o + +F ?3 S
= 1 L - .
to to ty 1! to 21! o n!
2
Hence, f(r,t.to) £(0, t, ) + -—(O, 0 l! + -——(O t_,) a o

anf an

—"'-'(n U,‘bo) -r'l-l +

o

Thus, f(a,to) = 0  for zll g in neighbourhocd of 0.

Since tO is arbitrary fixed, hence f(qg,t) = 0 .

This complete the ﬁroof.

Next, we will show that there exists t. such that fa(O,to) # 0,

0
Suppose fa(O,t) NV

By lerma 3-2.2 and lemme 3-2.3, we conelude that f(a,t) = 0

since o (B,u¥,t) = o (B, F.f(a,t))
Hence ¢i($,a$,t) = ¢i(§,$,0) = Pi
Thus 5i(§,aﬁ,t) = 0

Substituting t = 0 , yields

il
o

%i(ﬁ,aﬁ,o)
Hence avi = 0 Va VV
This is a contradiction.
Therefore, our assumption that fa(O,t) s 0 is false.

Hence there exists t

o such that fu(O,tO) # 0



L2

We claim that this to is not zero.

Let ﬁi be a unit vector in the direction of i, denoted by

a. = (O’O’OIl’li th

4 s Dyeess0)a

Since from equation (8), we have Ql(ﬁ,ﬁ,t) = pi

Hence
o (B0, ,6)-"(B,0,0) = pl-pl = 0 art=o0
¢1($,ﬁﬁi,t)-¢l(f,3,t)
Thus, 2im = 0 ift=20
h
-0
3@1
flence, 2 (8,8,t) = 0 if t =0
d v
3¢i
But from equation (9), we have fﬁ(o,t) = ——E-(i,ﬁ,t)
av
Hence f;(O,t) = 0 if t =0
But fm(o,to) # 0 . Therefore, there exists to #0
such that fa(o,to) # 0,

Then, (c) is proved.

Substitute (a), (b) and (c) into equation (10.1), we obtain

. J . Jiz . Sk Jo
Js(ﬁ)tol . .(ﬁ)tozv 1ot g j(5)1: S Sop- BN
1 3192 Jdydpd3
i 3.0k 10
+J 3 (P)tO ¥ TV TF e iE 0O
3., 9kn
Hence Ji ] (%) = 0 Wk 1,9.58 000



Thus, for case ¢ # 0 we cbtain

e et el () NE

Case 2 ¢ =0

Substitute ¢ = 0 into equation (10.1), we obtain

P 3
(10.2) v 0 ° (ﬁ 0,t) £2(0,8)0% ®)t L
B o av % 3
J J
+ [£ (o, t)éi +f(0 t)t 2 @&)] v +
3 313
J. e [ |
+ [r (0,t){ct . (B) + % (?)t v L2
J1dp 33954
SR FA\\I% -3
+ [f (0, t)J ()t ) v L 3,3
dpeeedy
J J J
+ [£2(0,t)3t IAPRAN A 8k
Jyceedkaa
Since from equation (12) when ¢ = 0, we have
2 1 J
J k3 (P, ,t)
= T 0
vy ija K - ( t)v + GJlJ (%)f (o, t)v v
24
Hence £,,(0st) = o, (P)f (0,t) 2% (3,3,t)

‘ill‘j ijavk



Substitute these two equations into (10.2),

and since we have

Ly

already proved that Jtj # 0 5 fa(O,tO) # 0, so we get

i 3y 3y J ‘ 3a 3

2 i 1 2 i 3 l
fa(O,%?JJl(ﬁ)tO + 2 2(0 %}to J13 (B)v * + fu(O,uo)Jj A Jgﬁ)t
Jy 34, 3,4
+ £ 2(0, £, )0 (?)t v v oy e £ 2(0 tO)J (ﬁ)t Bl e
Jyeesdy "Jk+1
= 0
= i3 = i ? == = i 'ﬁ =
Hence g 5 JJl(P) J J (P) ¥ o le“'Jk( ) ;
e s il -+, 8 ck_

Thus, o= ij(¢)¢3¢

To complete the procf of the theorem) we must show the following :

If ¢ satisfies the second order ordinary differentisl equation

s 0 'j .J
of the form & = cd + G )e 13 %
alJ,

equation

. C#0,

and the functional

(F,ov,t) = BT, r(e,t))

vhere ¢i(§,ﬁ,0) = pt 2 éi(ﬁ,ﬁ,O) - ¥

ko)

fla,t) et)

0=

n (L ~-a+ac ), e

o e i OJ .J
Proof Assume 8 = o+ G- . (B)d Lp 2
J1d,

From equation (4), we have

1) Eale) = 5 Ee0,0))2200,0) + 310,200,002

then

# 0.

fcr all i =

Ly2yevieai

tt(“’

t)
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Hence

of + > o'j > > -J +> >
LHS of (4) = co (B,aV,t)+ GE (3(B,a7,1))8 H(B,a¥,t)0 2(B,a¥,t)

3 3 n‘j > > .J &+ -
= o (B,V,0(a,0))5, (a,0) 40y (B(B,V,2(a,t ) Y2,7,2(a,4))8 2BV, 0(a,))£5 (0, 8).
12 :

i > > .dq.d > >
RS of (1) = od (B,¥,2(a,0))2(a,0)+6) (B(E.T,2(a,0)) (8718 2) B3, 2(a,8) 15 (0,8)
L2

+ 51 (B,9,00a,8))1,, (a,t).

