CHAPTER v

HARMONIC ANALYSIS ON Z AND JR

In this chapter, we shall consider Z to be a
measure space, where the measure is Just the counting

measure. As usual we shall use

( co
1 f(k)dk = 37 £(x)
)ZZ

T =0

to denote the integral of 'f - Z —_— G: with respect to
the counting measure on //. Thus a function £ s Z—C
is integrable (with respect to the counting measure) if
and only if

P
2 J I£(k)jak = 2 1f(x) ! <00
7 k==o00

The space of all such functions will be denoted by 11,

Recall now if f EI.l(‘?), then its Fourier transform

is defined to be the function | §

3 (k) = Li:f("c) E:(—{-;q)d%
el
it -
:JO f{Et) @ dt

where we have identified f with its associated l-periodic

Fasmm 5O . The TFourier series of f can then be written as

=2 » o ikt A sTik+
4 >, f(k) e = | £(k) e=" dk,
kt-OO ZZ



The central problem in harmonic analysis on T is to
:
determine whether, and in what sense, the Fouries series

(4) of £ represents 7,

Of course, we can do harmonic analysis over domains
other than T . For instance, overzz or TR, (In the latter
case, we obtain the theory of Fouries integrals) and the
corresponding central problems become the inversion problems

and these have very nice complete solutions.

1, Harmonic Analysis on ZZ

Let f & ll. In analogy with harmonic analysis
on q’, we define the Fourier transform of f to be the

function

e ——
.

£
F(x) = J £(3) Ey(x) a (xeT)
22

SR E (R NEI
J= 0

The answer to the inversion is given by

1.1 Theorem Tet £ & 1(X). Aesociste to £ the

function f defined on T whose value at x is

(& 3

(1-1) f(x) = 22 £2(3) B (%)
j:-—cQ

Then

(1-2) J%(s;) B Gk = 2(x).

3
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[ o]
Proof. Since f€ 1%, |, . if(x)| < oo
k ==oc0o

Thus the series in (1-1) converges uniformly, and so

jf(:‘:) B, (£)d% = j (5 29 B S(2)) By (#)a
E'F [Tl J= =2

,Z )-ffm E (%) By (%)ax
J= =00 ?

i1

se1im Zn',‘ Jf(j)Ej(i) Ek(;c)dic

n—30 J==n =
By the property of orthogonality of {En} y one gets

= j £k )ax
{FI

E (k)

Hence the Theorem is now proved ,

This proposition illustrates the simplicity of

the elementary aspects of the harmoniec analysis on Z .

2. Harmonic Analysis onlR (Theory of Fourier Integrals)

2.1 Definition. Let m be Lebesgue measure on TR

divided hy #27W . Define

no

v

A 1 [‘DO
(1) jf(x) dm(x) = or | f(x)ax,
o6 .

where dx refers to ordinary Lebesgue measure, the p-norm by

R &
(2) Hpr: {Jif(x)lp dm(x)}p (1< p «o0),

-0
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the convolution by

DYy
(3) (£%8) (x) = | #(x-y) e(y) an(y) (xeTR),
oo
and the Fourier transform of f by
o0 ;
(4) £(t) = J £(x) e %% an(x) (e TR).
-9

Throughout this chapter, we shall write IF for IP(R,

CO for the space of all continuous functions on |R which
vanish at infinity, and GC(TR) the space of all continuous
complex functions on IR whose support is compact,

l, and ot and A are real

2.2 Theorem. Suppose.  f€ L
numbers,
(a) If glx)edlx) eX** | then 8(t) = F(t -~ ).
(b) If g(x)=f(x-o¢), then &(t) = P(t) e T*T,

(¢c) If gel’ and h=frg; then h(t)=i(t) a(+).

Thus the Fourier transform converts multiplication
by a character into translation, and vice versa, and it

converts convolutions to pointwise products.

——

(a) If g(x)=%(=x), then &(t)=2(t).

(e) If g(x)=1f(x/~) and A> 0, then g(t)=A\ £f(>.%)

(f) If g(x)= ~ix £(x) and ge L', then f is
differentiable and %zt) = g(t).

iax
Proof. To prove (a), let g(x)=7(x) e .

