CHAPTER I

PRELIMINARIES
This chapter will give some definitions and theorems
which will be used in chapters II and III.

The materials of this chapter are drawn from references

[1] - [8]

When we write a vector'$ we shall write its components

using superscripts vl,..., v 2

1-1 Existence and Uniqueness theorem

The system of ordinary differential equations

AE

e S
2

(1-1.1) % = fe(yl,..., v, t)
n

& . fn(yl,..., v, t)

is equivalent to the vector ordinary differential equation :
ay o
(1-1.2) = = i, )

-
where f is a continuous n-vector valued function whose components

are functions of the real variable t and the n-vector T. The domain
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of ¥ is an open set D in the product space Rnﬂ'. We will use these

two motations interchangably.

Definition ’:1-1.3 Let  : D+ R® where D is an open subset of Ilnﬂ'.

The vector-valued function ¥ is said to be continuous at a point
(61 ,to) € D if for any real number ¢ > 0, there are two real numbers
8, >0 and §, > 0 such that |E(¥,t) -'f('fo,to)l < ¢ , whenever

(T,) €D, [t-t | <6, end |T-T| < &,.

The vector-valued function ¥ is continuous in D if it is continuous
at each point of D. Also, it can be easily shown that ¥ is continuous

on D if and only if each of its components is continuous on D.

Definition 1-1.k  Let ¥ : U + R” where U is a non-empty open
subset of Rm. If T hes continuous partial derivatives of the first
order on U then we say that ¥t is continuously differentiable on U

and we will denote this property by saying that T s cl on U, Also,

for a1l k 2 1, T is c™ on U if ¥ has continuous partial derivatives

up to and including order k.

Definition 1-1.5 Let g be a differentieble function defined on an

open subset U of R? into R. Let '150 = (J%,..., xg) be any point in U.

Then the gradient vector of g at B is denoted by vg('ﬁo) and defined

by the formula

) 9 ? ] )
vg - (-ET, JE’OQD’ -5;;) = (-'-f gevey —.ﬁ-) 8
Ix~ 9x x ax ox

where each of the partials is evaluated at ?0 .



Definition 1-1.6 Let g be an infinitely differentiable function

on open subset U of R” into R. Let aﬂ be a fixed point in U. Then
the Taylor series expansion of g at the point ﬁo is the following

power series :

g® = a@)+ ([(F-73) v]eQ)

S UE-3) v 1P (3

+

+ZUE -8 v 12 8)(E) + ...

In order to fully understand the meaning of this expansion
we shall write it out for different cases.
For example, in two dimensions, if we set QU = (a,b) and P= (x,y),
we get

glx,y) = g(a,b) + [(x-a)g—x +(y-b)g—y] g(a,b)

+ 52k + oL P e + ...

a1 3 3_qn
+ nl([(x—a)Bx + (nr'--b)ay 1" g)(a,b) + ....
Expanding we get,

glx,y) = g(a,b) + (x—a)-gf(a,b) + (y-b)g-% (a,b)

+ L [(x-a)2 2° ¥ 2 3
a1l (x-a)" Spula,b)+ 2(x-a) (y-b)Eia,b)+(y-0) ;g{a,b)l
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n
n-1 9
. (Y*b)T g(a,b)

n .
+ ﬁ1 [(x-a)® 8 gla,b) + (nfl)(x—a)
X ax 3y

n n
+....(§)(x-a)(¥~b)n_l Q—Eh_l(a,b)+(y-b)n E—% (a,b)]
%3y 3y

n
Note that (k)

Definition 1-1.7 A real-valued infinitely differentiable function g

defined on an open connected set D of R" is said to be analytic in D,

'if, for any point ?Oe D, the Taylor series cxpansion of the function

at the point ?0 converges to the function g in some neighborhood of TO'

Definition 1-1.8  Let T be a vector-valued function defined on open

subset D of R* into Rn, T is said to be an analytic function on D

if each of its component function is analytic on D.

The main problem in the theory of ordinary differential
equations of the first order is to find solutions to equations of the
form 1-1.1. By a solution we mean n continuously differentiable (c15
functions yl,..., yn, defined on a real interval I such that

(1) (yt),..., ¥°(t),t) is in D when t is in I.

(20 Fy't) = 1), ¥YH(£),8) when t is in I, 1 = 1,2,...,n.