IHS - RHS of () = O

Hence

¢3! (3,7, £(ast) )£, (ast) (12, (s )81 (B, 7, 2(a,8)) £, (ast) = O

ui ->

(" (3,V,2(a,t)) et (a,t)(1-F, (a,t))-£, (a,t)] = O

Suppose &1(§,$,f(a,t)) = 0

t =0, §*(3,7,0) = 0
Hence, Vom0 farelh ¥,
This is & contradiction o
Thus, cft(a,t)(l-ft(a,t))—ftt(u,t) = 0 (by theorem 1-3.1)

Now, we are solving for f(a,t) from the initiel value problem :
£, (ayt)-ct, (a,t)+ef{a,t) = 0 c#0
tt 3 -t 3 t ] -t Ll

where f(a,0) = 0, ft(a,O) = q v (a,0) € W.

Fix a # 0 and %, £ 1
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Case 1 0 < a0< 1l

(¢) = £, (a.,t) where againn_  in this case does
t 0 ¢y
not mean differentiate with respect to Ay
~ 2
Since ftt(ao,t)- cft(ao,t)+ cft(ao,t) = 0, c#0
Hence
n (t) - en, (t) + cnf (t) .= 0 c#0
%0 0 0
o : e
N, (t)—= en {t) =cn® (t)
0 %0 %0
dn, (t)
S = at
cn (t)-cn; (t)
%0 0
(15) X +I3-'- yan/ = b
9 o o 0

It is clear that e # 0 and 1-ﬂ # O.
dg %0

Since f (ao,t) is continuous in t and for all suff1c1ent small t.

Hence ft(ao,t) is continuous at 0. Thus, 2im T, tao,t) = ft(aoso}

t»0
= a # 0yl
ZE 2 (@,,t) = 0 vyt sufficiently small, then gim £, (a.,t) = O,
0 t 0
10
A contradiction »
I T (ao,t) =1 vt sufficiently small, then gim f (ao,t) =4 A5
t»0
A contradiction o
Therefore, na (t) = ft(uo,t) . R 5 e N

0



Integrate (15) both sides :

1
= [en naét)~2n(lmn

/

/
{

N>
I~

1 3
+——..
1 ] ang,
0 %0

=

%0

( nu(t)
0
Ln SZ:E;-TET-)

na(t)(1+eCt ecg(GOJi

0
n“o(t)

Hence

(16) £, (ag,t)

ft(ao,O)

(17) g
a0+a0ecg(a0)- ecg(ao)
GO+ (ao-l) ecg(ao)

(18) cc6lag)

0

(t))]

n

]

Jat
t + g(ao),
ct + cg(uo)

ot EI‘_cg(mo)

ect ecg(ao)_

eCt ecs(ao)

ectecg(ao)

ROICCN)

eCt ecg(“o)
A
ctecg “0)

lte

ECE(Go)

l+ec6:a0:

ecg(ao)

1 Cgta 5

+e 0

o

l-ao

(t)
nuo e

ctecg(uo)

W7



From equation (16), 3% f

J a

Hence
(19) fla,,t) =
0 = flay,0) =

Thus ,
(20) h(a,) =

Substitute (20) into (19)

f(ao,t)

Hence

(21) f(uo,t)

Substitute (17),(18) into

f(ao,t)

Thus , f(ao,t)

L8

ct cg(ao)
(ay,t) = &
1+ect celag)
et _cgla,)
flagst) = f ey at
l+eCtecg(d0)
o 1-. Id(ec‘te(:g(ao))
¢ ") ectcelag)
%-zn(1+e°te°g(“o))+ h(ag)
%Rn(l+ecg(a0))+ n(a,)

N %-2n(l+ec€(a0))

we obtain,

;'ﬁn(l+ectecg(a0))- 1 2n(1+ecg(a0))

c c

ct _cgla,)
2n(l+e @ 0 )

l+ecg(a0)

|~

o

ot <°8(ag)

1 1
—'2n[-——v—r-—7-+ i oo ]
K 1+¢°8'% 1+c°€ “0)

(21), we obtain

L + o2 |
% 0 |
1+ 1
0 i
L ¢n (1 -a.+o eCt]
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Case 2 =1 < mo <0

By continuity of n&t) at t = 0, ve have n_ (t) < 0 in some
0 0

small neighbourhood of t = 0,

o

Let Ny (t) = -g(t) where B(t) > vt
0

Hence ﬁa (t) = - g(t)
0

Substitute n. and n_  into the equation f (a,t)=cf (a,t)+cf2(u,t) =0
4y &y tt t t
we obtain a first order ordinary differentiel equation

-B(t)+cB(t)+c(t) = 0
- S8+ cp(148) = 0
dag
ETi:ET c dt
1 1 \
e P
Integrate both sides we get
an B=- an(1+B) = ct+e
2B ”
&n T+g = ct + cl
8 L ct+e
EIE- = e 1
. ct ct
B = 328 + Bcee
ct N ct
- » ct
-n, (t) = 8 = Cpe
0 et
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Hence
& ect
- 2
l-c.e
2
€2
t =0, -a;=-f(ag,0) =
l-c
2
2 gt Rk
cz(l-ao) /79
c, = o S gl
l-ao
ct
¥ ag (945t) @ -\
From (22), vy B e
l-¢c.e
2
ceect
Hence faf(a ,t) e dt
0 ct
l-¢c e
a (- e%%)
sa£(a,t) = %y £ , c#0
1—c2e
(23) f(uo,t) = %-Qn(l-czeCt) *cq
Since 0 < c2 = < L
I
)
Hence 0> -c2 > -1