Then it follows by the formula 2.1 (4) that
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[.00
g(t) = | &) e Xt an(x)
T i
: J S ix(t m)dm_(x)
- 00

F(t -ox)

1

To prove (b), let g(x)= f(x - ). By substituting

glx) = f(x =) in the formula 2.1 (4), we then obtain,
oo

" -ixt
g(t) = J g(x) e dm(x)
-0
o3 -ixt
= j Plx -x) e dm(x)
- 60
~iect ik -i(x- )t
= e Jf(x—c‘)()_ e dm(x)
— QO
-i0t
= e £(t) .
=1

To prove (e), let geL and h = T »xg. Then it

follows by formula 2.1 (3), 2.1 (4) and Fubini's theorem
that

R i e =3z
At) = I(fﬂ‘g)(x)e dingir)
-ixt 5
= ‘J f(xey) g(y) am(y)) e am(x)
k °° -:L‘bx
5 J e dm(x ) J f(x=y) &(y) dm(y).

o0 ity -it(x=y)
= J- g(y) e dm(y ) .J f(x~y) e Lo gr(:E

=00

= j gly)e” 1% am y)J f(x) e~1tx dm(x)
s

= &(t) £(t).
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To prove (d), 1let g(x) = f(=x) . Then

" = ~-ixt
g(t) = J' g(x) e am(x)
-0
_ ‘oo -ixt
= | f(-x) e dm(x)
.00
= “i(-x)t
= j f(=x) e dm(x)
— 08
o0 -i(=x)%
= Jﬂq)e am(x)
.-w—_--_-
& F(t) .

To prove (e€), let glx) = f(x /A ) and A > O.

Then we obtain

LV -ixt
s —= Jg(x) =5 da(x)
e
55 -ixt
= ff(x /A) e dm(x)

~ o0

P -ix ( At)
Ajfu/a)e‘ an(x /2 )

-00
AP AL) .

It

To prove (f), consider

A >3 -ixs
f(s) = j f(x) e dm(x)
- 00
and

o0 s
(1) = J tx) o am(x).
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Then
e ~-ixs -ixt
i1y 8 2 J f(x) (e - e ) dm(x)
_(E%H_l = —
00 -ixt =-ix(s-t)
s J f(x) e (e -1) dm(x)
=1

o, -ixt
J f(x) e @ (x, s=t)am(x) (s¢t),
—00

-ixu
where ¥ (x, u) = (e -1) / u. Since | @(x, w)t < |x|
for all real u$ 0 and gince ¥(x, u) — -ix as u—=0,
the dominated convergence theorem epplies to (1), if s tends

to t, and we conclude that

‘ A i -ixt

(2) FY(4) = -1[ x £x)e  am(x)
-0

2.3 Remark,

(a) In the preceding proof, the appeal to the
dominated convergence theorem may seem to be illegitimate
since the dominated convergence theorem deals only with
countable sequences of functions, However, it does enable

us to conclude that

E A P 0 -ixt
lim f(sn) - f(t) = =i J x f(x) e dm(t)
n

for every sequence {sng which converges to t; and this

says exactly that
A A e -ixt
lim fs) = f(t) . =i ]| x f(x) e dm(t).
st S=1

- o0
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We shall encounter similar situation again, and
shall apply the dominated convergence theorem to them

without further comment.

2.4 Theorem. For any function f on TR and every
vyE€R, 1let f, be the translate of f defined by
(1) fy(x) = f(x=y) (xe TR) .

If l¢p<oo and if fé& I:P, the mapping

(2) y —> fy

is a uniformly continuous mapping of TR into LP(TR).

Proof. Given any € > 0, Since f€ LY and since
CC(TR) is dense in LP(TR), there exists a continuous

function g whose support lies in a bounded interval

[ -A, A | such that Hf - g “P <'E£ . The uniform continui

of g shows that there exists a ®€(0, A) such that
| s=t 1 < § implies |g(s) = g(t)| < (3 BVPe o1
| s=t|< & , it follows that

°” P
f | 8(x=8) - glx=t)|Pax <« (32 e Bl2s+8) < £
/—~ 00

so that ||gs- gtlip< E .

Note that ILP - norms (relative to Lebesgue measure )

are translation invariant so that || f llp = || £l 5

Thus
- £ - - -
N~ £l p € e~ g0l + llgg gy llp +lleg= ol

= It  ll g tliggm eyl ot Hl (e=£)y || j< 3

~
C
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3 &
whenever | st | 4’.’5 . This completes the proof.

