CHAPTER II

GEODESIC DIFFERENTIAL EQUATION

From differential geometry we know that geodesic curves satisfy the following type of differential equation

(1)
$$\frac{d^2\psi^{i}}{dt^2} = \sum_{j=1}^{n} \sum_{k=1}^{n} G^{i}_{jk}(\vec{\psi}) \frac{d\psi^{j}}{dt} \frac{d\psi^{k}}{dt} \text{ where } G^{i}_{jk} \text{ is } c^{l} \text{ function}$$

on an open subset D of R^n for all i = 1, 2, ..., n; as a result, we call this differential equation the geodesic differential equation.

Notation

2-1.1 $\overrightarrow{\psi}$ is an n-vector valued function of real-valued functions

$$\psi^{1}(t),...,\psi^{n}(t)$$
 denoted by $\psi(t) = (\psi^{1}(t),...,\psi^{n}(t))$.

2-1.2
$$\frac{d\psi^{i}}{dt} = \dot{\psi}^{i}$$
, $\frac{d^{2}\psi^{i}}{dt^{2}} = \ddot{\psi}^{i}$ for $1 \le i \le n$

$$2-1.3 \quad G_{j_1\cdots j_k}^{i} (\overrightarrow{\psi}) \overrightarrow{\psi}^{j_1} \cdots \overrightarrow{\psi}^{j_k} = \sum_{j_1=1}^{n} \cdots \sum_{j_k=1}^{n} G_{j_1\cdots j_k}^{i} (\overrightarrow{\psi}) \overrightarrow{\psi}^{j_1} \cdots \overrightarrow{\psi}^{j_k}$$

where for each i = 1,2,...,n; for each k = 1,2,3,...

 $G_{j_1...j_k}^i$ is defined on some subset of R^n .

Many of the geometric properties of geodesics come from the fact that solutions to differential equations of the form (1) satisfy a certain functional equation given below. For each $1 \le i \le n$,

 $\psi^{i}(\vec{P},\alpha\vec{V},t)$ exists iff $\psi^{i}(\vec{P},\vec{V},\alpha t)$ exists and

(2)
$$\psi^{\dot{-}}(\vec{P},\alpha\vec{V},t) = \psi^{\dot{-}}(\vec{P},\vec{V},\alpha t).$$

We will prove (2) in chapter III page 58

Let $H^{i}(\overrightarrow{\psi}, \overset{\circ}{\psi}, t) = G^{i}_{jk}(\overrightarrow{\psi})\overset{\circ}{\psi}^{j}\overset{\circ}{\psi}^{k}$ where G^{i}_{jk} is analytic on D for $1 \le i, j, k \le n$.

Then H^i is defined on $D \times R^n \times R$ and H^i is amanalytic function on $D \times R^n \times R$.

2-2 Properties of the solution curves to the geodesic differential equation

[2-2.1] Given any initial point \vec{P}_0 in D, any t_0 in R, then there exists a neighbourhood U of the zero vector at \vec{P}_0 such that $\vec{\psi}(\vec{P}_0,\vec{V},t_0)$ is defined for all $\vec{V} \in U$.

Proof Let t_0 be any element in R. Let \vec{P}_0 be any initial point in D. Since $(\vec{P}_0,\vec{0},0)$ is a point on the domain of definition of \vec{H} , hence the fundamental theorem for second order ordinary differential equations implies that there exists a neighbourhood W of the zero vector at \vec{P}_0 , and there exists an interval I = (-r,r) such that $\vec{\psi}(\vec{P}_0,\vec{V},t)$ exists for all $\vec{V} \in W$ and for all $t \in I$.

