CHAPTER II

and an analy

TOPOLOGICAL CONCEPTS

2.1 Basic Concepts

A topological space is an ordered pair (X, τ) where X is a set and τ is a family of subsets of X satisfying the following conditions:

- a) φ and X are elements of τ.
- b) The intersection of any two members of τ is in τ .
- c) The arbitrary union of members of τ is in τ .

The family τ is called the <u>topology</u> of the space (X, τ) . Occasionally, we shall denote any topological space (X, τ) simply by X. The members of τ are called τ -open sets of X (or simply open sets of X). A subset A of X is said to be <u>closed</u> if and only if its relative complement $X \setminus A$ is open. If a topological space X has the property that for any x, y in X there exist open sets 0_1 , 0_2 such that $x \in 0_1$, $y \in 0_2$ and $0_1 \cap 0_2 = \phi$, we say that X is a <u>Hausdorff space</u>. For any topological space (X, τ) it can be shown that if Y is any subset of X, then the family

 $\delta = \{T \cap Y : T \in \tau\}$

is a topology on Y; it is called the <u>relative topology</u> of Y and the topological space (Y, δ) is called a subspace of (X, τ) .

By a <u>neighborhood</u> of a point x in a topological space X, we mean a set N for which there exists an open set 0 such that $x \in 0 \subseteq N$. The <u>boundary</u> of a subset A, denoted by ∂A , is defined to be the set of all $x \in X$ such that each neighborhood of x intersects both A and $X \setminus A$. The <u>interior</u> of A is defined to be the set of all $x \in X$ such that A is a neighborhood of x in X. An x in interior of A is called an <u>interior point</u> of A. By the <u>closure</u> of a subset A, denoted by \overline{A} , we mean a set of all points x in X such that each neighborhood of x intersects A.

A subcollection \mathcal{B} of a topology τ is said to be a <u>base</u> of τ provided the following condition holds: for each $T \in \tau$ and $x \in T$, there is a $Wx \in \mathcal{B}$ such that $x \in Wx \subseteq T$, or equivalently, each T in τ is a union of members of \mathcal{B} . It can be shown that if a family \mathcal{B} of subsets of a set X has the properties:

- i) the union of sets in B is X,
- ii) for each B_1 , $B_2 \in \mathbb{R}$, $B_1 \cap B_2$ is the union of members of \mathbb{R} ,

then & is a base for some topology for X. This tolopogy consists of all sets that can be written as union of sets in & .

A function f from a topological space (X, τ) into a topological space (Y, δ) is <u>continuous at a point x</u> if and only if given any neighborhood Vy of the point y = f(x), there is a neighborhood Vx of the point x such that $f(Ux) \subseteq Vy$. The mapping f is said to be continuous on X if it is continuous at every point of X. If f

is a bijection such that f and f^{-1} are continuous, then f is called a <u>homeomorphism</u>. Any two topological spaces are <u>homeomorphic</u> if there exists a homeomorphism between them. If f is a homeomorphism from X to the subspace f(X) of Y, then f is called an <u>embedding</u> of X into Y.

A topological space (X, τ) is said to be <u>connected</u> if and only if X is not the union of two nonempty, disjoint open sets. It can be shown that if f is a continuous function of (X, τ) into (Y, δ) and (X, τ) is connected, then f(X) is connected. A connected subspace of (X, τ) is not properly contained in any larger connected subspace is called a <u>component</u> of (X, τ) .

Let \circ be an equivalence relation on a set X. For each x ϵ X, the equivalence class of x under \circ is the subset $x/\circ = \{y \in X : x \circ y\}$ of X, and each $y \in x/\circ$ is a representative of this equivalence class. The quotient of X under \circ is the set

 $X/\sim = \{x/\sim : x \in X\}$

of all the equivalence classes, and the quotient map induced by ${\scriptstyle \sim}$ is the surjection

$$p : X \rightarrow X/\sim$$

which sends each element of X to its equivalence class under \sim . We shall call an equivalence class under \sim as an <u>identified point</u>. For any topological space X and any equivalence relation \sim on X,

it can be shown that the collection

$$\tau = \{ V \subseteq X/v : p^{-1}(V) \text{ is open in } X \}$$

is a topology on the quotient set X/\sim . This topology is called the quotient topology induced by \sim .

2.2 The Space Rⁿ

The space $X = \{(x_1, \ldots, x_n) : x_i \in \mathbb{R}, \text{ for all } i = 1, \ldots, n\}$ of all n-tuples of real numbers can be made into a vector space over \mathbb{R} by defining

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$$

and

$$\theta(x_1, \ldots, x_n) = (\theta x_1, \ldots, \theta x_n)$$
,

where x_i , $y_i \in \mathbb{R}$, for all $i = 1, \ldots, n$ and $\theta \in \mathbb{R}$. It can be shown that

$$\mathcal{E} = \{ \prod_{i=1}^{n} 0_i : 0_i \text{ is an open interval in } \mathbb{R},$$
for all $i = 1, ..., n \}$

form a base for some topology τ of X. We shall denote this vector space X together with this topology by \mathbb{R}^n and refer to it as the n-dimensional Euclidean space.

