»

CHAPTER IV

CONVOLUTION OPERATORS

oN
HOMOGENEQUS SPACES

1. Convolution Operators on Lz([{-l)

By way of introduction, suppose that {>\ni is a
bounded sequence of complex numbers and suppose that
there exists a g in Lg(?) such that for all integers
n, ‘}sn = c (g).

Note that a necessary and sufficient condition

. 2
for such a g to exist is that b l>\nl L@
n

according to the Riesz = Fisher Theorem. By Theorem 3.2
there is a stationary continuous linear operator Pon L‘?(*-F‘)

such that

(1) »Pf ~§ c,(g) e (f) E for all f in LQGT)'
For each x € M, the assigmment +%+—>h(t) = g(x-t) defines

a function on ;[ with

]

<{n, B

= f‘g(i-%) E_ (%) at

c, (h)

= I?Jg(iw t) E () at
T

= E (-x) | &(t) E (t) at

1.1_.]
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= E_ (-%) [g({:) E_(£)at

I;l

= E T3 o.(2)

n

Now, 1et/u be any complex number, by Parseval's

formula, we get

() e+ unll? = 2o (0)+ me ()]

= T (eglE)+ Moy (n)(ey(2) + e (n))
By identifying with the scalar product, we get
e+ pn (2 = <2+ un, £ + M5y
= MellZ+ |ul? In]|2+ 2 re@i <2,
Thus 2 Re /] > a2 Re ch(f) E;Ga_)
Take J(=1 ; we have

 Re <£,B> = R Lo () o (n)
Take M =1 ; we have
Re-ilf, B> = Re - i ch(f) ¢, (n), which

implies Im<f, h> = Im ch(f) cn(h).
Hence
3) <&, o) = e (£) o (n)

= Lo (£) c (&) E ()
Thus it follows from (1) and (3) that

PE(X)=<E, B> = fe(z=£) £(£)at,
L"D
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We are then led to the definition of convolution.

1.1 Definition. Let f and g be two functions in

Lz(qﬁ. The convolution fx g of f and g is a function

on Tdefined by

X —> f % glx) = J £(t) glx=-t)at
(o

Immediately, we must show that fxg is well

defined.

1.2 Proposition. Let f, g € L%(T). Then

(a) e (f%xg) /= e &) ¢, (8) .

(b) fxg /is actually a continuous function

—r
OIl T.

. Proof. (a) This follows immediately from Eq(3)
in the introduction,

¥ . i
(b) First we will show that s cn(f) cn(g)En(A)

converges uniformly in x.

Consider le (£) c (g) E (x)}-

A\
nezz |Cn(f)||0n(£‘,3,ﬁ.

2
nez
Due to the Schwarz inequality and the fact that

> Icn(f)|2 and ¥ lcn(g)ig converge, it follows
nez & 77 .
that for any integer n

S0 e el = 5 ley()l feyla)|

k= =-n Kk=-n

2 2 2
4/1cL‘ (0] ’\/k})—.j—zlck(g)lo
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So that 2 cn(f) cn(g) En();) converges uniformly,
ne7z.

Part (a) shows that fHMg is the uniform limit of

ch(f) cn(g) E . Therefore fxg is continuous.

1.3 Proposition. Let g be a given function on LE(?).

Then the operator P : f—=>f#g is a stationary continuous

linear operator on 13(F).

Proot. We will show first that P is stationary.

We have for all x € T4
Up (P2) A %) im0 (£ &) (x)
= f%g(i+ 1:1)

- J £(t) g(x+h - t) at
A

_—

4
J £(t+h) g(x - t) at
.’?

H

Il

J' Up£(%) g(x - %) at
? -
= (Uﬁf *g) (x)

- P(U;f) (x).
So that Ul-,l(ftg) = Ugf%g.

For any o , p € 0. and f, h @ Lz(?), we have

P(xf+ph) (x) = ((Af+@h)kag) (%)

. :J (Xf +ph) (%) g(x-f) at
i3

[
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:-I’(cxftéy-gtii%) + @ n($) g(x-1)) at
[ §
T . PR * . ' » -
= oh f- f(t) glx=-t)dt + I%fh(t) g(x~t)dt
o &

= X (f®g)x) +p (hxg)(x)

oA P(f)(x) + B P(h)(x).
Since P is linear, we have

2 )
2{: !cn(f) cn(g)[ ¥ :E: (sup | cn(g)l ) |cn(1}i
neg nep B

t

2‘:_ 2
Swp [, (e) 25 | ey(t)]

and so

ek 8 o 2y
(nElcn(f)cn(g) ) & sw ley(e)] (Zle,(f)

= Sup e (e)| [l£l], -

It follows from Proposition 1,2 (a) that
1\Pf|\2 < SEP le (&) llfl|2
for all fe€L°(T) . Thus P is continuous.
Hence the proposition is now proved.

