
การออกแบบขั้วสัมผัสผิวหนาที่เหมาะที่สุดของเซลลสุริยะ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

นายชาญวิทย เรืองเฉลิมวงศ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต 
สาขาวิชาฟสิกส         ภาควิชาฟสิกส 

คณะวิทยาศาสตร    จุฬาลงกรณมหาวิทยาลัย 
ปการศึกษา  2547 

ISBN  974-17-7137-1 
ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย 



OPTIMAL DESIGN OF SOLAR CELL FRONT-CONTACT GRID

Mr. Charnwit Ruangchalermwong

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Physics

Department of Physics

Faculty of Science

Chulalongkorn University

Academic Year 2004

ISBN 974-17-7137-1



Thesis Title Optimal Design of Solar Cell Front-Contact Grid

By Mr. Charnwit Ruangchalermwong

Field of Study Physics

Thesis Advisor Assistant Professor Kajornyod Yoodee, Ph.D.

Thesis Co-advisor Sojiphong Chatraphorn, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Professor Piamsak Menasveta, Ph.D.)

Dean of the Faculty of Science

THESIS COMMITTEE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Associate Professor Wichit Sritrakool, Ph.D.)

Chairman

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Assistant Professor Kajornyod Yoodee, Ph.D.)

Thesis Advisor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Sojiphong Chatraphorn, Ph.D.)

Thesis Co-advisor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Chatchai Srinitiwarawong, Ph.D.)

Member

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Sathon Vijarnwannaluk, Ph.D.)

Member



   iv 
 

ชาญวิทย เรืองเฉลิมวงศ : การออกแบบขั้วสัมผัสที่ผิวหนาที่เหมาะสมที่สุดของเซลลสุริยะ. 
(OPTIMAL DESIGN OF SOLAR CELL FRONT-CONTACT GRID)      อ. ที่ปรึกษา : 
ผศ.ดร.ขจรยศ อยูดี,    อ.ที่ปรึกษารวม :  ดร.โศจิพงศ ฉัตราภรณ, 70 หนา. ISBN 974-17-
7137-1. 

 
 
 งานวิจัยนี้ไดทําการออกแบบหาลวดลายของขั้วสัมผัสโลหะที่ผิวหนาของเซลลสุริยะ เพื่อให
ไดเซลลที่มีประสิทธิภาพสูง การคํานวณไดอาศัยรูปแบบการตอกันของเซลลยอยและกฎการคํานวณ
กระแสของ Kirchhoff เพื่อตั้งระบบสมการ นอกจากนี้ยังไดใชกระบวนการเชิงตัวเลขเพื่อแกหาคํา
ตอบสําหรับกระแสไฟฟาท่ีผลิตไดในแตละคาความตางศักยไฟฟาท่ีกําหนด เซลลสุริยะที่ศึกษาในงาน
วิจัยนี้ไดมุงเนนที่เซลลสุริยะชนิดฟลมบางที่มีโครงสรางแบบ Cu(In,Ga)Se2/CdS/ZnO/ขั้วสัมผัส
โลหะ ทั้งนี้พบวากระแสไฟฟาที่ผลิตจากแสงในโครงสรางของเซลลมีคานอยกวา 35 mA/cm2 และไม
คงที่ กระบวนการเชิงตัวเลขไดถูกนํามาใชในการหาลักษณะเฉพาะกระแส-ความตางศักยไฟฟาของ
เซลลสุริยะขางตนที่ไดสมมุติขั้วสัมผัสโลหะ เพื่อหาประสิทธิภาพของเซลล การออกแบบไดประมาณ
ความสัมพันธระหวางคาความยาวการแพร และความกวางของเซลลเพื่อใหไดเซลลที่มีประสิทธิภาพดี
ที่สุดซึ่งพบวาความกวางของเซลลที่เหมาะสมมีคาเพิ่มขึ้นตามคาของความยาวการแพรที่มากขึ้น ขณะ
ที่ความกวางของเซลลที่เหมาะสมไมเกิดข้ึนภายใตคาความยาวการแพรที่มีคาต่ํา นอกจากนี้การออก
แบบยังไดทําการหาคาตัวแปรของขั้วสัมผัสแบบรูปสอมที่มีแขนขนานกันสองขางไดแกคาระยะหาง
ระหวางแขน และคาความกวางของแขนแตละขาง โดยคาระยะหางระหวางแขนของขั้วสัมผัสที่เหมาะ
สมมีคาเพิ่มขึ้นเมื่อคาความตานทานแบบแผนมีคามากข้ึน ผลการวิเคราะหไมแสดงใหเห็นคาความ
กวางของแขนที่ใหคาประสิทธิภาพดีที่สุดสําหรับทุกคาความตานทานแบบแผนที่กําหนด ประสิทธิ
ภาพของเซลลที่ไดมีคาขึ้นกับคาความตานทานแบบแผนที่ใชดวย 

ภาควิชา...............ฟสิกส..............       ลายมือช่ือนิสิต.........................................................……… 
สาขาวิชา……......ฟสิกส…..…….       ลายมือช่ืออาจารยที่ปรึกษา........................................………. 
ปการศึกษา……...2547……….….      ลายมือช่ืออาจารยที่ปรึกษารวม.................................…….…. 

                                                                                            



v

# # 447 22493 23 : MAJOR PHYSICS

KEYWORDS: OPTIMIZATION /DISTRIBUTEDNETWORKMODEL /GRID

/ SOLAR CELL

CHARNWIT RUANGCHALERMWONG : OPTIMAL DESIGN OF SO-

LAR CELL FRONT-CONTACT GRID. THESIS ADVISOR: ASST.

PROF. KAJORNYOD YOODEE, Ph.D., THESIS CO-ADVISOR:

SOJIPHONG CHATRAPHORN, Ph.D., 70 pp. ISBN 974-17-7137-1.

In order to obtain high efficiency solar cells, the front contact metal grid

must be optimized to attain the appropriate grid pattern. An optimization pro-

cedure based on a distributed network model and Kirchoff’s current law forming

a system of equations was carried out and solved for a solution of an output cur-

rent for each boundary voltage. In this work, we focused on a multilayer thin

film solar cell based on the structure Cu(In,Ga)Se2/CdS/ZnO/metal-grid. The

photo-generated current, which was found to be less than 35 mA/cm2, varied as

a function of the boundary voltage. A numerical technique was used to find the

current-voltage characteristics and the efficiency for an assumed grid pattern. The

optimization estimated the relationship between diffusion length and the width

of the cell for best cell efficiency. The longer the diffusion length was, the larger

the optimal width of the cell could be obtained. However, the optimum was not

occured in short diffusion length. Furthermore, the optimization for fork-shaped

grid patterns with two parallel arms was performed to achieve grid parameters, e.g.

the spacing between the two arms and the width of each arm. As sheet resistance

increased, the optimal value of the spacing between the two arms increased but

that of the width of each arm did not happen. However, the efficiency depends

strongly on the sheet resistance.
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CHAPTER 1

Introduction

Solar cells are photovoltaic devices that convert solar energy directly into electric-

ity. They are considered as a major candidate for obtaining energy from the sun

about 1,000 W/m2 [1] because of their nearly permanent power at low operating

cost with little or no emission of pollution and environmental friendly technology.

When photon energies are above a certain threshold energy or band gap energy,

the light will be absorbed in a semiconductor material and electron-hole pairs are

created. If the electron-hole pairs are generated close enough to the pn-junction,

the carriers can be separated by an internal electric field and contribute the gen-

erated current. By placing collector grids made of metal contacts on the top and

bottom of a cell, we can draw that current off externally.

The high efficiency solar cell was first developed in 1954 [2]. It has been

developed repeatedly for a long time until it gains more attention in thin film solar

cells. Copper-Indium-Gallium-Diselenide (CIGS) thin film solar cells have achieved

the highest efficiency of all thin film solar cells [3]. Its efficiency is approximately

18% for a laboratory scale [4]. According to its high efficiency, the CIGS solar cell

attracts researchers to develop and take its advantage in many other ways.

To obtain high efficiency CIGS-based solar cells, composition of each layer of

the solar cell must be studied and developed in order to obtain suitable properties,

such as a) adjusting window layer in order to increase conductivity and still have

enough light transmission [5] or b) increasing area exposed to light that enhances

the current in an absorber layer [6]. Moreover, one important part in the solar cell

is grids. Generally, aluminum metal is used as the grid material in order to bring
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current out of the cell to an external load. It becomes much more useful if there

is a concentrator system such as lens and mirror [7], therefore rising an amount

of the photocurrent. There are power-loss mechanisms, such as ohmic loss and

optical loss, occuring in the window layers of the solar cell with grid patterns. The

optimal design of the grid pattern may be done by integrating these factors but

in one dimension according to the grid length in order to determine the direction

of the current perpendicular to the grid edge. Consequently, it is hard to evaluate

quality of some grid shapes.

In our study, the grids are designed by using a distributed network model [8]

for the cell with an assumed grid pattern on the surface using electrical parameters

of each unit cell and Kirchhoff’s current law. Our work will show the relationship

between the diffusion length and the width of the solar cell. In addition, in order

to obtain the highest efficiency of the solar cell using the fork-shaped grid pattern

with two pararellel arms, two factors (shaded area of the covering grid and sheet

resistance of the top layer) are used to optimize for grid parameters, the width of

each arm and the spacing between the two arms. In addition, important parameters

such as a fill factor, a short circuit current and an open circuit voltage must be

evaluated simultaneously together with the cell efficiency.

Objective
To optimize the design of the front-contact grid pattern for solar cells by

considering the least electrical power loss.