For any $t_0 \in \mathbb{R}$, we then choose a real number $\alpha \neq 0$ such that $|\alpha t_0| < r$. Hence αt_0 is in I. By the above statement, $\vec{\psi}(\vec{P}_0, \vec{V}, \alpha t_0)$ exists for all $\vec{V} \in \mathbb{W}$. Since for $1 \leq i \leq n$, the solution curve ψ^i satisfies the functional equation (2). Therefore, $\vec{\psi}(\vec{P}_0, \alpha \vec{V}, t_0)$ exists for all $\vec{V} \in \mathbb{W}$.

That is, $\vec{\psi}(\vec{P}_0, \vec{W}, t_0)$ exists for all $\vec{W} = \alpha \vec{V} \in \alpha W$.

But we know that W is a neighbourhood of zero vector at \vec{P}_0 , hence αW is a neighbourhood of zero vector at \vec{P}_0 . Let us denote αW by U and \vec{W} by \vec{V} . Then we are done.

[2-2.2] Given any initial point \vec{P}_0 in D, and initial vector \vec{V}_0 at \vec{P}_0 , then the paths $\vec{\psi}(\vec{P}_0,\vec{V}_0,t)$ and $\vec{\psi}(\vec{P}_0,\alpha\vec{V}_0,t)$ agree as point sets for all $\alpha \in \mathbb{R} - \{0\}$. That is the images of the two functions are the same sets.

Proof Fix $\alpha_0 \in \mathbb{R} - \{0\}$.

Let $c_1 = \{\vec{\psi}(\vec{P}_0, \alpha_0 \vec{V}_0, t) \mid \vec{\psi}(\vec{P}_0, \alpha_0 \vec{V}_0, t) \text{ is defined}\}$.

Let $c_2 = \{\vec{\psi}(\vec{P}_0, \vec{V}_0, t) \mid \vec{\psi}(\vec{P}_0, \vec{V}_0, t) \text{ is defined}\}$.

In order to show $c_1 = c_2$, let Q_1 be any point on c_1 . Hence there exists $t_1 \in \mathbb{R}$ such that $\psi(\vec{P}_0, \alpha_0 \vec{V}_0, t_1)$ is defined and

$$\vec{\psi}(\vec{P}_0, \alpha_0 \vec{\nabla}_0, t_1) = Q_1$$

Since the solution $\vec{\psi}$ of (1) satisfies the functional equation (2), hence $\vec{\psi}(\vec{P}_0, \vec{V}_0, \alpha_0 t_1)$ is defined and $\vec{\psi}(\vec{P}_0, \vec{V}_0, \alpha_0 t_1) = \vec{\psi}(\vec{P}_0, \alpha_0 \vec{V}_0, t_1)$. Thus there exists $t_2 = \alpha_0 t_1$ such that $\vec{\psi}(\vec{P}_0, \vec{V}_0, t_2)$ is defined and

$$\vec{\psi}(\vec{P}_0, \vec{\nabla}_0, t_2) = Q_1 \text{ i.e. } Q_1 \in C_2$$

Let Q_2 be any point on c_2 . Then there exists $t_1 \varepsilon$ R such that

$$\vec{\psi}(\vec{P}_0, \vec{\nabla}_0, t_1) = Q_2$$
.

Then $\vec{\psi}(\vec{P}_0, \vec{V}_0, \alpha_0 \frac{t_1}{\alpha_0})$ is defined.

Hence $\vec{\psi}(\vec{P}_0, \alpha_0 \vec{V}_0, \frac{t_1}{\alpha_0})$ is defined and $\vec{\psi}(\vec{P}_0, \alpha_0 \vec{V}_0, \frac{t_1}{\alpha_0}) = \vec{\psi}(\vec{P}_0, \vec{V}_0, t_1)$

Therefore there exists $t_2 = \frac{t_1}{\alpha_0}$ in R such that $\psi(\vec{P}_0, \alpha_0 \vec{\nabla}_0, t_2)$ is

defined and $\psi(\vec{P}_0,\alpha_0\vec{\nabla}_0,t_2) = Q_2$ i.e. $Q_2 \in C_1$

Thus $c_1 = c_2$. Then the proof is complete.