Note, we see that stationary continuous linear

operators from L%(P) into LQ(Qh can be obtained via
convolution by two functions of Lg(Q5. The question is
whether or not all stationary operators from Lo(T) into
ch?) come from convolution operators. The answer is

negative. Howevexr we shall not construct any example to
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support the answer since the usual construction relies on
the Riemann -~ Lebesgue Theorem concerning the behavior of

Fourier coefficients.

1.4 Proposition. Let £, g and h be three functions

in LQ(EF). The following properties are true.
(a) fxg = g%
(b) f£*x(g*h) = (f£%g)%*h,

Proof. Property (a) follows from Proposition
1.2 (a) and the uniqueness theorem for Fourier series

represintation of functions, in Lgﬁ').

Since - g#h. and f *g are continuous,

they also belongs to I%(T). So that
c (£ (g %h)) — c (£) (e (g*h))
et tetig) o.(h))
= (cn(£) e (8)) o (h)

=t cn(f*g)*h
and property (b) holds again by the Unigueness theorem

1.5 Theorem. Let g be a given function in Lg(?) and

P be the convolution operator ; f r—=> f¥g

The kernel of P is the closure of the linear space

generated by all those E  for which cn(g) = 0,
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Alternatively it is the space of functions in

12(T) orthogonal to all those B, for which c (g)F O

Proof. First we will prove the second half of
the theorem. Assume f€ Ker P, then Pf = 0. And so
for any integer m,

0= c_(Pf) = (X e (f) e (g) B, Em>

nez o
-

- < lim Z ck(f) ck(g) E, Em>

N—=>ca k:"N

I
I_J
‘._h
B

N
N —;®<}EN°k(f) ¢, (&) B, B )

y 4 lim, ¢ (£f) cm(g)HEm I

it

cm(f) c, (&)

Which implus that cm(f) ='0 for all m such that cm(g);é 0,
So that f belongs to the space of functions in Lz(?)

orthogonal to all those E_ for which c (g)# O.

Conversely, assume f belongs to the space of
functions in LZ(?) orthogonal to all those En for which
cn(g) # 0. And so for E  such that cn(g)# 0, cn(f):
{f, B, >= 0. Thus cn(g) cn(f):O for all,p. And

therefore Pf= J, cn(f) cn(g) E, = O. \Which implics
neg
f € Ker P.

To prove the first half, assume f is in the closure

of the linear space generated by all those E_ “for which

n )
c.(g) = 0. That is £ = 1lim ST AL B , where E
R n-—-ac k :-n k The e
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is such that cmk(g) = 0. 4And so c (f)c L(8) =0 for

all n in 77, and Pf 2_. c (f) (o) (g) E =% 0. Therefore
nGZ #lf‘-,

f € Ker P. .f"" \"5

Conversely, assume fe€ Ker P; then

e
Pf= £ cn(f) c.(g) E, =0. By the proof of t
nez

half of the theorem, 0 = {Pf, Em) = cm(f) om(g).
So that cm(g) = 0 whenever cm(f)i 0.

Let I = {mk | k ¢ ZZ} be the set of indicies such that

e, (g)= 0. Then #£x///2a ¢ (£) E . And therefore
mk k&.z_mk mk

f is in the closure of the linear space generated by all

those E_ for which cn(g).:r B\

Actually, the structure of Lz(t?) under convolution

can be summarized by the introduction of a new terminology.

1.6 Definition. A normed space E of complex valued

functions over Y is called a commutative convolution

algebra if:

(1) fxg is a function in E whenever f and g
are in E,
(2) If g is in E, then the mapping
f— fxg is linear from E into E.
(3) £% (g%h) = (f%g)* h for any f, g
and h in E,

(4) fxg = g=#f for any f, g in E.
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If in addition we get
(5) {itxegllg <t 5 {lgllg for any £, g in T,

Then E is called a commutative Banach algebra for

convolution.