Research procedures
1. Calculate the photocurrent associated with CIGS-based solar cells under

an illumination of air mass 1.5.

2. Make a set of equations for the solar cell with an assumed grid pattern

by using a circuit model with previously calculated photocurrent and electrical

parameters appearing in the model, especially sheet resistance of the top layer.
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3. Solve the set of equations by using numerical methods to obtain the

current-voltage characteristics of the cell.

4. Find the appropriate grid pattern according to the results for the best

power efficiency.

Thesis outline

This thesis is divided into three parts as follows. The first part consists

of theoretical background of semiconductors, junctions and solar cells. These are

discussed in Chapters 2 and 3. The second part in Chapter 4 describes the method,

the circuit model and the calculation of the power efficiency for the solar cell

with calculated photocurrent and assumed grid pattern. In the final part of this

thesis, results (with discussions) and conclusions are presented in Chapters 5 and

6, respectively.



CHAPTER 2

Theoretical Background

In a simple way of saying, semiconductor is the material which can control the

flow of the electrical current. It is widely used to make various electrical devices

such as integrated circuits, lasers, photodetectors, electroluminescent diodes and

solar cells. The aim of this chapter is to present the basics of semiconductor and

semiconductor junctions.

2.1 Introduction

When atoms are brought closer together, the interaction between the electrostatic

fields of these atoms splits the energy levels into bands of permitted energy. The

permitted energy bands are separated by the energy band gap Eg or forbidden band

in which there is no allowed state. The band containing valence electrons is called

the valence band and the outermost is called the conduction band. The top of

the conduction band is known as the vacuum level. Electrons with greater energy

than the binding energy can escape from the solid completely, as in thermionic

emission.

The electrons in the conduction band or conduction electrons can move

freely, thus carrying electric current. At higher temperatures, valence electrons

with sufficient energy can be thermally excited leaving vacant sites. The vacant

sites are equivalent to mobile positive charges, known as holes. The electrons from

neighboring atom can fill the holes. This causes the motion of the holes. The

electric current in the semiconductor is due to the motion of holes in the valence

band and/or electrons in the conduction band.



5

2.2 Charge Carriers in Semiconductor [9,10]

For an intrinsic semiconductor, the number of conduction electrons in the conduc-

tion band are equal to the number of holes in the valence band:

ni = pi, (2.1)

where ni and pi are the intrinsic electron number density and the intrinsic hole

number density, respectively.

In order to quantify the number of charge carrier in semiconductor, we must

know two pieces of important information:

1. The number of allowed states at energy E,

2. The probability of any given state being occupied.

There are no energy states in forbidden band gap but many energy states

within permitted bands. The number of allowed states per unit volume and energy

for the conduction band, gC(E), and the valence band, gV (E), are given by

gC(E) =
4π

h3
(2m∗

e)
3
2 (E− EC)

1
2 , (2.2)

and

gV (E) =
4π

h3
(2m∗

h)
3
2 (EV − E)

1
2 , (2.3)

where m∗
e and m

∗
h are the effective mass of electrons and holes, respectively, and

EC and EV are the bottom edge of the conduction band and the top edge of the

valence band, respectively. For the intrinsic semiconductor, the Fermi energy EFi

is near the midgap. The probability of a state at an energy E being occupied is

given by the Fermi-Dirac distribution function, fFD(E):

fFD(E) =
1

1+ exp
¡
E−EFi
kT

¢ . (2.4)

If E − EFi is much greater than kT, the Fermi-Dirac distribution can be reduced

to the Boltzmann approximation:

fFD(E) ∼= exp
∙
−

µ
E− EFi

kT

¶¸
. (2.5)
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The value for the electron number density in the thermal-equilibrium is

no =

Z∞
EC

gC(E)fFD(E)dE. (2.6)

Using the Boltzmann approximation and Eq.(2.2), the thermal equilibrium electron

concentration in the conduction band is

no =

Z∞
EC

4π

h3
(2m∗

e)
3
2 (E− EC)

1
2 exp

∙
−

µ
E− EFi

kT

¶¸
dE. (2.7)

The result of the above integration is

no =
2

h3
(2πm∗

ekT)
3
2 exp

∙
−

µ
EC − EFi

kT

¶¸
. (2.8)

The coefficient in front of the exponential term can be rewritten as the effective

density of state function in the conduction band, NC:

NC =
2

h3
(2πm∗

ekT)
3
2 . (2.9)

Then, the thermal equilibrium electron concentration in the conduction band is

no = NC exp
∙
−

µ
EC − EFi

kT

¶¸
. (2.10)

A similar analysis is performed for the thermal equilibrium concentration of holes

in the valence band using 1 − fFD(E), the probability of a state at an energy E

being empty in the valence band is

po = NV exp
∙
EV − EFi

kT

¸
, (2.11)

where NV is the effective density of states in the valence band and is given by

NV =
2

h3
(2πm∗

hkT)
3
2 . (2.12)

If no is greater than po, the semiconductor is called n-type. In an n-type semicon-

ductor, electrons are referred as majority carriers and holes as minority carriers. In

the contrary, p-type is the semiconductor in which po is greater than no. Multiply

po with no, we obtain

nopo = NCNV exp
∙
−

µ
EC − EV

kT

¶¸
(2.13)
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or

nopo = NCNV exp
∙
−
Eg

kT

¸
. (2.14)

As po and no are equal in an intrinsic semiconductor, intrinsic electron

concentration ni can be written from Eq.(2.14),

ni = (NCNV )
1
2 exp

µ
−
Eg

2kT

¶
. (2.15)

Equation (2.15) is similar to the Boltzmann approximation. ni is proportional

to the number of electrons with an energy greater than Eg. The intrinsic Fermi

energy can be found by equating no and po in Eqs.(2.10) and (2.11). Hence

EFi =
1

2
(EC + EV ) +

kT

2
ln
µ
NV

NC

¶
(2.16)

EFi is close to midgap when the effective densities of state NC and NV are equal.

This means that the semiconductor is pure and perfect.

In the case of extrinsic semiconductor, we can express the position of the

Fermi energy as a function of doping concentration and as a function of tempera-

ture. If all dopant atoms are ionized, we will approximate no and po as no ≈ ND

and po ≈ NA, where ND and NA are the concentration of donor atoms and accep-

tor atoms, respectively. The Fermi energy is given by

EF = EC − kT ln
µ
NC

ND

¶
, (2.17)

in which the majority carriers are the donor atoms. For majority carrier being

acceptor atom, the Fermi energy becomes

EF = EV + kT ln
µ
NV

NA

¶
. (2.18)

Equation (2.14) is the product of no and po in term of fixed material prop-

erties and temperature, then

nopo = CT
3 exp

∙
−
Eg

kT

¸
, (2.19)
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where C is a constant. The relation is also true for the semiconductor in thermal

equilibrium, that is

nopo = n
2
i . (2.20)

This relation is more general than the case of pure semiconductors previously

discussed.

2.3 Transport Property of Electrons and Holes
[9]

The motion of electrons and holes in semiconductors is responsible for the electrical

conduction due to an applied electric field. When the electric field is applied to the

semiconductor, the electron will move with drift velocity vd under the influence

of the electric field. The drift velocity of the electron is opposite to the direction

of electric field since the electron has a negative charge. At small field, the drift

velocity is proportional to the field, and can be written as

vdn = −μnE, (2.21)

where μn is proportional constant known as the mobility and E is the applied

electric field.

Similarly, the drift velocity of the hole is

vdp = μpE, (2.22)

where μp is the hole mobility.

The total drift current density of holes and electrons is given by

Jdrf = q
¡
μnn+ μpp

¢
E, (2.23)

where q is the electronic charge.

The mobility of carrier is closely associated with resistivity ρ through the

relation;

ρ =
1

q
¡
μnn+ μpp

¢ , (2.24)
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where n and p are the carrier number density. There is another case of motion,

where the concentration gradient of carriers can create carrier diffusion and dif-

fusion current. In a one-dimensional case, the diffusion current is proportional to

the concentration gradient of the carriers as

Jdiff = −qD
dN(x)

dx
, (2.25)

where D is the diffusion coefficient of the carrier, and N(x) is the number density

at position x. From Einstein relation, the diffusion coefficient can be written as [9]

Dn

μn
=
Dp

μp
=
kT

q
, (2.26)

where Dn and Dp are the electron and the hole diffusion coefficient, respectively.

2.4 The pn-Junction [11]

When p-type and n-type semiconductors are brought together into contact, there

is a distortion of energy band at the interface. This is called the pn-junction.

The pn-junction provides many characteristics distinguishing from a single piece

of semiconductor. One important characteristic is the rectifying behavior as shown

in Fig.2.1. Some semiconductor devices use this function to operate as such a diode.

J

V

Forward bias

Reverse bias

J

V

Forward bias

Reverse bias

Figure 2.1: General curve of J-V characteristics of a pn-junction.
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Figure 2.2: Abrupt pn-junction in thermal equilibrium: (a) Charge distribution at the
junction interface (b) the magnitude of the electric field (c) potential variation with
distance (d) energy band diagram [11].
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At the junction, majority carriers or electrons in the n-region diffuse into

the p-region and majority carriers or holes in the p-region diffuse into the n-region.

This diffusion process makes a charge imbalance on both sides of the junction. The

net positive and negative charges in the n-region and the p-region, respectively,

create an electric field, which directs from the n-region to the p-region. The net

positive and negative regions are referred as the space charge region or the depletion

region. The electric field sweeps all electrons and all holes out of the space charge

region and reach the thermal equilibrium. Several conditions at the junction are

shown in Fig.2.2, where Vbi is built-in voltage. The quantities xn, xp and the

electric field magnitude may be derived by applying Poisson’s equation to the

interface region.