By an initial value problem for a system of ordinary differential
equations we mean the following problem. Let D be an open subset of
n+l 1 (2 > :
R, and let fl(Y,t),..., £7(Y,t) be real valued functions which ere

continuous on D. Let ?O = (yé,..., yg), and let (?O,to) be a point in D
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The problem is to find n continuously differentiable (cl) functions
yl,..., yn defined on some open interval containing to such that
¥y = (yl,..., y") is a solution, and which also satisfies Y(to) = ?0.
We use the following notation to describe the initial value

problem for the first order system of ordinary diffcrential equations

at . "
IVS &£ = (T, t), ?(to) = ?0

If continuously differentiable functions yl,..., yn defined
on an interval I, containing t, cen be found such that ?(to) = fo 5
then ¥ is said to be a solution of IVS,
Theorem 1-1.,9 If the n functions fi(f,t) arc continuous in a
closed and bounded region G of Rn+l, then given any interior point
(?0, to) of this region there exists at least one continuously
differentisble curve ¥ = Y(t) which is defined in an interval

|t-t0| < & and satisfies the sygtem of differcntiable equations

y
%; 5 o T k). g Y(to) = ¥

0 °
The proof can be found in reference [2] pages 13 - 18 ,

Theorem 1-1.10 Let @ be an open connectecd subset of <

For sach i = 1,2,...505 let £2(T,4) be o (apalytie) k > 1 on'f) .
Then for any point (?O,to) e {i, there €xists neighbourhoods U of

+ n

Y, in K" and I of t, in R such that for any ?i eU and all t € I

there are unique functions defined on I, wl (t),..., " (t) such that
?l Tl



dyt
?l i:. L
Tat B t (W? s t)
L
and
i _ i
tb_f (t,) ¥
j 1
Writing wi £t) = wl(Tl,t) we can furthermore conclude that

1
; i _ k+1 ABET
the function y~ are of class ¢ (analytic) in t and of class

ck (analytic) in ?1 4

This theorem is called the existence and unigueness theorem

for the first order ordinary differential equations or the

fundamental theorem of ordinary differential equation and the proof

for the cf case is shown in references [2] pages 18-22 and [T7]
pages 372-373. For the case where fl(T,t) are analytic for all

i=1,2,...,n one can find the proof in refecrence [3] pages 210-215.

= o
Notation : We shall use the notation %%- = $ interchangeably
and also for Qﬁg = 3.
at

Now, we want to extend the fundamental theorem of ordinary
differential equation of the first order to ordinary differential
equations of the second order. Since these are the objects of study
of this thesis. We want to show that whenever Il is coF (analytic)

k> 1in 2n + 1 real variables then the differential equations

el _ i d : g ;
¢l =H ($,¢,t), i=1,2,...,n with initial conditions wl(to) S p;,

.

Vit = v

0 has a unique solution.
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Theorem 1-1.11 Let ﬁ be ck (analytic) k > 1 on an open connected
2n+l

subset Q of R then for all (P ) € 2, there exist

-
0°Y0°%
neighbourhoods U of ?O, V of ?6 in R® and an interval I of to in R

such that for any ?1 e U, and Vi € V there are unique functions

¢; v(t),..., 4 _(t) defined on I such that $? L= ﬁIﬁ? : ,$? 5 ,t)
121 Pys¥y 121 ¥y Sl

and

->

=g, 2 it 2

Writing $ () = @(ﬁi,ﬁi,t) we can furthermore conclude that

i el

k+2

the function y is of class c (analytic) in t and of class ck(analytic)

with respect to (?i,Vi}.

Proof Let H be ¢® (analytic) k > 1 on & subset @ of REOL
Let (ﬁb,v',to) be any point in Q.

We shall prove that thereexists a unique solution @ = (ﬁl,..., ﬁn)

which satisfies the system of second order ordinary differential

equations
(1) i - gl

¢(3,V,t0) = B (where P is a point in some
neighbourhood of )

i(f,v,to) = ¥V (where V is a point in some

neighbourhood of ?6),



[l
a
ct
-
]
<
=
1]
e
-
.
w
<
=]
n
]

ol n+l o 2 n+2 o 2n
v ¥ ¥

Hence

= =y
dt
& . ge——, QO.°8
dat
EI?+1 L 1 Hl 1 no.l N
dt = v = (W seenst S¥ sesesh 5 )
n +1 2
=  EHEYRECEBGRL 3R, ¢)
2n
1 n +1 2
%% = Hn(y ,...,Y,yn 9--'5yn9 t‘)

This is a system of ordinary differcntial equation of the

first order which we shall denote by

d 1 2n
(2) E% o e T 1)
vhere for each i = 1,2,...,n, fl(yl,..., yen,t) = Yn+1

S0 for each L= itl,..., 28y iyl 9P, 0 st PR

This system of differential equations has initial conditions

?(to) = (pl,...,pn, vl,..., V)



The n-vector valued function T defined above is continuous, hence

theorem 1-1.9 implies that there exists at least one solution of (2).