1.7 Theorem. LQG?) is a commutative Banach algebra

for convolution.

Proof. Properties (1), (2), (3) and (4) are the
contents of previous propositions. Thus we need only to

show that (I f%gl , & HE§ > llell , . But

2
lexell, /&5 e (£)]2 |c ()] 2

< F 24 57 =
2. (8up cp(g) 7) 2 (£)]

R 2 2
= sup fe,(e)1° 2 (1)
£ letehh® ) ( Z e (£21?)
nez nez
which yields

WExel, < £l , gk, ,

1.8 Remark. 'Le(QS is not an integral domain
under convolution; that is, there are f and g in Lo(T)
not equal to zero almost everywhere but f%g«0. Since
f*% g =0 means cn(f) cn(g)= O only, we can find such

f and g in L2(ﬁ5. For example, let

£(t) =1 , g(i)= Mt , teT.
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Then
cn(f) e 1 if n=0
0 if n4o0
1 -
cn(g) _ 3. 821\'1‘b. e—2’ﬂ'1n't at
-0
( em
= e21r1(1—n)t at
0
_ 1
- 3 [eznl(l-n)tJ )
2ni(1=n)
= 0 n :f. 1

Thus f and g are in LZ(’T’), not equal to zero

almost everywhere and f£x% g =0,

1.9 Remark, The convolution algebra Lg("?) has
no unity. That is; there exists no function g in Le('?)
such that fxg =f for all f in L°(T). If such g existc
then cn(f) cn(g) = cn(f) for all n and since we can

always find f such that c (f) 30 for all n. TFor exampls,

let  £(3) = oMt (t€ 5 ). Then
cn(f) = £, B )

1 S
:J f(t)En(t)dt
0]
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’%-3 -2Fint
e . € dt

Ti(% - 2n)t

:zjb e dt
0

Ti (1=2ny t 41
e ( = : 10

i (1-2n)
2

2 [e -1]

which is not zero for all n, So that, we must have
cn(g):;l for all ne77]l. This, however, is impossible
since 1lim cn(g)==0. This latter fact is true just

I th
because |c (g)} is =n

Sile,(e)

term of the convergent series

2. Convolution in Homogeneous space:

We heve already seen that L°(T) is a Banach
algebra for convolution and that f#g is far more
regular then f and g. In fact, if f, g Q,Lz(?), then
fx%g 1is a continuous function having a uniform absolutely
convergent Fourier series. These results can be extended
in  1P(7).

2.1 Definition. Let f and g be two functions in

1Y(T). The convolution of f and g is defined by

Pxglx) = j f(x - ¥) &(3) ay.
I'P
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As in the case of LQ(EF), we must show that feg
is an element in Ll('-F).

2.2 Theorem.  Let £, g € L°(§). Then

(a) {lf(fc—’b)g(t)’d{; & o
[?[

for dimesk ail % 48 P, For thess x, define

(b) h(x) = gf(ic - t) g(t) at.

3 g/
Then h ¢ L™(%) and

() Wnlly £ ff el ell).
Of course, h is just I g.

Proof. If f is a measurable characteristic
function,; then by the faet that the § - algebra of all
Lebesgue measurable sets is the completion of the
g - algebra of all Borel sets, there exists a Borel
function fo such that fozf a.e on I:[j. Since a simple
function is a finite linear combination of measurable
characteristic functions, there exists a Borel function
fo-_- f a.e for any simple function f. If f3 o is measurable,
and if {Sn} is a sequence of Lebesgue measurable simple
functions which converges pointwise to f, there are Borel
simple functions tn such that tn’ S, @&.e and such
that tn(n'c) = 0 at those x at which tn(ic) # sn(J'c).
Then f (%) = lim  t,(x) exists for every x, f

n—>» oo .
is a Borel function, and f0 = f a.e. Hence we obtain

(0]



43

by the usual trick that for any f and g in 1H(T) there
exists Borel function fo and g, such that f.—.—fo a.e

and g=g, a.e.

The integrals in (a) and (b) are unchanged, for
every ;c, if we replace f by fo and g by 8qe Thus we may

asbume; to begin with, that £ and g are Borel functions.