And since the exponential map eCt is continuous at t = 0

that is as t + 0, eCt + eD =1

c
Hence 0 > -c e T, -1 for all t in some small neighbourhood

of 0,



2

Thus, 1> l—czeCt > U
ct . g
Therefore, En(l—cee ) is defined ,
2
Substitute c., = into (23) we obtain
2 l-uo
) P TR
£lag,t) = < en(l+ T )+ ¢y
0
£=0, 0 = £z,0) = %gn(1s—2 )+ c
» %o° c ™ l—uo 3
it . 20
Hence, ey = an(1 + — )
(0]
; o A
(24) ¢y 2 ~n(l‘a )
0
Substitute (24) into (23), we get
1 0. ct, 1 1
flagst) =/ GEEBlEERL, *e - 5 20l )
0 0
! a 2
Tt 1-2 th
= ;-in 0
c 1
[ 1—00 ]
Hence
R ct
f(co,t) - LR £n[1—a0+ao &1 3  CF¥ 0.
Cousider oy =0 , since f£(0,t) = %-En [1] =0
hence f is also defined ot a4 = 0,
1
Therefore, £(a,t) = oe 2n[1-a+ae®t] Vo €{-1,1)yt sufficiently small

We then cleim that this function f is the unique solution of

2
foplast)- of (a,t)+ efi(a,t) =0



Since n = I, n = f
o t % tt
n = cn - eon
%o a %
Let H(t) = en - cn
0 0

Since f is analytic, hence ft is anelytic.

; 2 2
So en o, cna . cna - Cna are analytic.

%0 0 0 0
Hence, H must be an analytic function.

Therefore, the initiel vzlue problenm

n“u = H(t)
n, (0) = a V oag e (-1,1)
0
ect_cg(ao)
has a unique solution n_ (t) = ﬁ_)
0',0 14e- Pe 2 GU
' ct
Hence ft(ao,t) = s__g%ﬁéﬁ?l ) which is analytic in t
l+e e 8o,
ct_cela,)
So we have I.V.P, ft(uo,t) - Et cq? )
lve e ~ %0
f(ao.o) = 0 Ya,c¢ (-1,1)

By fundamental theorem, this I,V.P. must have a unique
solution which is
ect]

= -1 ;
f(uo,t) e - £n[1—a0+a for all

0

@, € (-1,1) and for all t in some small neighbourhood of O.

This completes the proof.

52
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If @i satisfies the End order ordinary differential equation
o = sz(”qf)é‘jék for all 1 = 1,2,...,0

and the functional eguation & (P,aV,t) = @i(ﬁ;ﬁ.f(a,t))

then fla,t) = at

Proof. since  o-(B,aV,t) = o7 (B,V,2(a,t))

(a) P (E,a7,t) = ¥ EV,00,0))E, (ost)

(o) $1E,00,t) = 8RBT 0(a,0)) (0, 8048 (B0, 20, 8) ) £ (0 t)
ws.(b) = 65(P,a¥,t)

= ij(a(ﬁ,aﬁ,t))%J(ﬁ,uﬁ,t)&k(ﬁ,uv,t)

]

ol (BT, 10a,0) )8 (3,80 00857, 2(0,) )5 e 0)

RiS.(0) = §83,0,2(a,0))05(a,0)+6 B,V 1(a,0)) 1, (ast)
= ijﬁ@ﬁ,f(a.‘t))):I"j(ﬁ,-‘?,f(u,t))ék@ﬁaf(a,t))fi(ast)

+ 81 (3,7,2(0,8))1, (o, 8)

0

I

RuS - LS of (b)

0

313,700,001, (,t)

ife have already proved that & (P,V,f(a,t)) is not identically

equal zero. So we conclude that ftt(a,t) = 0
f‘tt(a,t) = 0
ft(a,t) = gla) where g is arbitrary function of a

gla)

= 0, o = ft(c;,(J)
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L}
Q

Hence ft(a,t)

fla,t) at + h(a) where h is arbitrary

function of a

h(a)

£ o 0 = f£(a,0)

Hence, fla,t) = at

Converse to theorem 3-2

For each i = 1,2,..,,,n if ¢1 setisfies the second order

ordinary differential equation of the type El = Gﬁk($)$dék+ c&i

vhere the function G;k

then for all P e D, Ve R%, a € R

is cl on open subset D of R for Jsk = 1325 aainng

2
the solution ¢i must satisfy the functional equation

Vi@at,t) = BT, flalt) vt e J(0) which

’_I

is an open interval of zero in R when f{q,t) = Rn(l-a+ae0t) when ¢ # 0

c

or ¢ (P,al,t) exists if and only if wi(ﬁ,v,ut) exists and

wi(ﬁ,mﬁ,t) = wi(ﬁ,ﬁ,qt) when c¢ = 0 and G;k is

analytic on D.

Froof Let Hi(-nﬁ,-n;,t) = ij('q’;)@‘jﬁ,k+ cﬁ;i vhere Gjh is cb

on Dz R, ¢ # 0.

Hence H- is defined on D x Rn X R and Hl is cl on D % Rn X R.
= n

B oy
Fix EO & By VO e R and a, € R.

Since (?U,aoﬁo,o) is in the domain of difinition of H', hence by

the fundamental theorem for End order o.d.e. there exists a



neighbourhood Il(O) of zero in R such that wl(ﬁb,aoﬁb,
satisfies the differential equation al = ij($)$ ¢ + c¢ with

initial conditions

i ol & ol y i

\U (ﬁosao 09 = PO Y ‘P (ﬁ OvO’ 2] u'ovo
(1) Let Fi(t) = wl(ﬁb oy O,t) Then F- is defined on 1,(0)
since (¥ ,V ,0) is in the domain of definition of H™, hence

0’0
by the fundamental theorem for 2nd order o,d.e there exists

a neighbourhood 12(0) of zero in R such that wi(ﬁb 30,
satisfies the differential equation for all t € 12(0) with

initial conditions

i LS 4 eI S |
"p (50330’ i) PO’ lb (ﬁo’volo) = vo

(2) Let G (t) = wi(Fo,ﬁo,f(ao,t)) WMere t 1 such that

f(ao.t) € 12(0).