2.5 Theorem. If £ € Ll, then ¢ C, and
FaS
-
(1) nel,, = el
Proof. The inequality (1) follows from 2.1 (4),

since for any *t E

2)| = |[f(x) et an(x)|
"i-": ff(x) e 1Xt’ dm(x)

- f‘lf(x)l dm(x) = ||f]‘1

S

so thet ||F]] = ”f”l. If  t—>t, then

5 -it -it
125, ) £ 80| = ﬂf(x 6 ™ faite,

-

ie-itnx —itxl = J e-ltnxl -1tx‘

Since - e ’3 = 2

the integrand is bounded by 2 lf(x)‘ and tends to O for
A

every x, as n—a,. Hence ?(tn)-—&f(t), by the dominated

convergence theorem. Thus f is continuous.

Sitice o't = -1, 2 1 (4) gives

A ".t( t
(a3 Bl e il S

o j— f(x - T /t) g 11X dm(x).

Hence

(4) 2f(+) f{f(x) - fx = T8} e ™ an(x).
- oQ

so that
(5) 2 18] = Jle-z24, 1y,

which tends to O as t — * <o , by theorem 2.4.
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2.6 A pair of Auxiliary Functions. In this proof

of the inversion theorem it will be convenient to know

a positive function H which has a positive Fourier transfois

whose integral is easily calculated,

Put
-1 %1
(1) H(t) — e
and define
_ o 15
(2) b, (z) = J H{At) e am(t) (A3 0)
=770 A %
Putting H( At) = é y We get
a *x -l?t'h[ )
: h (x) = I e gltx dm(t)
Ao .
( -l At | itx
= o : J e e at
RS U
=t
_ 1 e (cos tx+1i sin tx) dat
JZT
"0
&0l LALS Ak (7 k)
- 1J e cos tx dt _i J e sin tx dt
42T ) NELEN
R P Pt
LA lim e cos tx dt y i lim le  sin tx
T aw o —>-p0 o X—>-00
0 At rF as
__1  lim e cos tx dt 4+ lim J e cos tx dt
dzﬁ;‘ XA — -o0 e B = o0y
0 g —At
+ i lim { e sin tx dt 4+ lin e sin tx at. L
ﬁﬁT'qﬂﬁm“ o>




Integrate by part, one gives

1 } lim (1l - cos xd @ - x 8in xX e )
,\J-éﬂﬁ } }\ +1 o> - oo A
-Ap Y-
" A _  iim (1 - cos x/e, x- g x 3 e ) 2
A I (= .
Ay AQ
& A 1im (sin x o(e ~x(i-cosxxe )
42"” (a4 x% o -0 2
-)[)3 -7\'3
+- A lim (= sinxfge - x (cos xp e -l),
)\24-}:2 P2 ->00 A ,;
AN ,
We claim that 1im cos xGe == O ; thet is
of > ~om
lim con x o o %20,
o > on

Given any 1> € >0, choose N € ( //y0) such that

o> &2 In 1 o Then-Tor ell o 2> N,

A £

-AX <A -»711\20 In €
!cosxO{e |<le | £ Ie |<e = £
A - X
Similary, we have lim sin xol e ‘& - 1lim sin xde
™=~ 0O &= X0
= Q,
Hence
NG = S S N

[Z . _A
-;'\i(.:ii:— A .‘.}'5
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and hence

o o
[hA (x) dm(x) = T o dm(x)
/o
oo
PR TR Gl S -~
LA s T

= 1 ,ln Jﬁ 1 alx /)
B NS -0 o(.1+ (;,;/,\)2
By putting (g(t) = sin t , we obtain
cos t
Boaid L 1im B C_f:(t) at
T P dl_‘_ @2 (1)

—s 1im P(l/cost) dt
m z:_%: (1+ sin®t/cos°t)
2 of

I | lim (B=-2d)
TONIVERS P
o S A
Z
S |

Hence -

o0

(4) Jhk(X) dm(x) = 1 ,

Note also that O < H(t) €1 and that H(At)—1 as A — 0.