To apply F ubini's Theorem, we shall first prove

that the function F defined by
F(x, 7) = (% = 7) ay)
is a Borel function on ':[: x A &

~ |
To each E C ? y We associate a set E C X
defined by

o S » . .
B r—{(x,y)zx—y&E}.
If E is open, so is ,E Let M be the collection of all

B C T for which E is a Borel set. Then Ol is a

q - algebra in "_r" y Since

(i) Eﬁx? is a Borel set, and hence T is in O

(ii) ILet E be inO.. Then E is a Borel set.
But E°=E , So that E® is in Ob,

(iii) Let {Enzf be a sequence in V., We proceed

oo
to show that U E € (.. It is enough to show that.

n=1 o
EE" o0 e o0
BE = E . Let (x, y)EUE_. . Then (x = y)& U E_;
n=1 B n=1 n ’ ns1 .2 5 g -l 3 n’
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that is there is a positive integer N such that (x-y) € E,. -

o~ o0
So that (x,y)€ U E Hence U E = U E .
n-1 % n=1 ns=l "
0
Conversely, assume (x, y) &€ U E . Then there
n=1 %
exists a positive integer k such that (x, y)& E .. So that
e ) P
X - y€ B, and hence in U E . Which implus (x,y)e |
S n=1 1 n=1 %
cd _, -
Thus U E C U E Consequently U E = U E, Tt
n=1 " n=1 2 n=1 % n=1 *

follows that E is a Borel set in ] xr\:’ whenever E is a
Borel set in r_]:\ .

Now let V be any open set, and let E={ J'czf(x'a-JEV}.

Then E is a Borel set in ?, and so is

(G §) s 2@-7)evi={(x9) tx-76B} =%
This shows that the assignment (x, ¥)» f(x - y) defines
a Borel function, Since the composition of Borel functions
is a Borel function, (x, ¥y )+ g(y) defines a Borel function.
Since the product of two Borel functions is a Borel function,

our assertion concerning F is proved.

Next we observe that

(1) deJIF(x, ) ok = J |g(;});aﬂ|f(;’;—3});d5{
— (o]

7 T
since Jlf()'c - Plax = [M(x)lax = oM,
[
for every y y by the translation invarience of Lebesgue

integration,



Thus F & Ll( El:'xj-?), and the F ubini's theorem
implies that the integral in (b) exists for almost all x

inTPand he Ll('?).

Finally, (c¢) follows from

NEfx gl = Jlfy}g(}'c)l ix < jdic j|f(x, y)lay
11__1 = 1;,-3
=€ |If||1||glil

by (1). The proof is complete .

2.5 Theorem. Ll(EF) is a commutative Banach algebra

for convolution.

Proof. Let £ and g€Ll(Ef’). Then

(£%g)(x)/= J S \t) 2(1) at.
EI'J

Putting x - t = m, we obtain

f¥eg(x) = I f(u) eglx - u) du
Ca .
= J’ g(x - 1) f(u) du

- g#xE(x).

Let h& L (T). Then, by the definition of

convolution on LT(T) and Fubini's Theorem, it follows tha’

(£% (g x0))(%) = fftsc - §) (et ) (3] &
f___'r"l
= j f(x - %) (J’gté - u) h(u) du) at .
.

Putting +t = é-.‘-li, one gets

.

(£x(g%n)) (%) = [ [£(x - céw))aé-\(J g($) n(d) ad
e e
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= I [Jf(f{- s - u) g(8)as |n(d) au
i X Cl
f %g(x-u) h(u) du

1l

=  ((£%g)xh) (x)

Now we will show that for a giveh g in LY(T), the
mapping f—>f %g is linear from Ll(‘?) into Ll(?). By the
definition of the convolution in Ll("_r’) and the linearity

of integration; it follows ‘that for any o, p € (l.,

((£+p h)xe) (Ec):j (ol £5 B h) (x-t) g(t)at
[?r. i - - .

~ [oeGt) gl)at + g n(x-t) g(b)at

& X, ,

:G(Jf(i-%) g(#)dt + 1 [h(sc-%) g($)at

= (£xg) () + p(h*g) (x) .

This and ‘Theorem 2.4. show that Ll('?) is a

commutative Banach algebra for convolution .

2.6 Theorem. For 1 §p<+o0 , Lp('?) is a commutative

Banach algebra for convolution.

Proof. Observe that for any f &€ LP(':F), we have
p L] .
Hfl\p - Jlf(x)ipdx {+X . This implies that
|f(}.:)l < +00 a.e, and so,

leg, = [ 1£G)Iax ¢ oo 5 tee £ THT).
=
Consequentfy, LP(?) C.Ll(?h.