From the use of some conditions such as constant doping concentration in

each region, low injection of minority carrier across the junction, minority carrier

concentration related to Boltzmann approximation and no generated current exist-

ing at the junction, the current-voltage relation of the pn-junction can be written

as

J = Js

∙
exp

µ
qV

kT

¶
− 1

¸
. (2.27)

The reverse saturation current Js is

Js =
qDppno

Lp
+
qDnnpo

Ln
, (2.28)

where pno and npo are the minority carrier density in equilibrium. Equation (2.27)

with (2.28) is known as the ideal diode equation.

2.5 The Heterojunction [9,11-12]

The heterojunction is defined as the junction of two semiconductors with different

energy band gap are brought into contact. The energy band will show a disconti-

nuity at the junction interface. By considering different semiconductors on either

side of the junction including n-p and p-n heterojunctions, the junction is called
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anisotype heterojunction. The heterojunction should not have interface states.

The interface state is due to the effect of dislocation between the two materials,

being resulted from three main factors such as lattice mismatch, thermal mismatch

and interdiffusion [2]. Using Anderson’s model [2], an abrupt pn-heterojunction

are described in Fig.2.3.

The subscripts “1” and “2” refer to n-type and p-type, respectively. It is

assumed that the effect of dipoles and interface states is neglected. The spike in

the conduction band is a barrier to the photo-generated electrons from the p-type

when the junction is used as a solar cell. They will pile up at x = 0 and then

recombine, therefore reducing the photo-generated current of the device. The two

materials, in sensual, have different energy band gaps, different permittivities ²,

different work functions φ, and different electron affinities χ. The work function

and electron affinity are referred to the energy required to remove the electron

from the Fermi level and from the bottom of the conduction band, respectively, to

vacuum.

The discontinuity in the conduction band edge is denoted by ∆EC and that

in the valence band edge by ∆EV . Figure 2.3(a) also shows that

∆EC = q(χ2 − χ1). (2.29)

When a junction is formed between these semiconductors, the energy band profile

at equilibrium is shown in Fig.2.3(b). The discontinuity in the conduction band

edge and the valence band edge is invariant with doping where Eg and χ are not

functions of doping, i.e., nondegenerate semiconductors, because the Fermi level

must coincide on both sides in equilibrium and the continuous vacuum level is

everywhere parallel to the band edges. However, ∆EC and ∆EV must be zero for a

homojunction.

The partial built-in voltage in the martial 1, Vb1, and that in the material

2, Vb2, are the electrostatic potential required to equate the Fermi level across the
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Figure 2.3: Equilibrium energy band diagrams before (a) and after (b) the formation
of an abrupt n-p hetertojunction which has the conduction band spike [2].
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junction interface. The total built-in voltage Vbi is the sum of Vb1 and Vb2. It is

also due to the difference between the work functions, or

Vbi = φ2 −φ1. (2.30)

From Fig.2.3, Equation (2.30) can be rewritten as [9]

qVbi = [qχ2 + Eg2 − (EF2 − EV2)]− (qχ1 + EC1 − EF1) . (2.31)

The electric field can be determined from Poisson’s equation. We have in

the n-type:

E =
eND (x+W1)

²1
at −W1 ≤ x ≤ 0 (2.32)

and in the p-type:

E =
eNA (W2 + x)

²2
at 0 ≤ x ≤W2 , (2.33)

where ²1 and ²2 are the permittivities of the n-type and p-type, respectively.

Because of the abrupt junction, the electric field is zero at the edge of the space

charge region. The electric flux density is continuous across the junction, thus

²1E (x = 0) = ²2E (x = 0) , (2.34)

giving

NDW1 = NAW2. (2.35)

Equation (2.35) states that the net positive charge in the n-type must be equal to

that in the p-type.

The integration of the electric field through the space charge region gives

the partial built-in voltages in both regions, so we have

Vb1 =
eNDW

2
1

2²1
(2.36)

and

Vb2 =
eNAW

2
2

2²2
. (2.37)
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The maximum electric field in the junction interface (x = 0) is

Emax =
eNDW1

²1
=

∙
2eNDVb1

²1

¸ 1
2

(2.38)

or

Emax =
eNAW2

²2
=

∙
2eNAVb2

²2

¸ 1
2

. (2.39)

The ratio of the partial built-in voltages of each region can be written as

Vb1

Vb2
=
²2NDW

2
1

²1NAW
2
2

=
²2NA

²1ND

. (2.40)

The total built-in voltage is

Vbi =
eNDW

2
1

2²1
+
eNAW

2
2

2²2
. (2.41)

The depletion width on each side can be found from Eqs.(2.35) and (2.41).

We obtain

W1 =

∙
2NA²1²2Vbi

eND (²2NA + ²1ND)

¸ 1
2

(2.42)

in the n-region and

W2 =

∙
2ND²1²2Vbi

eNA (²2NA + ²1ND)

¸ 1
2

(2.43)

in the p-region.

If the junction is biased by an external voltage V, the same equations apply

by replacing Vbi with Vbi − V, Vb1 with Vb1 − V1 and Vb2 with Vb2 − V2 as

V = V1 + V2.



CHAPTER 3

Solar Cells

After discussing the basic idea of semiconductors and pn-junctions, the aim of

this chapter is to introduce solar cells. Solar cells are semiconductor devices,

which can convert sunlight into electrical power. Then, solar cells are considered

as potentially alternative energy sources. In this chapter, we will describe the

operation of solar cells, solar cell parameters, and heterojunction solar cells.

3.1 Solar Cell Operation

Consider solar cells under illumination shown in Fig.3.1. When photons with

energy equal to or greater than the band gap enter the cells, some photons are

absorbed within the material. On the other hand, photons with energy less than

the band gap pass through the material and are not used for producing electricity.

The photon energy absorbed in the material is transferred to the semiconductor.

The photons with enough energy knock electrons loose, thus creating electron-hole

pairs throughout the cell. Electrons and holes can diffuse to the depletion region

or space charge region in which an electric field exits from the n-type to the p-type.

The electric field sweep holes into the p-type and electrons to into the n-type. As

a result, electric voltage and current occur and are fed out to an external circuit.
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Figure 3.1: The transport of excess minority carriers in both regions of the solar cell
under illumination that creates the net current with its direction from the n-region to
the p-region [13].

3.2 Equivalent Circuits

For ideal solar cells, the simplest equivalent circuit [14] is shown in Fig.3.2, where

JL is the photo-generated current which is opposite in direction to the diode current

Jd under forward bias. The equation used to explain Fig.3.2 is given by

J = Js
¡
eqv/AkT − 1

¢
− JL, (3.1)

where "A" is the diode ideality factor which is determined by the recombination

current taking place during the photovoltaic operation and Js is the reverse satu-

ration current. The first term of the right hand side of Eq.3.1 is also called diode

current Jd.

We must also consider additional losses due to a non-negligible series resis-

tance Rs and a finite shunt resistance Rsh for non-ideal solar cells. Incorporating

these losses, the above equation becomes

J = Js

∙
exp

µ
qV

AkT

¶
− 1

¸
+

µ
V − JRs

Rsh

¶
− JL (3.2)
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Figure 3.2: The equivalent circuit of an ideal solar cell.

Figure 3.3 shows an equivalent circuit according to Eq.(3.2). The existence

of the shunt resistance is due to the loss caused by surface leakage along the edges

of the cell, by diffusion spikes along dislocations of grain boundaries, or possibly by

fine metallic bridges along micro cracks, grain boundaries, or crystal defects such

as stacking faults. The series resistance takes place from contact resistance to the

front and back, the resistance of the base itself and especially the sheet resistance

of the front region layer.

Rload

J

JL

Jd

VRsh

Rs

Rload

J

JL

Jd

VRsh

Rs

Figure 3.3: The equivalent ciruit of a non-ideal solar cell.

3.3 Output Parameters

Four parameters used to specify the performance of solar cells are short circuit

current, open circuit voltage, fill factor, and efficiency. The current-voltage char-

acteristics under illumination shown in Fig.3.4 is used to obtain these parameters.

The short circuit current Jsc is the current at zero voltage when the load resistance

is 0 Ω. The open circuit voltage Voc is the voltage at zero current when the load
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Figure 3.4: J-V characteristics of a solar cell in the dark and under illumination with
important parameters.

resistance is very high. Inside the current-voltage curve, the maximum square area

represents the maximum power output at (Jm, Vm). The fill factor FF is the ratio

of the maximum power output to the product of Jsc and Voc as

FF =
Pmax

JscVoc
=
JmVm

JscVoc
, (3.3)

where the subscript "m" represents the current and voltage at the maximum out-

put. Lastly, the efficiency η of solar cells is the ratio of the maximum power output

to the incoming power of light Pin as

η =
Pmax

Pin
. (3.4)

In general, the efficiency is calculated at standard illumination or air mass

1.5 (AM 1.5) illumination which is demonstrated in Fig.3.5. Air mass 1.5 condition

(cloudless sun at 45◦ above the earth surface at sea level) is the energy-weighted

average for the terrestrial use and its magnitude is about 1,000 W/m2.
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Figure 3.5: Photon flux in sunlight according to AM 1.5 [15].