66

2.7 Proposition. If fe¢ Ll then

’

oy

A :
(£#h,) (x) = | H(at) $(4) oM¥¥an(s),
4
"~
Proof. Apply Fubini's theorem, we get
=}
(£41,) (x) = J £(x-y) By(y) an(y)
— 00

oD o0 \
- J £ (=g ) J H(A)e Wam(+)) an(y)

-y —- 00

ol

= Jmf(x-y) dm(y)j H(At) e*Wam(t)

o )
= J H(At) am(t)qu(x-y) e Wan(y)
)

—c0

— s g i
= j H(At) dm(t)j (y) elt(x"wdm(y)
-0

— o

od = =
= J H(At) £(t) e*"Xam(t) ,
- DO .

B

2.8 Pheorem. If g€l and g is continuous at a

point x, then

(1) lim (g«h,) (x) = g(x).
A—> 0
Proof. On account of 2.6 (4), we have
00
(6%1y) (x) - g(x) = | [&(x-y) - 6(x)] n(y) any)
/00

o2 ]
- J [e(x=y) - &(x)IA ny{ L) an(y)
—ob

= ng(x-ms) - g(x)] h,(s) am(s).

— oy
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The last integrand is dominated by 2|_{g]|cib hl(s)

and converges to O pointwise for every s, as A — O.

Hence (1) follows from the dominated convergence theorem .
2.9 Theorem. If 1{p <+ovand f€ IP, then

(1) 1im {|{f=xh

"f’ = O .
N= o0 A p

Proof. Since h, & Lq, where q is the exponent
conjugate to p, (f%h,) (x) is defined for every x.

. Because of 2.6 (4) we have
' oo

(‘2) (fxh,) (x) - f(x):J fx-y) = £(x)] h,(y) am(y)

- °0
By Jensen's Inequality, we obtain
o
(3) | (£khn,) (x) - £(x)}F £ Jlf(x-y) - £#(x)|P.|n (y)|Panm(z )
-

By using 2.6 (2), 2.6 (3) and applying Jensen's Inequality

again, we have

In, (P = (ny(3)®

o - P
= ( J H(At) elwdm(t))

~o0
oo =lA t| ity D
= ( 8 o+ @ dm(t))

m -
oo - |Apt| ipty
s

e . e dm(t)
~ 00

By putting t' = pt, one gets

Do At ity
‘[ e e dm(t!)

=
P
~ 00
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o0 l;\-tli it'y
< J‘ e e dm(t")
_0d
o0 i 1
= l[ H(At') e
L oo
- ya(y) §
Hence
. :
(4) | (£4hy) (x) = £(x)|P < Jlf(x-y) - 2P, n(y) an(y]
—o0
Integrate (3) with respeet to x and apply Fubini's theoren:
o0
(5) ll £xh, - £ P<: £ - £ Ph (y) am(y).
A » 7 VA ¢ A
/__‘.m
P
If g(y) = IIfy- f}|p then g is bounded and continuous,

by Theorem 2,4, and g(0) = 0. Then

P o
(6) ewn, - £l 0 < chy) n(y) an(y)

— O

o9
= S g(0~y) h)\(y) dm(y )

—_—

gxh,(0) .

]

By 2.8 , we obtain lim (g% ha(o)} = g(0) = 0.
A0

Thus 1lim Hfxh, - £§ = O,
A-90 p

This completes the proof.

2.10 The Inversion Theorem, If fe i and ?ELl,
and if
0 ixt
(1) &x) :J £(+) Xt an(+) (x € TR ),

—00
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then g € C_ and f(x) = g(x) a.e .
Proof. By Proposition 2.7,

(2)  (£#n,) (x) = JOQH(At) £(t) ¥t am(+).

pe_e
The integrands on the right side of (2) are boundesd
by l?(t){ , and since H(At) —» 1 as A — 0, the right
side of (2) converges to g(x), for every x € JK, by the

dominated convergence theorem.

By Theorem 2.9 we see that f*h, converges to f
in IP, and so by the proof 'of Theorem 1l.26 there exists
a subsequence fx An converging pointwise almost everywhere

to f(x), that is

(3) lim (f%h, ) o= .f(x) a.e
n—s o n

Hence f(x) = g(x) —ase, That g< C, follows

from Theorem 2.5.

2.11 The Uniqueness Theorem. b E :E'C»;L1 and i:(t):_ 0

for all teT R, then f(x)= 0 a.e .

i a 3 1
Proof, Since f = 0 we have felL , and the

result follows from the inversion theorem.
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