Definition 2-2.3 Let \overrightarrow{f} be a vector-valued function on an open subset U of R^n into an open subset V of R^n . Then \overrightarrow{f} is said to be a bidifferential map if \overrightarrow{f} is one to one from U onto V, and also \overrightarrow{f} and \overrightarrow{f} are differentiable

[2-2.4] For any $t_0 \in \mathbb{R} - \{0\}$, for any \vec{P}_0 in D, there exists a neighbourhood U of the zero vector at \vec{P}_0 such that $\vec{\nabla} \to \vec{\psi}(\vec{P}_0, \vec{\nabla}, t_0)$ is a bidifferential map of U onto an open set .

<u>Proof</u> Let t_0 be any element in R - $\{0\}$. Let \vec{P}_0 be any point in D.

By property [2-2.1], there exists a neighbourhood U of the zero vector at \vec{P}_0 such that for all $\vec{V} \in U$, $\vec{V}(\vec{P}_0, \vec{V}, t_0)$ exists.

Let \vec{f} be the map defined by $\vec{f}(\vec{v}) = \vec{\psi}(\vec{f}_0, \vec{v}, t_0)$ where $\vec{v} \in U$

We will prove that f is a bidifferential map.

By theorem 1-1.11, \bar{f} is a c^1 function, thus it is enough to prove that the jacobian of \bar{f} at the zero vector is not zero because of the inverse function theorem.

Since for each i = 1, 2, ..., n, ψ^{i} satisfies the functional equation (2) $\psi^{i}(\vec{P}, \alpha \vec{V}, t) = \psi^{i}(\vec{P}, \vec{V}, \alpha t)$.

Differentiate (2) with respect to α , we obtain

$$v^{j} \frac{\partial \psi^{i}}{\partial v^{j}} (\vec{P}, \alpha \vec{V}, t) = \psi^{i} (\vec{P}, \vec{V}, \alpha t) t$$
 for $1 \le j \le n$

Substitute $\alpha = 0$ into the above equation, we get

$$v^{j} \frac{\partial \psi^{i}}{\partial v^{j}} (\overrightarrow{P}, \overrightarrow{0}, t) = \psi^{i} (\overrightarrow{P}, \overrightarrow{V}, 0)t = v^{i}t$$

Let

$$\delta_{\mathbf{j}}^{\mathbf{i}} = \begin{cases} 1, & \mathbf{i} = \mathbf{j} \\ 0, & \mathbf{i} \neq \mathbf{j} \end{cases}$$

Hence for each i = 1, 2, ..., n we get

Since
$$\frac{\partial \psi^{1}}{\partial v^{1}}(\overrightarrow{P}, \overrightarrow{O}, t) = t \delta_{1}^{1}, i, j = 1, 2, \dots, n$$

$$\int_{\mathbf{f}}^{2} (\overrightarrow{O}) = \det$$

$$\frac{\partial \psi^{1}}{\partial v^{1}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0}) = \frac{\partial \psi^{1}}{\partial v^{2}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0}) \dots \frac{\partial \psi^{1}}{\partial v^{n}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0})$$

$$\frac{\partial \psi^{1}}{\partial v^{1}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0}) = \frac{\partial \psi^{2}}{\partial v^{2}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0}) \dots \frac{\partial \psi^{n}}{\partial v^{n}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0})$$

$$\frac{\partial \psi^{1}}{\partial v^{1}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0}) = \frac{\partial \psi^{1}}{\partial v^{2}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0}) \dots \frac{\partial \psi^{n}}{\partial v^{n}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0})$$

$$\frac{\partial \psi^{1}}{\partial v^{1}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0}) = \frac{\partial \psi^{1}}{\partial v^{2}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0}) \dots \frac{\partial \psi^{n}}{\partial v^{n}}(\overrightarrow{P}_{0}, \overrightarrow{O}, t_{0})$$

Substitute (3) into the above equation, we get

$$J_{\widehat{f}}(\overrightarrow{0}) = \det \begin{bmatrix} t_0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix} = t_0^n \neq 0$$

Then the proof is complete.