3.4 Photo-Generated Current

When a beam of light with wavelength λ strikes on the top of solar cells, the photo-

generated current can be described as follows. The generation rate of electron-hole

pairs as a function of distance x from the cell surface and wavelength λ is shown

in Fig.3.6(a) and is given by [11]

G(λ, x) = α(λ)F(λ)[1− Ri(λ)] exp [−α(λ)x], (3.5)

where α(λ) is the absorption coefficient, F(λ) the number of incident photons

/cm2/s per unit bandwidth, and Ri(λ) the fraction of these photons reflected from

the surface. For low injection condition, the continuity equations of minority carrier

are [14]

Gn −
np − npo

τn
+
1

q

dJn

dx
= 0 (3.6)
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for electron in p-type semiconductor and [14]

Gp −
pn − pno

τp
−
1

q

dJp

dx
= 0 (3.7)

for hole in n-type semiconductor. The current equations are

Jn = qμnnpE+ qDn

dnp

dx
(3.8)

and

Jp = qμppnE− qDp

dpn

dx
, (3.9)

where pn and np are the photo-generated minority carrier densities.
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Figure 3.6: (a) Generation rate of electron-hole pairs as a function of distance into the
cell. (b) Dimensions in a solar cell with minority-carrier diffusion lengths [11].

In case of a pn-junction with constant doping, there is no electric field

outside the depletion region or shaded area in Fig.3.6(b). If the device is a junction

that n-type is at the top and p-type is the base, Eqs.(3.6),(3.7) and (3.9) can be
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combined as

Dp

d2pn

dx2
+ αF(1− Ri) exp (−αx)−

pn − pno

τp
= 0 (3.10)

for the top side of the junction. The general solution to Eq.(3.10) is

pn − pno = A cosh
µ
x

Lp

¶
+ B sinh

µ
x

Lp

¶
−
αF(1− Ri)τp

α2L2p − 1
exp (−αx), (3.11)

where Lp is the diffusion length, Lp =
p
Dpτp . These two boundary conditions

for Eq.(3.11). At the surface (x = 0), recombination with a recombination velocity

Sp takes place:

Dp

d(pn − pno)

dx
= Sp(pn − pno). (3.12)

At the depletion edge(x = xj), there is no excess minority carrier due to the electric

field:

pn − pno ' 0. (3.13)

Using these boundary conditions with Eq.(3.11), the hole density becomes

pn − pno =

∙
αF(1− Ri)τp

α2L2p − 1

¸
×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝SpLp
Dp

+αLp

⎞⎠ sinh
⎛⎝xj − x
Lp

⎞⎠+e−αxj
⎡⎣SpLp
Dp

sinh

⎛⎝ x
Lp

⎞⎠+cosh
⎛⎝ x
Lp

⎞⎠⎤⎦
SpLp

Dp

sinh

⎛⎝ xj
Lp

⎞⎠+cosh
⎛⎝ xj
Lp

⎞⎠
−e−αx

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (3.14)

Then, the photo generated current of the hole per unit bandwidth at the junction

edge is

Jp = −qDp

µ
dpn

dx

¶
xj

=

∙
qF (1− Ri)αLp

α2L2p − 1

¸
×⎧⎪⎪⎨⎪⎪⎩

µ
SpLp

Dp

+ αLp

¶
− e−αxj

∙
SpLp

Dp

cosh
µ
xj

Lp

¶
+ sinh

µ
xj

Lp

¶¸
SpLp

Dp

sinh
µ
xj

Lp

¶
+ cosh

µ
xj

Lp

¶ − αLpe
−αxj

⎫⎪⎪⎬⎪⎪⎭ .
(3.15)
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This current would be collected by assuming uniform lifetime, mobility and doping

level. The electron photo-generated current collected from the base is derived by

using Eqs.(3.5),(3.6) and (3.8) with two boundary conditions such as

np − npo ' 0 at x = xj +W (3.16)

and

Sn (np − npo) = −Dn

dnp

dx
at x = H, (3.17)

where W is the depletion width and H the width of the entire cell. The electron

density in a uniform base is

np − npo =

∙
αF(1− Ri)τn

α2L2n − 1

¸
exp [−α (xj +W)]×¯

cosh
µ
x− xj −W

Ln

¶
− e−α(x−xj−W)

−

µ
SnLn

Dn

¶ ∙
cosh

µ
H0

Ln

¶
− exp (−αH0)

¸
+ sinh

µ
H0

Ln

¶
+ αLne

−αH0µ
SnLn

Dn

¶
sinh

µ
H0

Ln

¶
+ cosh

µ
H0

Ln

¶
× sinh

µ
x− xj −W

Ln

¶°
. (3.18)

Hence, the photo-generated current of the electron at the depletion edge, x =

xj +W, is

Jn = qDn

µ
dnp

dx

¶
xj+W

=

∙
qF (1− Ri)αLn

α2L2n − 1

¸
exp [−α (xj +W)]

⎧⎪⎪⎨⎪⎪⎩αLn −
µ
SnLn

Dn

¶ ∙
cosh

µ
H0

Ln

¶
− e−αH

0
¸
+ sinh

µ
H0

Ln

¶
+ αLne

−αH0µ
SnLn

Dn

¶
sinh

µ
H0

Ln

¶
+ cosh

µ
H0

Ln

¶
⎫⎪⎪⎬⎪⎪⎭ ,
(3.19)

where H0 shown in Fig.3.6(b) is the total cell thickness minus the junction depth

and the depletion width, H0 = H− (xj +W).
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There are the other photo-generated current taking place at the depletion

region, where the electric field is high enough to separate photo-generated carriers

out of this region before they recombine again. The photo-generated current per

unit bandwidth is equal to the number of photons absorbed as

Jdr = qF(1− Ri) exp(−αxj) [1− exp(−αW)] . (3.20)

The total photo-generated current at a given wavelength is the sum of Eqs.(3.15),

(3.19) and (3.20):

JL(λ) = Jp(λ) + Jn(λ) + Jdr(λ). (3.21)

The spectral response (SR) or quantum efficiency (QE) can be written as

SR(λ) =
JL(λ)

qF(λ)
. (3.22)

3.5 Heterojunction Solar Cells

Heterojunction are junctions, which consist of semiconductors with different energy

gaps. For a typical n-on-p heterojunction, the semiconductor with large energy gap

Eg1which acts like a window is on the semiconductor with smaller energy gap Eg2

as shown in Fig.2.3. Light with energy less than Eg1 but greater than Eg2 can pass

through the first semiconductor and be absorbed by the second semiconductor.

This light creates carriers in the depletion region and within the diffusion length of

the junction. Light with energy greater than Eg1 is absorbed by the first semicon-

ductor thus making carriers in the depletion region and within the diffusion length

from the junction. The equation, which explains the photo generated current in

the heterojunction, is similar to that in the homojunction. For n-on-p junction,

the hole photo-generated current in the first semiconductor is given by Eq.(3.15)

but α is replaced by α1 and Lp by Lp1, where α1 and Lp1 are the absorption co-

efficient and diffusion length in the first semiconductor, respectively. The electron

photo-generated current is given by Eq.(3.19) but α is replaced by α2, Ln by Ln2
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Figure 3.7: Effect of parasitic resistors on the output parameters of solar cells: (a) effect
of shunt resistance (b) effect of series resistance [1].

and α (xj +W) by [α1 (xj +W1) + α2W2], where α2 and Ln2 are the absorption

coefficient and diffusion length in the second semiconductor, respectively. The

photo-generated current in the depletion region is expressed by [11]

Jdr = qF (1− Ri)
h
e−α1xj

¡
1− e−α1W1

¢
+ e−α1(W1+xj) ¡1− e−α2W2

¢i
. (3.23)

The expressions are valid when small conduction discontinuity ∆EC (in the case of

p-on-n heterojunction, ∆EV should be small) and heterojunction with good lattice

match are considered, so minority carriers in the second semiconductor will not be

dropped from flowing across the junction.

3.6 The Effect of Resistances

The equivalent circuit of solar cells shows that there are two types of resistance,

which affect the output parameters of solar cells. Figure 3.7(a) shows the effect of

shunt resistance. Shunt resistance does not affect the short circuit current but the

fill factor and open circuit voltage are reduced when the shunt resistance decreases.

The influence of the shunt resistance is more obvious at low solar intensities and

low temperatures [1]. Figure 3.7(b) shows the effect of series resistance. The open
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circuit voltage is not affected but the fill factor and short circuit current decreases

as the series resistance builds up. On the other hand, the series resistance becomes

more important at high intensities and high temperatures. In general, solar cells

must have high shunt resistance and low series resistance to avoid the low value

of fill factor, thus afterwards influencing the efficiency [1]. The way, which lessens

the series resistance, is to make high doping level, deep junctions and optimizing

the design of front contact grid.

3.7 Top Contact Design

The optimization of top contact design [1] is an important requirement to obtain

the high efficiency of solar cells. It is increasingly more important as the area of the

solar cell increases [16]. There is an optimal shape design of one front-contact grid

for small-size unit cell by investigating some parameters such as sheet resistance

of the top layer and the maximized area disclosed to incident light. In a simple

model, the direction of current is perpendicular to the surface of the top layer in

the bulk of the junction but lateral in the top layer (see Fig.3.8). For example,

the unit cell of the solar cell has length L and arbitrary shape. The functions g(y)

and f(y) describe solar cell boundary shape and grid shape, respectively, where y

Bulk current

Metal grid Lateral current

Back contact

Bulk current

Metal grid Lateral current

Back contact

Figure 3.8: Direction of current flow in each region of a pn-junction solar cell [1].
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directs on the longitudinal axis of the grid. At the position y, the current is [1]

i(y) =

Zy
0

JL [g(ξ)− f(ξ)] dξ. (3.24)

The power loss due to grid sheet resistance is

PL =

ZL
0

ρg

∙
i(y)2

f(y)

¸
dy, (3.25)

where ρg is resistivity of the grid.