Since f(uo,t) = %-En(l-a +a eCt), hence f(ao,t) is continuous

00
at t = 0 and f(ao,O) = 0,

55

Therefore, there is a neighbourhood 13(0) of zero in R such that

f(ao,t) € 12(0) for all t € 13(0).
Hence G'(t) is defined for all t € I3(0)

Substitute t = 0 into (1) and (2), we get

F (o) = v'(Eel.0 =
6h0) = (BT, .20a5,0) = ¥iE,.T,,0)
Then F') = c'0) = p}

P

(3)
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Differentiate (1), (2) with respect to t, we get

Fi(t) = @i(ﬁb,aovb,t)

GHE) = BB, E(at))E, (ay )

Substitute t = 0 into the above equations, we get

o) = ¥F a0 = agyvi
6H0) = ¥(B,,T,,0(00,0))1, (ay,0)
= ii(ﬁogvb,o)ao = advg

Then #(0) = & (o) = ave (1)
Since

F(y) = ﬁi(ﬁo,aoﬁb,t) for all t € I (0)
Hence

FH(t) = G (BEa 00 NGNS B, 0 0,004 (B sa T 0t)

for all t € ;60)
Thus F(e) = 6, (Flo) (7 (6)ref (1)

We will prove that G" satisfies the same type of the 2nd

order o.d.e and there are two cases ey # 0 or ao = 0 to be considered

Case 1 o #0

Differentiate G (t) = &lcﬁo,?o,f(ao,t)ft(ao,t) with respect to t,

wve get

vieI (0), E(t) = PHB).Toue000,8)) 8200y, 01 (B,

¥ AR ORI CIES

0’
= 16 (B Ty 2 NN (BT 200 0 hed (B T 20 1)) 12200 1)

+ 3BT 20,8008, (ayt)



v

" 4 5 (G »t)
= Gy (B(8)) (E08) (1) 4el (2)2, (0 st )4el (2) = ag’t
(since ft(uoat) = 0 only when ay = 0, S0 we can divide by ft(ao,t) )
A £ (o, %)
61(8) = 6y (B(6)) (B () el (0) (£, (a 00+ %;27)-)

Since we have already proved in page 45 that

ftt(a,t)+cf§(a,t) = cft(a,t)
Pacte 1)
£t %0 =
Hence ft(uo,t) + ot uo,t) 1
Therefore, ai(t) = Gik(ﬁ(t))(ajék)(t)+cﬁi(t) Vte I3(0).

=0
Case 2 GO

It is easily shown that ft(o,t) =0 foreallte I3(0).

B E 5T, £lag, 6001, (g, t)

1}

Since éi(t)

0°'0°
Then &t) = o Vte 13(0)
Ei(t) =0 vV te 13(0)
ij(a(t))(aaék)(t)+céi(t) = 0 vte I3{o)
Hence G (t) = Gj'k(-a(t))(f}‘jf}k)(t)-l-céi(t) 7 te 1,00)

Therefore, for all a, € R, Fi(t) and G (t) satisfy the same ond

order ordinary differential equation in a neighbourhood I(0) = IlFII (0)

3
and also satisfy the same initials conditions (3), (4) ,
Since for each i = 1,2,...,n Fi(t) and G (t) satisfy the same ohd

order o.d.e
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s ij@)@‘jﬁak»f b where G}y 1 et for all J,k = 1,..0s0
which is a c1 differentiable equation.
Hence by theorem 1-1.11, Fi(t) = Gi(t) vyte I (0)

mat is ¥ (B0 .t) VB Toata,t)) v I (0) .

Then the proof for the cese c¢ # 0 is complete.

Now, we will prove that if wi is a solution to the o.d.e.

Ei = ij($)@3$k for 1 < 1 £ n where Gik

we have ¢i(§,d$,t) exists if and only if wi(ﬁ;v,at) exists and

is analytic on D then

5
v (®,0%,t) = 913, ,at).
In order to prove this, we have to prove :

if ¢ is & solution to the o.d.e Vo= ij($)$3$k then

(n)i i J
P = XJ ...J (¢)¢ 4T n=2,3,... for some function
i >
X (W),
Jl...dn
Proof Using induction on n.

Since wi is a solution of ﬁi ij($)$a$k

Hence when n = 2, 51

i}

Jk(¢)wd e is true.

i . d1 J
wme P e G
i -+
' D ()
(n+1)i Yiewad" .4 J 2
Hence P = Jl L (] 1...w i Xi 3 J($)¢ .
ax o¥l 1¥2'*p
> . i : J J 2
1 3 s °“]  eYp=l.’n
+ xilze... (m)"p 2¢ ...w l.. J ...Jn-lgg}w o.t'p w

4l
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Substitute §+ = ijﬁﬁ)q?%k where i = 1,2,...,n into the

above equation we obtain

- &
(a1)s ¥y ... .1
wn " J 2P i: +xi Jw)eé 3 (Tv') i
ax n+l L lteks 1n+1
mc (m Jn*1+ + X mc mw J""l
"1"2" seedn T dodnn Jpeeedpafy  dndpn
o L, g
= ( Jl 2@ JmcJ LATOE AN (L) Jﬁﬁm o T
9x n+l 1n+1 n=-1"n n n+l
e od 93
. Yy B
1 n+l

R
Therefore (3)1 = X';' J(br)vp 1...\{: % for all n = 2,35000
1...

Since |pi is the solution of §- = G;k(miiijivk where Gf;‘k i
analytic on DS R®, Then ij('vf}u'»'jiak is analytic on D x R°x R.