Lemma 1-1,12 If g = (ﬁl,..., ¢") is a solution of (1),
1

then §* = (gt,..., 0%, 61,..., #™) is a solution of (2).
Conversely, if @#* = (Eﬁl,..., an) is a solution of (2),

then the first n component Ql,..., ¢" are solutions of (1).

Proof Assume that 3 is a solution of
(1) DS ¢ ¥ SSHE(h . e, 37, 1)
o 77/B% i .
IC: yty) s v, (t)) = p
Hence for each i =1,2,..., n, we have
6t = mH e, 8", @l,..., 3" t)
and ﬂl(to) = P - 51(to) = v
We will prove that §% = (@l,...,ﬁn,ﬁl,...,ﬁn) satisfies
gli PPy | 2n
(2) D8 :9 Wk & (0,108 e, )
- ¥ i 1 n n
IC : (to)— B gy B 5T gsiag W)
i,
el ag - 1 age  _ n
Since ot = ) seees Gt = )
and by the assumption, we get
gt . o . | n sl n
a"_E' = ﬂ - (Q ,-o-’ﬁ,é'.-.’é’t)
ag” . & n gl .
& =B =, LB P
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Sinde ﬁi(to) ey ai(to) &gt

1 al :
Hence B*(ty) = (Bt ),....8% 500,87 (t), .. .. 8% (x,))

3*(t0) = (pl,..., pn, vl,..., )
Thus, % = (ﬁl,..., 8", hl,..., 8") is a solution of (2).

Unigueness

i

We will prove that §% = (@ ,...,ﬁn,@l,...,ﬁn) is the unique

solution of (2),

obviously, ¥ = ("%, .., ¥, i 1d,0),. .., B¥T,t)) is & (apslytic)
k > 1. By theorem 1-1,10, we conclude that P* = (¢l,...,ﬁn,él,...,ﬁn)
is the unique solution of (2).

Conversely, we assume that @* = (ﬁl,..., ﬂzn) is a solution

1

of (2). We will show that § = (#*,..., ¢") is a solution of (1).

By the assumption we have that

él = ﬁn+l S0 én . m2n

Then differentiate the above equation with respect to t and using the

fact that mi, i=1,2,..., 2n satisfy (2), we obtain
gt = " o gt 5 (3,8,t)

5° = g2 12(3,8,¢)

2n

I
"
1}

B )

g7 = ™ Bgh, ..., 0% ) = HR(D,8.¢) .
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Therefore, for cach 1 = 1,2,...4 8
ot = 5@, 8,0

Since @* satisfies the initial condition

a*(to) = (pl,...,pn, vl,...,vn)
Hence ﬁi(to) = pi s L ® . Blceus B
iy = W el
Since
B’ = 9n+j, J &L 25% .0
Then
ﬁi(to) = ¢n+J(t0) =\t NUE = 1,2 ey T
Hence [ = (ﬁl,...,ﬁn) satisfies the 2°¢ order

ordinary differential equation (1).

Therefore, g = (ﬂl,...,ﬁn) is a solution of (1).

Unigueness

Suppose & is another solution of (1) such that for some
1=1,2,.0.00, B #0¢,

Similarly, we can prove that 4% = (¢l,...,¢n,él,...,5n)

is a solution

of (2) which satisfies the given initial condition. Since there exists

some i such that ﬁl # @1, hence 3* # ﬁ* which contradicts the existence

and uniqueness theorem for the ordinary differential equation of first

order (Theorem 1-1.10) . Hence for all i = 1,2,...,n, we have ﬁi = ¢i.
; + 4 . 3

That is § = 3. Thus, § is the unique solution of (1).

This completes the proof of lemma 1-1.12,
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Since (§0’$0’t0) be any point in @ S R}, By theorem 1-1.10,
there exist neighbourhoods U of ?0, V of 70 and an interval I of to
in R such that for all P, € U and Vl e V, there exists a unique
function @% = (ﬂl,...,¢2n) defined on I such that for each

i=1,2,...,2n, #°(F. V. ,t) satisfies

: el B
i : 3
d 3
B = A, e, 0

1 .
0oLV ,t,) = pi A /4% 1,2,000,0

1

I

1 l,to) v; where i = n+l, n+2,...,2n.