Optimal grid shape is accomplished when the PL is minimized. The grid

will be semi-taper shape if the function g(y) is a constant value (rectangular unit

cell). In fact, the thin film solar cells are fabricated mostly in rectangular shape.

In addition, for larger cell with rectangular shape, only optimal front-

contact grid is not sufficient to accept current from expanding cell, which caused

by widely exposing to light. Thus, the alignment of many optimal grids in terms

of the spacing between grids must be investigated. The power loss mechanisms

at the front-contact grid such as top layer sheet resistance, grid sheet resistance,

grid shadowing and contact resistance between grid and top layer are also used to

determine the grid spacing. The fractional power loss caused by top layer sheet

resistance is [1]

pt =
ρtJmS

2

12Vm
, (3.26)

where ρt and S are top layer sheet resistance and grid spacing, respectively. The

fraction power loss in the grids is [1]

pg =
B2FρgJmS

mVmWF

, (3.27)

where BF and WF are the width of top layer and average grid width, respectively.

The parameterm is 4 if each grid is taper and 3 for uniform width. The fractional

power loss caused by grid shadowing is [1]

ps =
WF

S
. (3.28)
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Finally, the fractional power loss of contact resistance between grid and top layer

is [1]

pc =
ρcJmS

VmWF

, (3.29)

where ρc is contact resistivity.

To investigate the value of S, the sum of Eqs.(3.26) to (3.29) are calculated

by a simple iterative method. The optimum occurs when the efficiency loss caused

by each fraction becomes as small as possible. A quantity for describing the series

resistance of the top layer is the sheet resistance, which is the resistivity divided

by the layer thickness. The sheet resistance has the dimension of Ohm but is

commonly expressed as Ohm/square or Ω/¤.

3.8 Cu(In,Ga)Se2-Based Solar Cells

The state-of-the-art solar cells based on Cu(In,Ga)Se2 or CIGS is the most promis-

ing candidates because of the highest efficiency of all thin film solar cells. Several

research groups have found that the maximum efficiency can be obtained as high

as 19.2% on the laboratory scale [17] and 16.6% for mini-modules (19 cm2) [18].

In addition, outdoor long-term stability and radiation harness are excellent issues

for commercial uses [19]. The CIGS-based solar cell is a heterojunction with its

standard structure shown in Fig.3.9; the structure consists of five thin layers de-

posited on a substrate and a metal grid at the top. The ZnO and CdS are usually

n-type and the CIGS is p-type. The junction is considered to form at or near the

CdS/CIGS interface. The CIGS is a direct band gap semiconductor, and is used as

an absorber layer. The absorber layer is initially made from pure CuInSe2 but can

be partially replaced In with Ga, thus the band gap can be adjusted from 1.04 eV

to 1.2 eV [19] for the best solar cell. Schock et al [19] presented the band diagram

of the CIGS-based solar cell as shown in Fig.3.10 with an applied bias voltage V.

EFn and EFp are the Fermi level energies for electrons and holes, respectively.
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Figure 3.9: The different layers of a ZnO/CdS/CIGS solar cell [13].
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Figure 3.10: Energy band diagram of a ZnO/CdS/CIGS solar cell under forward bias
with three recombination paths, (A)-(C), and tunneling enhanced proceses, lateral dotted
arrows [21,22].

Figure 3.10 also shows three relevant recombination paths, which are re-

combination in the neutral bulk (A), in the space-charge region (B) and at the

CIGS/CdS interface (C). The horizontal dotted arrows indicate enhancement of

the later two. For these three recombinations, the dark current (diode current)
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can be described by [21]

J = Js

∙
exp

µ
qV

AkT

¶
− 1

¸
. (3.30)

The reverse saturation current Js is given by [19]

Js = Joo exp
µ
−Ea

AkT

¶
, (3.31)

where Ea is the activation energy and Joo a prefactor. It is believed that the

high-efficiency CIGS-based solar cell is dominated by recombination in the space-

charge region. Then, the activation energy is close to the energy band gap. At

open circuit condition, the dark current is equal to the Jsc so that the net current

is zero. Combining Eqs.(3.30) and (3.31), the open circuit voltage becomes

Voc =
Ea

q
−
AkT

q
ln
µ
Joo

Jsc

¶
. (3.32)

If the temperature is reduced to 0 K, the plot of the Voc vs T gives the activation

energy.

In the temperature range between 350 and 200 K, the recombination is

without tunneling. The diode ideality factor can be defined as [22]

1

A
=
1

2

µ
1+

T

T∗

¶
, (3.33)

where kT∗ is the characteristic energy of an exponential distribution of trap states.

At low temperature (< 200K), the tunneling is considered and the diode

ideality factor is changed to be [22]

1

A
=
1

2

Ã
1+

T

T∗
−

E2oo

3 (kT)2

!
(3.34)

with the characteristic tunneling energy Eoo. An example for Eqs.(3.33) and (3.34)

is shown in Fig.3.11. The dash line describes recombination without tunneling

according to Eq.(3.33). The full line agrees with Eq.(3.34) which explains the

tunneling.
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Dark and light curves of the CIGS-based solar cell exhibit cross over or non-

superposition due to the modulation of the conduction band spike, thus affecting

diode current of the cell. This is governed by electronic doping of deep level defect

in the CdS buffer layer with white light or blue light soaking [23-27]. The J-V

curve also becomes in the form of “s” like shape, namely red kink, which the slope

of the curve decreases before reaching the open circuit, when the cell is kept in the

illumination with only red light > 600nm. The red kink happens since the excess

electrons from the absorption of photons in the CIGS layer do not have sufficient

energy in order to cross across this conduction band spike [28].

Figure 3.11: The temperature dependance of the inverse diode idealtiy factor of a
ZnO/CdS/CIGS solar cell [19].



CHAPTER 4

Methodology

In this chapter, we briefly discuss the description of the calculation of the pho-

tocurrent, which is used later as one initial parameter. Then, the circuit model

of the solar cell exposed to light is presented. The circuit model can also be used

to explain the current-voltage (J-V) characteristics that we use to optimize the

assumed grid patterns. In the final part of this chapter, we will explain the evalua-

tion scheme concerning the procedure of JV-characteristic for finding the efficiency

of the solar cell with each grid pattern.

4.1 Photocurrent Calculation

In order to calculate the photocurrent, we must know the parameters associated

with the solar cells such as built-in voltage, depletion width and diffusion length.

The built-in voltage is a value that the band diagram bends at the junction inter-

face. In this study, we assume that the n-region consists of two layers, i.e. CdS

and ZnO. Then, the p-region comprises CIGS. The junction interface is presum-

ably appointed at the interface between CdS and CIGS. Using Eq.(2.31) where

the subscript 1 and 2 refer to CdS and CIGS, respectively, together with mate-

rial parameters in Table 4.1, the built-in voltage can be obtained. The value of

(EF2−EV2) and (EC1−EF1) can be derived from Eqs.(2.17) and (2.18), respectively.

Therefore, the value of the built-in voltage is 1.166 V.

The depletion width shows the width of band bending in each region of the

junction. We use Eqs.(2.42) and (2.43), where Vbi is replaced by (Vbi−V) and V is

a bias voltage which varies from short circuit to open circuit, to find the depletion
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Figure 4.1: Calculated depletion width of each region for the junction.

width in each region of the junction as shown in Fig 4.1.

The depletion width in p-region is larger than that in n-region since the

carrier density of CIGS is less than that of CdS. These depletion widths become

eventually zero when the bias voltage is equal to the built-in voltage.

Besides, we must know the diffusion length of excess minority carrier of

both regions. The diffusion length is the square root of the product of minority

carrier lifetime, which is given by [11]

τ =
1

σNdef

q
3kT
m∗

, (4.1)

where σ is cross-section and Ndef is defect density, and diffusion coefficients previ-

ously shown in Eq.(2.26). In this calculation, effective masses are also assumed to

be m∗
e = 0.2m0 and m∗

h = 0.8m0 [28], where m0 is the rest mass of electrons. We

can calculate the diffusion length by using parameters in Table 4.1. This yields

excess minority holes in both ZnO and CdS, and electrons in CIGS as shown in
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Table 4.2.

Table 4.1: Material parameters for the CIGS-based solar cell [29].

General properties
Front surface Back surface

Surface recombination velocity 107 cm/s 107 cm/s
Reflectivity 0.1 -
Layer properties

ZnO CdS CIGS
Width 0.5 μm 50 nm 2 μm
Dielectric constant - 10 13.6
Excess carrier mobility 25 cm2/Vs 25 cm2/Vs 100 cm2/Vs
Carrier density - 1017 cm−3 2×1016 cm−3

Band gap - 2.4 eV 1.12 eV
Effective density of states - 2.22×1018 cm−3 1.78×1019 cm−3

Electron affinity - 3.8 eV 4.1 eV
Defect density 1017 cm−3 1018 cm−3 1014 cm−3

Cross-section 10−17 cm2 9.8×10−13 cm2 5.3×10−13 cm2

Table 4.2: Calculated parameters of each material.

ZnO CdS CIGS
Diffusion coefficient 0.65 cm2/s 0.65 cm2/s 2.59 cm2/s
Lifetime 7.66×10−8 s 7.81×10−14 s 7.22×10−10 s
Diffusion length 2.22×10−6 m 2.25×10−9 m 4.32×10−7 m

By the end of this section, the important parameters have been completely

prepared before starting the calculation for photocurrent. The n-region consists of

two layers, i.e. CdS and ZnO. Hence, there are two conditions for the achievement

for the photocurrent.