Fix B e, ¥ e &% o € B.

Since (30.0 v ,0) e D x R® x R,then the fundamental theorem implies

Voot)

that there exists an interval I (0) of zero in R such that ¥ (f 0°%

exists on I (0) and ¢ (§ ,uo’%,o) = po s ¥ (? ,aofo,o) = aové

and also wi is an analytic function in t on I(0).

Therefore, 1;1(?0,&0?0,1;) = lpi('lso,a 7

0 0!0)*'61(?0,00?0 ,O}t +

“ 2 (n)i n
1»1(50,050,0) -%l cee ¥ 3 (ﬁo,u ?0,0) %! * e
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= pragVotay (B) (agy e Bk s ...+le...3($)(u L) clagmie. .
(n) 3
(stnce v (By.agl,.t) x;l...afﬁso'“ﬁoﬁnw e D) Bgaaglyot)
a R OO
#vg(agt)+6s, (B) (vdvg) k( g +'"+x§1'--3£§)(v°1'" o) T e
- ( ot)
= ¥ (BT, 004 (B T0,0) (age i (B, 8,00 50— +...t
(n)i (%t)"
30,30,0) E—
- 'pi(? v0:‘211

That is, q:it'ﬁo.ao?o,t) exists if and only if wi('ﬁoﬁo,aot) exists

and they are equal.

Then the proof for case ¢ = 0 is complete.

Corollary 3-2.1 Let the hypothesis to this corollary be the
same as in theorem 3-2 except for each i = 1,2,,...,n Hi is

an analytic function of {) and § and we do not assume that
£(0,t) = 0, wherever defined. Then the differential eépaxion

must be either -

(a) o= ij($)$aik+ et s, ©¢#0
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and f(o,t) = %-En(l—q+aeCt) for all (a,t) in some small neighbourhood

of (0,0)

or (b) ai = ijti)ﬁJik and f(a,t) = at

for all (a,t) in some small neighbourhood of (0,0) for all i = L2 0ienns

Proof  For each i = 1,2,...,n H' is analytic in a neighbourhood

of (50,0). Thus H is represented by a Taylor's series

. 3 3.8 3 el
B @9) = e B0 ey N B et @ L
1 12 ' Al

Then using the same type of proof which we used in theorem 3-2, we get

either result (a) or (b),

Definition 3-3.1 (G,*) is said to be a semigroup where ¥ is a

binary operation on G # @ if and only if
V abyeeG, a¥* (b¥c) = (a®*p)*e

Example : the binary operation of addition on the set N of all natural
numbers, (N,+) is a semi group.

The binary operation of ordinary multiplication on the set R of all
real numbers, (R, x) is a semi group.

The binery operation of composition on the set of all continuous

function from R into R, (Zg,c) is a semigroup

Definition 3-3.2 Let (X,*),(Y,0) be two semigroups.

Then a homomorphism of a set X onto or into a set Y is a transformation

H of X onto or into Y such that, for all x, y ¢ X, H(x#y) = H(x) o H(y)
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Definition 3-3.3 Let G be a semigroup, S be a set. An action

of Gon Sisamapd : Gx S+ S such that

¢(h,¢(g,3)) = ¢(hg,s) whenever both sides are defined.

Definition 3-3.k Let X be a topological space. A local l-parameter

semigroup of local continuous maps is a map ¢ : U+ X where U # ¢(empty set)

is an open subset of R x X .such that ¢(st,x) = ¢\8,8(t,x)) whenever

both sides are defined

Proposition 3-4 1) f(a,t) = % Rn(l-a-iueCt), ¢ # 0 is a local

l-parameter semigroup of local continuous maps.

2) f(a,t) = ot is an action of the semigroup

(R,x) on R.

Proof 1 Let f be a map defined on some open neighbourhood W of (0,0)
in R® such that fla,t) = %— f,n(l—cﬁaeCt), c#0 VY(a,t) ew.

Hence,

1

cef(a,t),
i )

en(1-g+ge

[}

f(B ,f(ﬂ.,t))

c,-(i 2n( l—a+ae3t) )

= 2 en(1-g+ge °© )

1

ct
= ))

2n(1-g+B (1-a+ae

L on(1-g+B-ga+Bac’™)
= i— gn(1-Ba+Bae’’)

= f(Ba,t)
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By definition 3-3.4, implies that f is a local l-parameter semigroup

of local continuous map,

Proof 2 Let (R,x) be a semigroup.

Let f be a map defined on R x R into R such that f(a,t) =at

Hence £(B,f(a,t)) B(f(a,t))

B(at)

(Ba)t

£(Ba,t)

I

By definition 3-3.3, f is an action of (R,x) on R.

Then the proof is complete.

Let fa(t) fla,t)

it

Hence f£(B,f(a,t)) fB(f(a,t)) = fB(fa(t)) = (fBo fu)(t)

and f(Ba,t) ()
Ba

Since we have already proved that if f is defined in either case

(1) or (2), then f(B,f(a,t)) = f(Ba,t).

Thus (f o £ )(t) £ (t) whenever defined.
B o Bo

Therefore fo = f
erefore, 5 f& B

Let Tf% be a set of all continuous functions from R into R.

Then (f;,o) is a semigrour under binary operation of composition,
Also, it is obvious that (R,x) is a semigroup under multiplication.

Let ¢ : (Rx)—>(L.,0) be a map defined by (o) = £ when £ (t) = at.