The functions @' are of class ck+1 (analytic) in t and of class ck
(analytic) in (E,ﬁ) for A1l /AU 2, 0o D,

-
By lemma 1-1.12, § = (ﬁl,..., ¢") is the unique solution of (1)

T .
H'(#,0,t) and ﬁl(Pl,vl,tO) = pi,

such that for each i = 1,2,...,n, bl

ot E F )=

11270 ik
Since
+i %
g" SoINgrat oKL g ME B
hence
n+i O
Thus
i sk
v = (P),V 5t,) for i =1,2,...,n

k+1

For each i =1,2,,..,n, ﬂi = ¢n+1 which is of class c (analytic)

a * 1-
in t (by theorem 1-1,10). Hence §* is of class c 't

k+2

(analytic) in t.
Therefore, @ is of class c (analytic) in t for each i = 1,2,...,n.

The proof is complete,
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1-2 Implicit function theorem

Definition 1-2.1 Let fl,..., " be n real-valued functions

defined on an open set U in R" and let ¥ = (fl,..., ).

By the Jacobian of T we mean the real-valued function J+ whose

f
values are given by the determinant ~
4
Ay gy .. Lk
L¥0 2Yogn A o (a0
X 9x 9x
i :
J+(x0) = det :
f -
£ £ ar” »
| Lix)N EFE) LA F)
2170 270 n"0
[ axX 9x 9x
~ s
5ft
at those points iO in Uy where all partial ——-(ﬁo) exist,
axj
1 n
The notation &{f aee:s fn) is also used for q+(f) where X = (xl,...,xn).
a(x", .. .09 £
Theorem 1-2,2 (The inverse function theorem)

let T : U Rn, io € U vhere U is an open subset of i
1f T is ¢l function on U and q+(i0) # 0, then there exists open sets
V of fo and W of ?(ﬁo) which aﬁe subsets of U and T[U] respectively
and a unique function g : W - V such that

(1) F[vl] = w

(2) T is a one to one function on V
(3) &W] = v and BEX) =% vkev

[3

(4) is ¢! function on W.
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For the proof of this theorem, we refer the reader to

reference [1] pages 1L44-146,

Given a curve in the xy-plane we can express it in implicit
form i.e. f(x,y) = 0 and sometimes we can express it in explicit

form i.e., y = f(x).

349°. 1, then ‘the relation detithdii s

is a function., That is x3+ y3- 1 =0 can be

Example given F(x,y) = x
x3+ y3- 1 = 0
solved explicitly for y in terms of x (y = 3]1'-x3), yielding a

unique solution.

However, if we are given an equation of the form F(x,y) = 0,

this does not necessarily represent an explicit function for example

x°+ y°= 5 = 0. When is the relation defined by F(x,y)

0 also a

0 be solved

function? In other words,when can the equation F(x,y)
explicitly for y in terms of x, yielding a unique solution? The
implicit function theorem deals with this question locally.

It tells us that, given a point (x Y g R® such thit

0*Y0
F(xo,yo) = 0, under certain conditions there will be a neighbourhood
of (xo,yo) such that in this neighbourhood the relation defined by
oF

F(x,y) = 0 is also a function. The conditions are that F and F=

be continuous in some neighbourhood of (xo,yo) and that %5 (xo,yo) # 0,

Theorem 1-2.3 (The implicit function theorem)

Let fl,...,  ve o (k 2 1) (or analytic) real-valued

functions of xl,..., xm, yl,..., yn

Ux Vof a point (al,..., &%, b*,..., b°) in B® x B® such that

defined in some neighbourhood
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(1) fl(al,..., am, bl,..., bn) =0 forlcigcn
aft. 1 m .1 n
and (2) det (“—3)(3 yesoy B 5 D gesns D) F O  for Ll &3 < n.
oy

Then there is an open neighbourhood WOGE U of (al,..., ap) such that,

for any connected open neighbourhood W!EI%}of (al,..., a"), there is
a unique system of n real-valued functions gl,..., gn, defined and

= (k > 1) (or anslytic) in W and such that

(3) 81(&1,..., am) = b for 1 <ig<n, and

i, 1 B AP m n, 1 m
(h) f(x sy xm’g(x 9-0-9x):--'sg(x sereyX ))=O
. 1 m

for 1 <i<n and any (x ,..., x ) € W.