In the case of xj < WZnO, the depletion region covers entirely in CdS and

partially in both ZnO and CIGS, so the photocurrent in the depletion region differs

from Eq.(3.23) and is given by

Jdr = qF(1− Ri) [exp(−αZnOxj)− exp(−αCdSWCdS − αZnOWZnO − αCIGSW2)] ,

(4.2)

where WZnO and WCdS are the width of the ZnO layer and the CdS layer, respec-

tively. It is caused by the fraction of incident photons absorbed by these three
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Figure 4.2: Absorption coefficient spectra for ZnO, CdS and CIGS [28].

layers, thus converting to current without recombination loss due to the electric

field of the abrupt junction in this region. Figure 4.2 shows the absorption coeffi-

cient for ZnO αZnO, CdS αCdS and CIGS αCIGS. CIGS has the strong absorption

coefficient in the range of wavelength less than 1.2 μm. Then, CIGS with 2.0 μm

thick is sufficient to be used as the absorber and can absorb entirely remaining

photons from over layers. The photocurrent outside the depletion region for the

ZnO and the CIGS, however, refers similarly to Eqs.(3.15) and (3.9). They become

Jp =

∙
qF (1− Ri)αZnOLp

α2ZnOL
2
p − 1

¸
×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µ
SpLp

Dp

+ αZnOLp

¶
− exp (αZnOxj)

∙
SpLp

Dp

cosh
µ
xj

Lp

¶
+ sinh

µ
xj

Lp

¶¸
SpLp

Dp

sinh
µ
xj

Lp

¶
+ cosh

µ
xj

Lp

¶
−αZnOLp exp(−αZnOxj)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(4.3)
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for excess minority holes in the ZnO and

Jn =

∙
qF (1− Ri)αCIGSLn

α2CIGSL
2
n − 1

¸
exp (−αCdSWCdS − αZnOWZnO − αCIGSW2)×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αCIGSLn−µ

SnLn

Dn

¶∙
cosh

µ
H0

Ln

¶
− e−αCIGSH

0
¸
+ sinh

µ
H0

Ln

¶
+ αCIGSLne

−αCIGSH
0µ

SnLn

Dn

¶
sinh

µ
H0

Ln

¶
+ cosh

µ
H0

Ln

¶
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,
(4.4)

for excess minority electrons in the CIGS.

In case of xj > WZnO, the n-region outside the depletion region covers

entirely in ZnO and partially in CdS. The photocurrent in the p-region is the same

as Eq.(4.4) and the photocurrent in the depletion region becomes

Jdr = qF(1− Ri) {exp [−αZnOWZnO − αCdS (xj −WZnO)]

− exp [−αZnOWZnO − αCdSWCdS − αCIGSW2]} . (4.5)

We use Eq.(4.3) as the current for excess holes in the n-region but xj is replaced

by WZnO. In this work, it is easy to calculate the photocurrent, the conduction

band spike of the CIGS-based solar cell in Fig.3.10 is not considered.

The total photocurrent is found by integrating the summation of photocur-

rent in each region over the wavelength,

JL =

Zλmax
0

(Jp + Jdr + Jn) dλ. (4.6)

This is shown in Fig.4.3, the photocurrent is not constant due to the variation of

the depletion region on the applied voltage. We run the applied voltage from 0

V to 0.8 V because those values should cover the open circuit voltage. Spectral

response of this current (see Fig.4.4) found at the short circuit shows that most

photocurrent (see Fig.4.4) exists in the depletion region. The absorption coefficient

of ZnO is less than that of CdS and CIGS, and is zero at the photon wavelength

greater than 0.6 μm.
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The absorption coefficient of CIGS is also high throughout the range of

photon energy, which is less than 1.1 eV (about energy gap of CIGS), then photon

flux remaining in the p-region is very low. These are reasons why the photocurrent

in the depletion region is much greater than that in the p-region and in the n-region.

4.2 Circuit Model

A solar cell with an assumed grid pattern is modeled from the extensively adaptable

use of the equivalent circuit of the solar cell as an interconnection of unit cells,

namely a distributed network model. In this model, a two-dimensional path of

current is used to emulate the transport of the current in the top layer material

perpendicular to the grid. For example, Fig.4.5(a) shows the interconnection of

unit cells for the solar cell with an assumed grid pattern. By considering the unit

cells in the circle of Fig.4.5(a), the electrical circuits for the unit cells, which are

exposed to light and in the dark (under the grid pattern), are shown in Fig.4.5(b).

In the area with illumination, four halves of sheet resistance of the top layer of

the solar cell (R) are normalized by the number of unit cells and then confront at

one end of them, namely a node. The node is connected to ground through the

parallel connection of photocurrent, shunt resistance in the bulk of the solar cell

and diode current, which is previously described in Chapter 3.

In the area without illumination, the electrical circuit is similar to that

with illumination but the sheet resistance of the top layer of the solar cell is now

replaced by that of the grid (Rg) and normalized by the number of unit cells which

the grid covers. Moreover, the term of photocurrent is not included since the grid

blocks out the light reaching the solar cell. That is to say, the unit cell without

illumination behaves like an ordinary diode. The unit cells with the covering grid

are also taken at least one position to be the site of an applied voltage, a boundary

voltage (Vbd), according to the grid making contact with an external load
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Figure 4.5: (a) Schematic diagram of the interconnection of unit cells for the solar cell
with an assumed grid pattern. (b) The electrical circuits for the unit cells in the circle
of Fig.4.5(a).
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4.3 Evaluation Scheme

An assumed grid pattern is formed on the top of the solar cell. From the distributed

network model, the solar cell is x unit cells wide and y unit cells long. For example,

if x and y are 50 and 40, respectively, the entire solar cell has 2000 unit cells.

There are many parameters to know before setting an equation, which ex-

plains the circuit in each unit cell (see Fig.4.5), as follows. The shunt resistance

of 10,000 Ω [8] in the bulk is sufficiently high that results may be only dominated

by the series resistance in the solar cell. The resistance of the grid at the unit cell

on which the grid covers is used in the form of sheet resistance, which should be

much less than the sheet resistance of the top layer. Its value is assumed to be in

the order of 1×10-4 Ω/¤. The sheet resistance of the top layer is the important

parameter that impact the roll of the grid. We initially use the value of the sheet

resistance of the top layer to be 10 Ω/¤, which is as low as the value expected

from the development of ZnO, the top layer. The photocurrent from the previous

section has already been derived as well as the diode equation has been explained

in section 3.8, Eqs.(3.30)-(3.32). The quality factor is about 1.52 according to

Fig.3.11 at 300 K. Anyway, we use the data of Jsc and Voc from Ref.(14) to find

the reverse saturation current which is about 3.89×10-9 A/cm2. These related

parameters must be used with Kirchhoff’s current law to form a set of equations,

illustrating the circuit model of the solar cell. For example, the equation repre-

senting the unit cell, which is exposed to light and connects to boundary voltage

grids and the unit cell covered by grids, is given by

(Vn,m − Vn,m+1)

R
+
(Vn,m − Vn−1,m)

R
+
2 (Vn,m − Vn+1,m)

R+ Rg
+
2 (Vn,m − Vbd)

R
=

JL − Js

∙
exp

µ
qVn,m

AkT

¶
− 1

¸
−
Vn,m

Rsh
, (4.7)

where Vn,m is the node voltage at point (n,m), (row,column). The first two terms

on the left hand side show the current related to the neighboring unit cells without
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grids. The third and the forth terms on the left hand side are due to the unit cell

with the grids and boundary voltage, respectively. By considering the group of

no-grid-covering unit cells, the equation becomes

(Vn,m − Vn,m+1)

R
+
(Vn,m − Vn−1,m)

R
+
(Vn,m − Vn,m−1)

R
+
(Vn,m − Vn+1,m)

R
=

JL − Js

∙
exp

µ
qVn,m

AkT

¶
− 1

¸
−
Vn,m

Rsh
. (4.8)

There is no current term related to the boundary voltage since the unit cell does

not connect to the boundary voltage grid. As well as the previous example, the

equation of grid-covering unit cells becomes

(Vn,m − Vn,m+1)

Rg
+
(Vn,m − Vn−1,m)

Rg
+
(Vn,m − Vn,m−1)

Rg
+
(Vn,m − Vn+1,m)

Rg
=

−Js

∙
exp

µ
qVn,m

AkT

¶
− 1

¸
−
Vn,m

Rsh
. (4.9)

From the above equation, the right hand side does not have the photocurrent term

because of the grid blocking out the incident light. The diode current term on the

right hand side of these equations is non-linear; therefore, we use Newton-Raphson

method (see appendix A) to convert the equations to be a linear form. The system

of linear equations is then solved by Gauss-Seidel iteration (see appendix B). The

solution of the problem is a set of node voltages. In order to calculate the output

current, the node voltages and the photocurrent are placed to the right hand side

of the non-linear equation, which is summed up all unit cells;

J =
X
n

X
m

¯
JLδn,m − Js

∙
exp

µ
qVn,m

AkT

¶
− 1

¸
−
Vn,m

Rsh

°
, (4.10)

where δn,m = 1 for the unit cell without the grid and δn,m = 0 for the unit cell

with the grid. The process is repeated again for other boundary voltages from the

short circuit to the open circuit. The J-V characteristics are made to carry out

results, efficiency, fill factor, open circuit voltage, and short circuit current. Figure

4.6 summarizes all processes from the circuit model to analytical results.
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Figure 4.6: Flow diagram for the entire evalution scheme.