Therefore, ¢(aB) = fﬁB = f£o fB = ¢(a)o o(B) Va, B e R.
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Let local continuous (R,R) denoted byrz.: be a set of all
continuous maps V: Lb + R where Uw is an open neighbourhood of 0
and ¥(0) = 0, Thus &I;.o) is a semigroup under operation of
composition, It is clear that ((-1,1),x) is a semigroup under
operation of multiplication. Let &: ((-1,1),x) > (G;,o) be defined

by ¢(a) = f  where fa(t) = %-Rn(l-ameCt).

Therefore, for any a, Be(-1,1), ®(aB) = f;B = qao fB =¢(a)o ¢(B).

Thus we see that the action f gives a homomorphism of R into

the semigroup of all continuous maps of R into itself under composition

or the semigroup of local continuous maps under composition.

Theorem 3-5 For each i = 1,2,,..,n let wi be solution of

ai = Hi($;$) where Hi is analytic on @ defined in theorem 3-2,

Suppose there exists an open neighbourhood W* of (0,0) in R® and

) i, > i, e
an analytic function g : W¥ =+ R be such that ¢ (P,V,at) = v (P,gla,t)V,t)

whenever (P,V,at) € V where V is mentioned at the beginning of this chapter

on page 28 and (¢,t) € W*¥, Furthermore, we assume that g(x,0) =a
and g(0,t) = O whenever defined. Then the differential equation

that wl satisfies must be either

(a) e ij(g)g,%kq, al, I = 1Byt 0
cat
e L t#0
1-e©
and gla,t) =
a , t=0

or

(v) Vo= ng($)$3$k and g(a,t) =a  whenever (a,t) € W*,
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Conversely, if the solution ;pi satisfies the second order

ordinary differential equation of type (a) where ij 14 oF on D € R"

i
Jk
the functional equation ¥ (P,V,at) = wl(ﬁ,g(a,tjﬁ,t) for all

or type (b) where G is analytic on D R +then wi must satisfy

t sufficiently small where g(a,t) is the function defined above or

:pi(?,a-{!,t) exists iff wi(ﬁﬁ,ut) exists and wi(ﬁ,u—ﬁ,t) = \piﬁj,ut).

Proof Assume that wl satisfies the functional equation
(1) v i(ELele,t)l,t) = (BT at)

where g(a,t) is an analytic function on some open neighbourhood W

of (0,0) in R® such that g(a,0) = a and g(0,t) = 0 whenever defined.

(2) Let F(t,B,a) = g(a,t) - B then F is defined in some

neighbourhood of (0,0,0) € R39 says N

Since g(a,t) is analytic, hence F is analytic on N.

When (t,B,2) = (0,0,0), equation (2) becomes
F(0,0,0) = g(0,0) = 0 (by the assumption of g)

Differentiate (2) with respect to o we have

Fa(t’B’u) = ga(ast)
Hence F{I(O’O’O) = g (0’0) = gim K(h,OJES(0,0)
¢ 0
By the assumption of g, we get
h-
F (0,0,0) = Lim TO = 1 £ 0
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By the implicit function theorem 1-2.3 implies there exists an open

neighbourhood Wy of (0,0) such that for any connected open neighbourhood

W& W, of (0,0), there is a unique real-valued function £ asnalytic on W

and such that 2(0,0) = 0 and F(t,8,2(B,t)) = O for any (B,t) € W.

Defined h(B,t) such that h(B,t) = t2(B,t).

Thus h is analytic on W of (0,0) and h(B,0) =0 VY (8,0) € W.
Since for 1< i <n, v (P,gla,t)V,t) = wi(ﬁ,ﬁ,at) whenever defined.

Hence > (P,a(2(8,t),t)V,t) = v (3,7,2(p,t)t)

Since F(t,B,2(B,t)) g(2(B,t),t) =B = 0 (Implicit theorem)

Hence g(2(B,t),t) B/ 4

v (@, ¥,n(8,t)) for all (8,t) € W.

Therefore wi(ﬁ,ﬁﬁ,t)

By corollary 3-2.1, for each i = 1,2,..., n wi must satisfy either

differential equation

(a) Wt C%R(?F)niljti’:k+ cp’ and h(B,t) = L an(1-g+8e™"), ¢ # 0
or
(b) o= ij(W)ijik and h(B,t) = Bt
Case & h(g,t) = %-zn(1-5+3e°t),' c#0 v (B,t) € W.
Since h(B,t) = t2(B,t) = ta .
Hence at = %—2n(1-6+8e0t), c#0
& w1 . B(1-e%")

l-e
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Since g(2(B,t),t) = B, hence gla,t) = B ,
: cat
; E:Sbt , t#0
Thus gla,t) = ] d=e for all (a,t) e W*
\ o 5. e Q
Case b h(B,t) = Bt
Hence at = Bt
(a-B)t = 0
=B = 0 if t#0
Thus o = B ift#£0
Since gla,t) = B , hence gla,t) =a , t#0
From the assumption of g, g(a,0) = o .
Then gla,t) = a V(a,t) € w*

Now, we conclude that wl must satisfy either

l_ecat
b i ajnk of [ _-ct s t # 0
(a) Vo= ij(¢)¢ Y+ cy” , ¢ # 0 and gla,t) = l-e
- [ a ,t =0
or

(® ¥ = 65 BNNT ana glo,t) = oV (ayt) e We
Toy all 3. = 1,2%5:¢05 N

Then the proof is complete,

Now, we shall prove the converse to this theorem. Let us first
assume that for each i = 1,2,...,n, the solution ¢i satisfies the 2“d

order ordinary differential equation
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@i = ij($)$J@k+ c$i, ¢ # 0 where ng is ¢ function

1 ecat

[ == , t#0
Define g(a,t) = € 1Y

\ a , t=0
To show wi satisfies the functional equation wi(ﬁ,g(a,t)$,t) = wi($,§,ut).
Let F(t,B,a) = gl(a,t)- B. Then F is defined in some neighbourhood

of (0,0,0). It follows from definition of g that F(0,0,0) = 0

end F (t,8,0) = g (a,t)
cat
}-Ctit , t#0
- J _1-€
Thus F&(0,0,0) = 1 # 0.