For the proof of this theorem one is referred to [4] pages
270-273.

1-3 Analytic function of scveral varisbles

Theorem 1-3.1 The sct S of all convergent power series in n

variables over the field of real numbers is an integral domain.

For the proof one is refered to [8] pages 129-130,
This theorem says that if the product fg of two real-valued analytic
functions f and g is identically zero in some neighbourhood of 10 € Rn,
then at least one of the function f and g is identically zero in a

neighbourhood of }0'

| 17426777
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Theorem 1-3.4 Let V = (vl,..., v?). Let h be a function of n

variables vl,v2,...,vn which is analytic. If h is identically zero,

then all of the coefficients of the power series are zero.

Proof Since h is anelytic in vl,va,...,vn.
By definition 1-1.7, 1-1.6 we get,
- 9 o -
(vl ) = n@) + v e v 2 ()
n
oV oV
-
2 vt 2w Ny WY 12 1(3)
el Bvl avh
3 -
+ %;—![vl s b A ¥ n(d)
ov 9
+ - L] Ll

For simplicity, we will use the following notations

J n J J J n n J J
(1) %vl= chvl,% Jvlnmk= L e 3% Jvl”vk
1 3= %1 1° Yk =L Sl Y1V
3h
(2) D, h = =3 3 Jp = L.2,...,n
‘1 ov 1
D, ,hb = skh T 3 = LBy o m 1Bi,
L k av l,,.av x
Let ¢y, = 1(0)
c = D, h(0)
) J1
£ I -
[ L . -
Y Djljzh(O) where 31 32
By g .
32 c¥ h(8) where 3, # Js



17

1 = = =
1 k
s
ditedy Tl e D 3 n(d), otherwise
L 3 voslly "5 vl
J Jy J J
Hence, h(vl,...,vn) =cyt c vise Jvlv I c5 Jvl...vk
1 J1da 10"
By the assumption, h = 0
Therefore, we have h(J) = 0 and Dj ; n(3) = 0; K & 1,0, 00,
lul. k
Thus, ¢, =0, ¢ ==f=where Fr=="L,2 vyl § K = 1,282,000
0 jl...Jk k

The proof is complete.

Corollary 1-3.5 Let f and g be two analytic functions in the n
1 .2 n

variables v ,v ,...,V in the same region such that f and g are
J J Ik
identically equal. Let f(vl,...,vn) =a+avTh,.+a v 1..,v +
0 i Jl"'dk
1
J J J
and let g(vl,...,vn) = byt bJ Vol 4 bd i L ow Dol
l ll.. k
Then a, =b , forieach k =1,2,3,... a8 . = for
0 0 jlot-Jk Jlooo%
lsJd,sn
Proof Let h = f~g. Hence h = 0 (by the assumption) , Since f,g

are analytic functions of vl,..., vn

Hence f-g is analytic in vl,..., vn, so is h,

)le+...+ (a - b, )le

Thus, h = (a.-b.)+(a A
00 jl...Jk Ji"'dk

b
Jp 9

By theorem 1-3.4, implies that a,- bO =0, & -~b, =204
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Hence a =Db . ,2a, =Db, ..., & =Db for k- =i1,2 5%
0 0 Jl Jl Jl"'Jk Jl...Jk

and Jk =1,2,..., n. Then the proof is complete .

1.

Theorem 1-3.6 Lk =& (B, 0eb ) e R" be such that b # 0 for

m i 1 ml n mh
1 <i<n and that the series ¥ ... I ¢ p () Teei(®7) T ew,
nﬁ-=0 m=0 m]-ooln
n
Then for any rl, 0<r < [bll for 1 < i £ n, the power series
w0 m m
Y (zl) l...(zn] % is absolutely convergent for

) c
m1=0 m =0 mlouomn

B

i i i -
all 27, |z7| < r" and it can be rearranged.

For the proof one is refered to [U4] pages 199-200.

Theorem 1-3.7 Let x and y be two independent varisbles., If f is
a differentiable function of x and g is a differentiable of y such that

f(x) = g(y), then f and g are identically equal constant.

Proof Assume f(x) = g(y)
Since f is differentisble.

0 for all x

Hence, %%(x)

k where k. is a constant.

Therefore f 1 1

i

Similarly, we can prove that g = k2 where k2 is a constant.
By the assumption, we conclude that kl = k2‘
Hence f and g are identically equal constant.

This completes proof.
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