CHAPTER 5

Results and Discussions

In this chapter, results from the optimization are discussed. Firstly, we will describe

node voltages, solutions for the system of equations, which are then used to find

the output current at each boundary voltage. Secondly, the optimization used to

estimate the relationship between the diffusion length and the width of the cell

is shown. The optimization of fork-shaped grid patterns with two parallel arms

determining grid parameters is shown in the third part. Lastly, the results of

efficiency for the change of some layer properties are shown.

5.1 Node-Voltage Solutions

Node voltages are solutions of the system of non-linear equations obtained from

a numerical method for such a solar cell with grid pattern in order to carry out

the output current of each boundary voltage. The node voltages are monitored

at a short circuit condition, for instance, using a square cell with each side of 10

unit cells wide and a point grid placed at the center of such the cell as shown

in Fig.5.1. The profile of the node voltages is zero (dark) at the center, which

is the position of the grid, and radially increases to the maximum (white) at the

uttermost area. The electric field at the surface of the cell can be found from these

surface potentials according to
−→
E = −

−→∇V. It can be seen that the current created
by the solar cell flows perpendicularly into the grid (see Fig.5.2). This result is

due to the circuit model that the current is initially assumed to flow into the grid

placed on the top layer of the solar cell.
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Figure 5.1: The profile of the node voltages for the cell with point grid at the center.
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Figure 5.2: The direction of electric field at the surface of the cell. Arrows show the
direction of the current flow into the position of the grid.
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5.2 The Relationship between the Diffusion Length
and the Width of the Cell

The purpose of this calculation is to study the influence of the diffusion length

on the width of the cell. Because of the circuit model used here in this work, the

diffusion length must be used in the form of the sheet resistance. The large value

of the sheet resistance corresponds to the small value of the diffusion length. The

solar cell used in this calculation is always 10 unit cell long, whereas the width

WE of the cell is varied, as shown in Fig.5.3(a). The optimization uses a straight

grid-line with one unit cell wide placing at the edge of the cell panel. The width

WE of the cell varies from 3 to 30 unit cells. For long diffusion length (or small

sheet resistance), carriers has higher chance to reach the grid, thus creating more

current than that of low diffusion length. Therefore, the power loss of the current

far from the grid is small.
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WE WC
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Figure 5.3: Schematic showing the straight grid-line placed at the edge (a) and at the
center (b) on the top layer of the solar cell.

Figures 5.4 - 5.6 show the J-V characteristics for the sheet resistance of

10, 30 and 100 Ω/¤. From these results, the increase of the exposed area for the

sheet resistance of 10Ω/¤ influences highly to the increase of short circuit current.

Unlike the short circuit current for the sheet resistance of 30 and 100 Ω/¤, it rises
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Figure 5.6: J-V characteristics of solar cells to estimate the relationship between the
diffusion length and the width of the cell (under sheet resistance of 100 Ω/¤).

to maximum by the effect of the exposed area and then lessens again due to the

influence of resistance. Open circuit voltage changes a little for all used sheet

resistances. Sheet resistance instead of shunt resistance causes the expansion of

the open circuit voltage. The analysis on these J-V characteristics can be carried

out and leads to the efficiency and the fill factor of the solar cell as described in

Chapter 3.

At the same width of the cell, the efficiency of low sheet resistance is more

than that of high sheet resistance as shown in Fig.5.7. The optimal width of the

cell is about 10 and 5 unit cells for sheet resistance of 10 and 30Ω/¤, respectively.

However, there is no optimal width for very high sheet resistance, 100 Ω/¤. Due

to the first two sheet resistances, the increase of the exposed area affects the rise of

the efficiency. When WE is greater than the optimum width, the efficiency reduces

again since the exposed area creates power less than the loss of power from the

resistance that the current confront during the path of moving into grid. Anyway,
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grid-line placed at the edge of the cell panel.

the decrease of the efficiency for sheet resistance of 100 Ω/¤ is mainly caused by

the effect of the resistance, although exposed area still build up the power.

Fill factor of the above optimization is shown in Fig.5.8. The fill factor

decreases linearly as the width of sheet resistance of 10 Ω/¤ increases, but very

rapidly for the remainings and more or less saturates beyond the width of 10 unit

cells.

If the position of the used grid is changed to the center of the cell panel (see

Fig.5.3(b)) with the width WC varying from 5 to 35 unit cells, the optimal width

of the cell can be found for the sheet resistance of 10 and 30 Ω/¤ at 19 and 9 unit

cells, respectively, as shown in Fig.5.9. As well as the first case, the optimization

cannot be obtained with the sheet resistance of 100 Ω/¤. The trend of change of

the efficiency is quite similar to that of the grid placing at the edge, but the change

is at lower rate. Because of this, the placement of the grid at the center compared

with at the other one is equivalent to reducing the path that current flow into the
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5.3 The Optimization for Fork-Shaped Grid Pat-
terns

The fork-shaped grid pattern is expected to be the effective pattern [30] because it

is similar to the comb-shaped grid used in the large area of the silicon based solar

cell [31], but the the fork-shaped grid has only one bus bar and two arms. Hence,

the study focuses on parameters of the pattern, e.g. the spacing S between the

two arms and the width W of each arm. All two types of doubt were performed

on the top of the square solar cell divided into 2500 unit cells, each side of 50 unit

cells. The two arms are also parallel to each other and connected by a bus bar, as

shown in Fig.5.10.
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Figure 5.10: Schematic showing the fork-shaped grid on the top layer of the solar cell.

In order to estimate the first parameter, the optimization uses the arms

which are one unit cell wide and 20 unit cells long. The top of the arm is 13 unit

cells far from the side of the panel. The bus bar used to collect current from the

arms is 5 unit cells wide. The length of the bus bar varies with the variation of the

spacing S. The unit cells of the boundary voltage are placed at the bottom of the
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bus bar. The spacing is taken to be 4, 10, 14, 20, 24, 30 and 34 unit cells to find

the optimal one associated with the sheet resistance of 10, 30, 50, 70 and 100Ω/¤.

For such the variation, the J-V characteristics are shown in Figs.5.11 - 5.15. These

results show that the short circuit current increases when the spacing decreases.

The increase of the spacing causes the expansion of the bus bar length, whereas its

width is still constant. As a result, the area exposed to light decreases. Figure 5.16

shows the J-V characteristics, in which the spacing S of 4 unit cells, for each sheet

resistance plotted together. At the same boundary voltage, the output current

increases with the decrease of the sheet resistance. This is because the resistance

causes the obstruction to the current in the circuit, according to Ohm’s law. In

addition, the open circuit voltage does not change because the shunt resistance

used in the circuit model is sufficiently high and always fixed at the same value.
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Figure 5.11: J-V characteristics of solar cells with the sheet resistance of 10 Ω/¤.
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Figure 5.12: J-V characteristics of solar cells with the sheet resistance of 30 Ω/¤.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

35

C
ur

re
nt

 d
en

si
ty

 (m
A/

cm
2 )

Boundary voltage (V)

 4 unit cells
 10 unit cells
 14 unit cells
 20 unit cells
 24 unit cells
 30 unit cells
 34 unit cells

Figure 5.13: J-V characteristics of solar cells with the sheet resistance of 50 Ω/¤.
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Figure 5.14: J-V characteristics of solar cells with the sheet resistance of 70 Ω/¤.
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Figure 5.15: J-V characteristics of solar cells with the sheet resistance of 100 Ω/¤.
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Figure 5.16: Selected plot of J-V characteristics of solar cells at the spacing of 4 unit
cells.

The effect of varying the spacing S on the efficiency is shown in Fig.5.17 for

various sheet resistances. For the same spacing, it has been seen that the larger

the sheet resistance, the smaller the efficiency is obtained. It can be explained

that for larger sheet resistance or shorter diffusion length, the carriers cannot

reach the grid before the recombination processes occur, thus lowering the output

current collected by the grid as shown in Fig.5.16. Therefore, the maximum power

decreases when the sheet resistance increases. In the case of a sheet resistance of

10 Ω/¤, the efficiency decreases monotoniclly as the spacing S increses. In other

words, there is no optimization for this case. This value of sheet resistance is so

small to find the optimal one of the spacing then the effect of shaded area via the

expansion of the bus bar is more effective than that of the resistance. Furthermore,

for the sheet resistance greater than 10 Ω/¤, the optimal spacing takes place at

different values. An increase in the optimum is an increase in the value of sheet

resistance. The curves of low sheet resistances do not change drastically as that
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Figure 5.17: The efficiency as a function of the spacing S between the two arms of
fork-shaped grid for various sheet resistances.

of larger sheet resistances since the shaded area still affects the efficiency but less

than the sheet resistance does. It can be expected that the optimum is easy to

observe when the sheet resistance is large enough. Besides, the optimal spacing is

about 17, 21, 24 and 26 unit cells for the sheet resistance of 10, 30, 50 and 100

Ω/¤, respectively.

Figure 5.18 illustrates the fill factor as a function of the spacing S of var-

ious sheet resistances. The fill factor increases rapidly as spacing increases, then

decreases again after the maximal one. It is obviously observed in the larger value

of sheet resistance.