The implicit function theorem 1-2.3 implies, there is an open
neighbourhood W of (0,0) and a unique function h define on W such that
h(0,0) = 0 and F(t,B8,h(B,t)) = 0, moreover h is analytic on W.

Let f(B,t) = th(B,t). Hence f is well-defined and analytic on W

since h is ,

Since F(t,B,a) gla,t) - B >

g(h(B,t),t) -8B = 0

hence F(t,B,h(B,t))

Thus g(h(B,t),t) = B8
ch(B,t)t
For t # 0 , leg ; = B
1-eCt
8 - gect & T e ech(B,t)t
1 -8+ geSt ech(ﬁ,t)t
th(B,t) = L an(1-8+8¢°%), t # O
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Thus f£(B8,t) %—1n(1—B+Be°t), t#0

0 (from definition of f)

Since £(8,0)

Ct)

and %En(l-ﬁ*'ﬁe 0 fort=0

Hence f(B,t) %-En(l-B+BeCt) V (B,t) e W

By the converse to theorem 3-2, we conclude that for each 1 < 1 < n

the solution wl must satisfy the functional equation

vi@,87,t) = o33, ¥,2(8,t)) for all t sufficiently small
Hence
v @E.e(n(8,t),t)¥,8) = ¢ (B,7,¢n(8,t)) for all t sufficiently small
wi(ﬁ,g(a,t)v,t) = wi(ﬁ,ﬁ,ta) for all t sufficiently small
Second, assume that wi satisfies the Qnd order ordinary
differential equation Ei = ij($)$3$k for 1 <i<n and G;k is

analytic function.

Define g(a,t) a for all (a,t) € W¥, where W* is a neighbourhood
of (0,0).

tg(a,t), Hence f(a,t) = ta = at

n

Let fla,t)
By the converse of theorem 3-2, we will conclude that
wl(ﬁ,a?,t) exists = wi(ﬁ,ﬁ,f(a,t)) exists
and VEav,t) = y1@,e(a,t)), 1s<is<n
i )
That is, ¢ (%,a%,t) exists e+w1(§,§,at) exists

and i (@F,aV,t) = 1@ F0t), 1<is<n

Then the proof is complete.



70

We have already proved that if ¢ satisfies the differential
equation

(1) ﬁi = Gik(W)@J$k+ cﬁi, c # 0 where Gik 18 e  on open subset

J

D of R® then w must satisfy the functional equation below for all

Pe D, Ve Rn, a € R

(2) $(f,a§,t) = $(§,?,f(u,t)) for all t in some open interval J

of zero in R where f(a,t) = %-1n(l—a+ae0t), c # 0,

The functional equation (2) gives many geometrical properties

for the generalized geodesic curve.

Property 1 Given to in R, §0 in D there exists a neighbourhood
U of the zero vector at ﬁb such that for all V in U, $(§o,$,to)
is defined.

I conjecture that this property is true, but still have no

proof.

Property 2 Given any compact neighbourhood U of the zero vector
-3
at PO’ there exists a neighbourhood V of zero in R such that for all

-> -
t eV, for all V e U, $(Po,$,t) exists.

Proof It is enough to prove that for any ball B(E ,rl) there exists
a neighbourhood V of zero in R such that ﬁ(?o,ﬁ ,t) egists for all

-5

Ve B(O, ,r)) and for all t in V.
2
0
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The fundementel theorem for 2°% order o.d.e implies there

exists a ball B(O ,re) and a neighbourhood V of zero in R such that

B
(1) $(§0,$,t) exists for all V ¢ B(_(5§ ,x,) for ell t e V.
0
Let B(3 ,rl) be given , we may assume that the ball

0
B(3 ,re) is a proper subset of the ball B(3§ T

$0 0

r
Choose a. € R {0} such that |a.| < —=
0 0 ry

e

For any V ¢ B(ifg_15 ,rl),
0

- -
,“gvl = Iagl v < |“0| |rl[ A

-
Therefore, % Ve B(ﬁ3 ,r2) for all V € 13(3_15 ,rl).
0 0

We have from (1) above that, there exists a neighbourhood V of zero

in R such that $(§O,a0$,t) exists for all ¥ ¢ B(3 ;) for all

isO

t € V(0).
e
Since Y satisfies the functional equation.$(§o,aov,t)
= ;(Fo,v,f(ao,t)) for all t in a sufficiently small neighbourhood
of zero in R, hence there exists a neighbourhood V* of zero in R

such that $(§0,$,f(a0,t)) exists for all V ¢ B(3§ ,rl) for all t e V¥,

0
That is, §(B),,t%) exists for a1l ¥ ¢ B(0, ,r;) for all t* of the
P

form t* = f(ao,t) where t € V¥, &

Fix such a t* such that t* = f(a.,t) = £ (t) = l-z.n(l-a ] eCt),

0 aq c 00

¢ # 0. Since f, is analytic in t, hence £, 1is analytic on V¥, Also,
0 0

there is an open subset G of V* containing zero such that fﬁ restricted
0
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to G is a homeomorphism onto its image. We must show that fa is a one
0

to one function.

I

Suppose fao(tl> fao(tz)

Hence

% tn(l-a_+a ectQ)

1 c
s 2n(l-a_+a_e t1) ot%

00

Since logarithm is a one to one mapping, hence

= cty _ cto
il a0+a0e = 1-a0+aoe .
Thus
ct ct
a. (e 1o 2) = 0
0
ctl ct2
But o, # 0, therefore, we conclude that e ~—- e = 0.,
That is,
ct ct
e 1 = g e

Since c¢ # 0 and the exponential map is & one to one function

hence t. = t. . Thus fa is a 1-1 funetion.