In differential geometry property [2-2.4] is called the exponential property.

[2-2.5] For any compact neighbourhood U of the zero vector at \vec{P}_0 in D, there exists a neighbourhood V of zero in R such that $\vec{\psi}(\vec{P}_0,\vec{V},t)$ exists for all \vec{V} ϵ U and for all t ϵ V.

Proof It is enough to show that for any open ball $B(\vec{0}_p, r_1)$ there exists an interval V of zero in R such that $\vec{\psi}(\vec{P}_0, \vec{V}, t)$ exists for all $\vec{V} \in B(\vec{0}_p, r_1)$ for all t $\in V$ since U is a compact neighbourhood of $\vec{0}_p$ in \vec{R}^n , hence U is a closed and bounded subset of \vec{R}^n (by Heine-Borel Theorem). Therefore, there exists an open ball $B(\vec{0}_p, r)$ which contains U.

By the fundamental theorem for 2^{nd} order ordinary differential equations, there exists an open ball $B(\vec{0}_{\vec{P}_0}, r_2)$ and an interval I of zero in R such that $\vec{\psi}(\vec{P}_0, \vec{V}, t)$ exists for all $\vec{V} \in B(\vec{0}_{\vec{P}_0}, r_2)$ and for all $t \in I$.

Let $B(\vec{0}_{p_0}, r_1)$ be any open ball center at $\vec{0}_{p_0}$, radius r_1 .

If $B(\vec{0}_{p_0}, r_1) \subseteq B(\vec{0}_{p_0}, r_2)$, then it is clear from the above statement that there exists an interval V of zero in R such that $\vec{\psi}(\vec{P}_0, \vec{V}, t)$ is defined for all $\vec{V} \in B(\vec{0}_{p_0}, r_1)$ for all $t \in V$, just take V = I.

If $B(\vec{0}_{p_0}, r_2) \subseteq B(\vec{0}_{p_0}, r_1)$, then choose $\alpha_0 \in R - \{0\}$ such that $|\alpha_0 r_1| < r_2$

For any $\vec{\nabla} \in B(\vec{0}_{\vec{p}_0}, r_1)$, we have $|\alpha_0 \vec{\nabla}| = |\alpha_0| |\vec{\nabla}| < |\alpha_0 r_1| < r_2$.

Therefore, $\alpha_0 \vec{\nabla} \in B(\vec{\delta}_{\vec{p}_0}, r_2)$ for all $\vec{\nabla} \in B(\vec{\delta}_{\vec{p}_0}, r_1)$.

Hence $\vec{\psi}(\vec{P}_0,\alpha_0\vec{v},t)$ exists for all $\vec{v} \in B(\vec{0}_{\vec{P}_0},r_1)$ for all $t \in I$.

Since $\vec{\psi}$ satisfies the functional equation (2), hence $\vec{\psi}(\vec{P}_0, \vec{v}, \alpha_0 t)$

exists and $\vec{\psi}(\vec{P}_0, \alpha_0 \vec{V}, t) = \vec{\psi}(\vec{P}_0, \vec{V}, \alpha_0 t)$.

Thus $\vec{\psi}(\vec{P}_0, \vec{v}, \alpha_0 t)$ exists for all $\vec{v} \in B(\vec{\delta}_{\vec{P}_0}, r_1)$ for all $t \in I$.

Let $V = \alpha_0 I$. Then V is an open interval of zero in R.

Therefore, we conclude that there exists a neighbourhood V of 0 in R such that $\vec{\psi}(\vec{P}_0, \vec{V}, t^*)$ exists for all $\vec{V} \in B(\vec{0}_0, r_1)$ for all

t* ε V. Then the proof is complete.