Similar to the estimation of the appropriate spacing, the width W of the

arms is optimized to attain the best efficiency for the best one. The optimiza-

tion uses the sheet resistance and the detail of the fork-shaped grid similar to the

first case but the width W of the arms varies form 1 to 5 unit cells. The spac-

ing S between the two arms is also always fixed at 34 unit cells throughout this

optimization.
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The spacing of 34 unit cells is the value that the width of each arm with one

unit cell wide passes the maximal efficiency or has been already optimized for the

appropriate one, so that the optimization of the width of the arms is performed

to recover the efficiency. Figure 5.19 shows the efficiency affected by the change

of the width W of each arm, indicating that there are no optimal widths. The

increase of the width degrades the efficiency. It is so that the optimization is not

successful since the increase of shaded area has stronger impact than the decrease

of the resistance when the width expands.

5.4 Results on the Change of Layer Property

The CIGS-based thin film solar cells with different elemental composition are mea-

sured for the efficiency at the normally experimental properties of each layer, i.e.,

ZnO, CdS and CIGS as described in Chapter 4. We also use the details of the solar

cell with grid pattern as in Section 5.1. Consequently, the efficiency is achieved

at 13.42% for the sheet resistance of 10 Ω/¤. The efficiencies with the change of

some layer properties are summarized in Table 5.1.

Table 5.1: The efficiency affected by the change of layer property in such the solar cell.

The change of layer property Before After
η (%) η (%)

Sheet resistance 10 Ω/¤ 1 Ω/¤ 14.68
0.1 Ω/¤ 14.79

Reflectivity 10% 0% 14.79
Absorption coef. of ZnO αZnO 13.42 αZnO/100 13.59
Absorption coef. of CIGS αCIGS αCIGS/100 2.31
Diffusion coef. of electron in ZnO Dp Dp × 100 13.45
Diffusion coef. of electron in CIGS Dn Dn × 100 14.17

The reflectivity of 0% refers to the photon entering the cell cannot reflect

back out of the cell. Thus it generates electron-hole pairs with no less. The

change of absorption coefficient concerns with the photon flux which creates the

electron-hole pairs. Most of photons absorbed by ZnO make the electron-hole pairs
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far from the junction edge compared with the diffusion length of excess minority

carrier in ZnO. Then, the decrease of the absorption coefficient of ZnO causes

the increase of the remaining photon flux in SCR and the p-region. However, the

decrease of absorption coefficient of CIGS degrades the efficiency rapidly because

almost photon flux is absorbed in CIGS. Finally, the increase of diffusion coefficient

effects the improvement of the diffusion length, therefore raising the efficiency.



CHAPTER 6

Conclusions

The optimization provides the understanding of the grid designs used in solar cells

and a way to optimize them. The procedure of the optimization is to calculate

the photo-generated current in the bulk of the solar cell based on the structure

Cu(In,Ga)Se2/CdS/ZnO/metal-grid. We use the experimental properties of each

layer in such structure. The photo-generated current is in the range less than 35

mA/cm2 and varies as a function of an applied voltage because the space charge

region (SCR) width in the junction always changes with the variation of the applied

voltage. That is to say, the photo-generated current decreases as the applied

voltage increases. The change of the layer properties such as absorption coefficient,

reflectivity and diffusion coefficient (later affecting the diffusion length) can raise

or lessen the amount of the photo-generated current, thus changing the efficiency

of the cell. The efficiency of the cell with normal layer properties can be found at

about 13%-14%. From the spectral response, the electron-hole pairs in the SCR

mainly cause the photo-generated current.

In this work, the optimization is based on the use of distributed network

model and Kirchoff’s current law to form a system of non-linear equations that

describes the solar cell with grid pattern. They are solved by a numerical method

to carry out the node voltages of each unit cell in the entire solar cell. An output

current at each boundary voltage is then calculated from these node voltages. We

use the JV-characteristics to find cell parameters, especially the efficiency. The

profile of node voltages (or surface potentials) shows that the current at surface of

the cell flows perpendicularly to the grid edge. The current runs toward the grid



60

because the grid is assumed on the positive side of the cell.

From the result of the relationship between the diffusion length and the

width of the cell using the straight grid-line placed at the edge of the cell, it is

found that the optimal width of the cell depend on the diffusion length as expected.

The optimal width of high diffusion length is more than that of low diffusion length.

However, it does not occur for very low diffusion length. For the sheet resistance

of 10 Ω/¤, the optimal width is about 10 unit cells when the straight grid-line is

placed at the edge of the cell panel. This means that if the solar cell is 100 unit

cells wide, we must use 5 straight grid-lines laid on the solar cell to collect the

current from the cell that the distance between each line is 20 unit cells.

The results from the use of the fork-shaped grid with two parallel arms

show that the optimal spacing between the two arms can be obtained for most

of used sheet resistances. This optimum depends on the loss of efficiency due to

shaded area and resistance. For higher sheet resistance or shorter diffusion length,

the spacings between the arms get larger. This shows that the optimal spacing

plays much more role to collect carriers far from the grid before the recombination

takes place. On the other hand, the optimal width of each arm cannot be deduced

from any use of sheet resistance because the increase of shaded area has stronger

impact than the decrease of the resistance when the width expands.

For consideration of the effect of sheet resistance on the efficiency, the loss

of the efficiency is also caused by the increase of the sheet resistance at the same

condition. As a result, the front layer of the cell must have small value of sheet

resistance. In addition, analysis of all JV-characteristics shows that the open circuit

voltage is rather constant at about 0.64 V. The short circuit current depends on

the amount of the area exposed to light. It also concerns with the diffusion length.

Lastly, the fill factor cannot be concluded in the same way since the change of

the fill factor depends on other three parameters, efficiency (or maximum output

power), short circuit current and open circuit voltage.
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APPENDIX A

Newton-Raphson Method

There are many problems that we cannot use an ordinary iteration to solve because

they are not linear equations. The Newton-Raphson method can be used to find

roots for this kind of problem.

For an example, we start with a pair of equations involving two variables

x1 and x2; ¯
f1(x1, x2) = 0

f2(x1, x2) = 0
. (A.1)

Suppose, we take (x1, x2) as an approximate solution of Eq.(A.1). With the

corrections h1 and h2, (x1+h1, x2+h2) will be a better approximate solution. We

then expand both functions to the first order of Taylor’s series;±
0 = f1(x1 + h1, x2 + h2) ≈ f1(x1, x2) + h1

∂f1
∂x1
+ h2

∂f1
∂x2

0 = f2(x1 + h1, x2 + h2) ≈ f2(x1, x2) + h1
∂f2
∂x1
+ h2

∂f2
∂x2

. (A.2)

The partial derivatives in Eq.(A.2) is evaluated at (x1, x2). Therefore, equa-

tion (A.2) becomes a pair of linear equations for determining h1 and h2. The

coefficient matrix is the Jacobian matrix of f1 and f2;

J =

"
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

#
. (A.3)

We can reorganize Eq.(A.2) as a matrix-vector form;

−

"
f1(x

k
1 , x

k
2)

f2(x
k
1 , x

k
2)

#
= J

"
hk1

hk2

#
. (A.4)

If the Jacobian matrix is nonsingular, we obtain the solution by using the iteration

as for a linear system. The solution is"
hk1

hk2

#
= −J−1

"
f1(x

k
1 , x

k
2)

f2(x
k
1 , x

k
2)

#
. (A.5)
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Then, the new estimated solution for two nonlinear equations is"
xk+11

xk+12

#
=

"
xk1

xk2

#
+

"
hk1

hk2

#
, (A.6)

where k and k+ 1 are the present and future computation, respectively.
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APPENDIX B

Gauss-Seidel Iteration

Gauss-Seidel is one of the iterative or approximate methods, which is used to

obtain roots for a system of equations. The iteration consists of guessing a value

and using a systematic method to obtain a refined estimate of the roots. Assume

that we have a set of linear equations;

[A] {X} = {B} . (B.1)

For an example, we will solve a 3×3 set of equation. If the diagonal are all

nonzero, the first equation can be solved to yield for x1, the second for x2, and the

third for x3;

x1 =
b1 − a12x2 − a13x3

a11
(B.2)

x2 =
b2 − a21x1 − a23x3

a22
(B.3)

x3 =
b3 − a31x1 − a32x2

a33
. (B.4)

The solution can be solved by choosing guesses for the x’s. The initial

guesses are substituted into Eq.(B.2) to calculate a new value of x1. Then, we use

this new value of x1 along with the previous guess of x3 for Eq.(B.3) to compute

a new value of x2. The calculation is reported for Eq.(B.4) to complete a new

value of x3. All processes are repeated by returning to the first equation until the

solutions converge closely enough to the true values.

Convergence can be checked by using¯̄̄̄
¯xji − xj−1i

x
j
i

¯̄̄̄
¯ 100% < εs (B.5)
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for all i, where j and j − 1 are the present and previous iterations and εs the

precision error.

A psudocode for the Gauss-Seidel follows;

Input n, aij, bi, xi, M, εs

for k = 1 toM do

for i = 1 to n do

xi ←−
⎛⎝bi − nP

i=1
j 6=i

aijxj

⎞⎠ /aii
end do

if
¯̄̄
x
j
i
−x

j−1
i

x
j
i

¯̄̄
100% < εs end do

output xi

end do

The Gauss-Seidel method can be modified by using relaxation to enhance

convergence. After each new value of x is computed, that value is modified by a

weighted average of the previous and the present values

xnewi = λxnewi + (1− λ) xoldi , (B.6)

where λ is a weighting factor which is value between 0 and 2.

If λ is a value between 0 and 1, the type of modification is called under

relaxation. It is used to make a non-convergent system converge or to fasten

convergence by slowing down oscillations.

If the new value is moving in the correct direction toward the true solution

but at too slow rate. Values of λ between 1 and 2 is used to accelerate the conver-

gence of a system. This type of modification is called successive or simultaneous

over relaxation (SOR).
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