1 2 0
It is clear that f, 1is onto f [G] and £ is continuous on G,
0 % %
80 it is only to show that le is continuous on the image of f.
0 L
Let ¥ = £ (t)
[+ ]
0
1 ct
Si = =
nce fao(t) 2 2n(1-a0+uoe ) 2
"hence
£71 (¢%) =t
0

and
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ct# ct
e = 1-&0+0.0e
ct . ct*
aoe = e + ao 1
*
ect . ;_(ect o 1)
ao 0

*
;-zn(l-(eCt +a _-1)) which is defined
c ao 0

ct
n

since f is 1-1, onto its imagé, hence f-l exists on the image.

Thus,

- *
g1 (th) == Lo ;-(ect +a-~-1) .
ao c uo 0

1
0

Since logarithm is a continuous function we have that f; is a

continuous map.

We then conclude that f, is a homeomorphism of G onto £ [cl.
0 0

Thus f& is an open map. Since G is an open set containing zero,
0

hence £ [G] is an open subset containing zero since 0 ¢ G implies
0

fao(O} € fho[G] and ﬁuo(O) = 0,

Therefore, we conclude that there exists an open neighbourhood fa [c]
0

of zero in R such that for all V e B(J ,r;), for all t*e £ [G],

P 0

0
$($0,$,t*) is defined. Now the proof is complete.
Property 3 (Exponential property)

Given initiel point fo € D and ty € R-{0} such that I(§0,$,to)
exists for all‘G in some neighbourhood U of the zerc vector and
wi(io,d$,to) = ¢i(§0;v,f(a,t0)) for all a sufficiently small
for 1 £41i<n then V- $(§0,$,t0) is a bidifferential map of some open

set V of the zero vector onto an open set W,



Proof  Let G be & map such that G(V) = ;F(-ﬁo;{;,to)

Then e is defined on V (by hypothesis) and 3 is a cl function on V
(since w(io,'\’?,to) is cl function in V by the fundamental theorem)
Therefore, it is enough to prove that the jacobian of [ at -5 is
not zero by the inverse function theorem.

Since ',[:1 satisfies the functional equation

viEal,t,) = vi(E,0,0(0,t,)) v o sufficiently small

is= 1,2,...,1'1.

Differentiate the above equation with respect to a, we get

i
J [nJErgt >
v —J(ﬁo,av,to) = V() V,10,t,) £ (a,t,)
3
Substitute o = 0, we obtain
39-"1('15“61;) = 33 ¥,£00,8.)) £ (0,t.)
v av-j 022 o} = ¢ o2"? *¥0 a sto
1 %y
Since f(a,to) = E-R.n(l—cﬂae )5
C‘to
hence f(O,tO) = 0, and fa(u,to) = %{L‘t 1
l-a+aec 0
t
L 1; %"0
£,(0,85) = He “-1).
i ct
Thus a3 J0,t8) = vl e 01
3v9 0 0 3 e
v
ct

i 2
Therefore, 1%—(150,6,*50) s So=k i c#0
av
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Since

1 1 3 1
%&(30,'6,1;0] B Bty) s ;f;ﬂ’o-a"‘o’

2 2 2
Y ( L) ( 3
J (3) = det avl §0 ,-6’t0) 3v2 §0 ’3 'to) iaat ;&(?0"6 .to)

- & » =

2"’—“(15 8,t,) 2;(150,6,'50) f;(?o,a,to)

vt ©
hence "
ct £a
e 0-1 [ ‘
o/ o
'\‘ ‘\‘.../
J.(8) =aet S
E 77 A [
] ~
i W ct
\ =7 e =1
T c
ct
0 n
= (E—2)" 4 o,

Therefore, the inverse function theorem 1-2.2 implies that there are
two open set VS U of the zero vector and W such that E is 1-1,
differentiable on V onto W and 3'1 exists and also differentiable,

Thus 3 is a bidifferential map of V onto W. Then the proof is

complete,
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Property U Given § e D, $O at ? and any real number ags then
the solution curve $($ V ,t) with initial conditions P ﬁb agree
as points set as the solution curve $($O,aovo,t) having initial

conditions P ﬁ .

Proof By the fundamental theorem for 2nd order o.d.e, ¢($0,u fb,t)
is defined on some open interval I1 of zero in R and $(§6,f0,

defined on 12 of zero in R.

= {?J('ﬁ 7

Let ¢ 00,

" t) | $(F;,0.0,,t) is defined on I, N 3}

where J is an open interval of zero in R such that

iz i

V(B0 Vo,t} = ¥ ('ﬁo,i?o,r(uo,t)) vted.,

> > > >
Let c, = {¢(P0,v0,t,) | ¥(®,,V,,t) 1is defined on 1,}
To show cltz Cys let Q be any point in Cy -
Then there exists t, € I, (" J such that Q = $(§0,ao?o,tl).

Since ¢, e Ilf? J, hence t, € J. Therefore,

1 &

w(.ﬁo’a O't ) - I($ : ] Osf(ao’t’l)) .
1 [ =
Let t2 = f(ao,tl) = E-zn(l-ao+aoe t1) which is defined,
(since t, € J).

By fundemental theorem, ¢(§O,vb,t) is defined on I,.

Then t, € I Therefore, there exists t, € I. such that

2 2" 2 2
Q=$(§'\?t)i

0°Vo Yo . Q€ cy .

Thus ¢(§O,a %b,t) and ¢( 0 0,t) agree as point set locally.

The proof is complete.
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