If x and y are two distinct points in \mathbb{R}^n , then by the line segment joining x and y, we mean the set

$$q(x, y) = \{\theta_1 x + \theta_2 y : \theta_1, \theta_2 \in \mathbb{R}, 0 < \theta_1 < 1, 0 < \theta_2 < 1, \text{ and } \theta_1 + \theta_2 = 1\}.$$

The point x, y will be called the endpoints of q(x, y).

By the line passing through x and y, we mean the set

1(x, y) =
$$\{\theta_1 x + \theta_2 y : \theta_1, \theta_2 \in \mathbb{R} \text{ and } \theta_1 + \theta_2 = 1\}.$$

If x, y and z are three distinct points in \mathbb{R}^3 such that they are not in the same line, then by the plane passing through x, y and z, we mean the set

$$P(x, y, z) = \{\theta_1 x + \theta_2 y + \theta_3 z : \theta_1, \theta_2, \theta_3 \in \mathbb{R} \}$$
and $\theta_1 + \theta_2 + \theta_3 = 1\}.$

2.3 Topological Sums and Connected Sums

Let (X_1, τ_1) and (X_2, τ_2) be any two topological spaces such that $X_1 \cap X_2 = \emptyset$. Let $X = X_1 \cup X_2$, it can be shown that

 $\tau \ = \ \{ \texttt{A} : \texttt{A} \subseteq \texttt{X}, \ \texttt{A} \cap \texttt{X}_1 \in \tau_1 \ \text{and} \ \texttt{A} \cap \texttt{X}_2 \in \tau_2 \}$ is a topology on X. The topological space (X, \tau) will be called the <u>topological sum</u> of X₁ and X₂ and will be denoted by $(\texttt{X}_1, \ \tau_1) \ + \ (\texttt{X}_2, \ \tau_2), \ \text{or simply by X}_1 \ + \ \texttt{X}_2. \ \text{If X}_1, \ \texttt{X}_2 \ \text{are Hausdorff,}$ then it can be shown that X₁ + X₂ is also Hausdorff.

Let E_1 and E_2 be closed subsets of two disjoint topological spaces X_1 and X_2 , respectively. Assume that ∂E_1 and ∂E_2 are not empty and homeomorphic. Let h be a homeomorphism from ∂E_1 to ∂E_2 . Then the h-connected sum of $\overline{X_1-E_1}$ and $\overline{X_2-E_2}$, denoted by $\overline{X_1-E_1}$ (h) $\overline{X_2-E_2}$, is the quotient space of the topological sum $\overline{X_1-E_1} + \overline{X_2-E_2}$ obtained by identifying the points x and h(x) for all points x in ∂E_1 .

2.4 Surfaces

By a surface we mean a Hausdorff space such that each point has a neighborhood homeomorphic to $\ensuremath{\mathbb{R}}^2$.

If S is any surface, by <u>a disc on S</u>, we mean a closed subset D of S such that D is homeomorphic to the unit disc, $\{(x,\ y): x,\ y\in\mathbb{R} \text{ and } x^2+y^2\leq 1\}.$

If D_1 and D_2 are any two disjoint discs on S, then the topological space $\overline{S-(D_1\cup D_2)}$ will be denoted by $S(D_1,D_2)$. We observe that $\partial(D_1\cup D_2)$ consists of two components, each being homeomorphic to the unit circle, $\{(x,y): x,y\in \mathbb{R} \text{ and } x^2+y^2=1\}$.

In what follows we shall define what we mean by a surface "S attached by a handle".

Let a surface S be given. Let

where
$$B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, 0 < z < 1\}$$
, $L = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z = 0\}$, $U = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z = 1\}$.

Let D_1 , D_2 be two disjoint discs on S. Then there exist a homeomorphism h_1 from ∂D_1 to ∂L and a homeomorphism h_2 from ∂D_2 to ∂U . Let $h = h_1 \cup h_2$. We see that h is a homeomorphism from $\partial D_1 \cup \partial D_2 = \partial (D_1 \cup D_2)$ to $\partial L \cup \partial U = \partial (L \cup U)$. Hence we may construct the h-connected sum S- $(D_1 \cup D_2)$ (h) (C- $(L \cup U)$. It can be

shown that this h-connected sum is a surface. We shall refer to this resulting surface as the surface S attached by a handle.

If S is homeomorphic to the unit sphere, $\{(x,\,y,\,z) \in \mathbb{R}^3: \, x^2+y^2+z^2=1\}, \text{ we say that } \underline{S} \text{ is an } \underline{S_0}. \text{ If }$ there exists a surface S' which is an \underline{S}_t such that S is homeomorphic to S' attached by a handle, we say that \underline{S} is an \underline{S}_{t+1} .