As we have already proved that L) was a
convolution algebra, the theorem will follow if we prove

that when f is in LX(T) and g is in LY(T) then f# g is in
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(7). Iet fe 1), g IP(P) ana b 1%( ), where g is

the conjugate exponent of p. Consider the following

integral j[?(jh g(k-t) £(%)at) h(;ch;c . We get that the

double integral is absolutely convergent, because

le(e-t) £(}) n(x) | aid%:jlfml (JleGi=t) n(x) las)at
|

IFK'? < I | £0%) | ug% thadé

5 Tif“'l et Hlinit,

and so
\ff*gci) n(x)aE 2 el L ilen Jinil g
L}T

Using a mild converse of Eolder's inequality stating that
g
if £ € LNT) and if for all h.e I () (g3 1) we have
IJ’f(}'c) h(x)dx ] £ A Hh&q for some A 0, then
ot
T

f e LP(LF) where -1]—)' += = 1 and J} £}l p_é A, we can conclude

Q: |-

that fxg € L (7) an

* If kg =] '
léb“--.__) gll B & Hf“l Hgﬂp
Applying Holder's inequality to g=1, we get ||f Illii el _.
p

Finally, we get || fxeh, < £ o el ok

2.7 Theorem. A(;‘) is a Banach convolution algebra.

. M
Proof. By the definition of A(Ll—). it follows
from Proposition 1.2 (b) that L) % 12(T) C A(Y).Since
A(T) is a subset of Lg(?), AT % A(T) ca(r). Thus the

convolution has all the desired properties of a convolution

algebra,.



The inequality

Hexegl = Hf”A(;' I|g|1ﬂ(|_—r|) holds since
Z le(exa)l = e (0)lle (e)]
ntz
=  (Suple (f)|)(,__|c (g),
ng 7
= (Z]e, chIJ'ZIc ()]
nez nez

and s0, Hf*gHA@P) S HflIA(L_F]) ”g”A(‘?)
Hence A(L—r') is & Banach convolution algebra.

2.8 Definition. i/ convolutor is a homogeneous Banach

space B of functions over ]?such that

(a) EN c¢) is dense in E.
(v) Ll(Eyj)-x E is a subset of E.

(e) ]|fig“E = ”f”J_ ||gHE for any f in
Ll(":,j) any g in E.

2.9 Theorem. LPGJ) for 1=<p< <o, ¢{) ana A(ﬁj)

are convolut ...

Proorf. We know that all these spaces are
homogeneous Banach spaces., It then suffices to check the
three other properties.

For @) , so>p>1, 2.8 (a)

follows immediately since C([-l_-l) is dense in LP(LP) and
LP(LI_—') {1 C(H_J) = C(E[:‘). The property 2.8 (b) follows since
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Ll(trj) 3 LP(H—")C.C(?) and so is a subset of LP(?). The
property 2.8 (c) follows from the inequality (%) of

Theorem 2.6.

For C(f), property 2.8 (a) is trivial; property
2.8 (b) follows since LN(T) * ¢(FP) < ¢(; and so the

only property we need to prove is 2.8 (c). We obtain

it L
- sup ’ ff(}f-y:) g(.Y) d&;'
Xey o

Applying Holder's inequaliiy and the fact that ILebesgue

integration is invariant under translation, we then get.
”f*gHC(E'TI) = ”fl:l “gl'o(CF).

For AGF), property 2.8 (a) follows immediately
since AM) C.cH),"we get a(P) NieH) = AGY); property

2.8 (b) follews from proposition 1.2 (a),and so the only

property we need to prove is 2.8 (e).

Consider .

n%z'cn(f*‘g” } ngzjcn(f)'lcn(g)‘.

But Icn(f)l = Hfi'll for all n, so that

||fi—gl|ﬁ({;_|) = Hle }’g]iA(I]:t).

Hence the theorem is now proved,
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2.10 Proposition. Let f be a given function in Ll("?).

Then the operator P : g —g *f 1is a continuous linear
stationary operator on Ll(?).

Proof. TFor any g ¢ LY(5Y), |ig«fl|l £||g||lﬂ ffﬁl,
and so “Pg”l_‘: ||f||l .

| g||l . Hence P is a bounded
operator from Ll(‘f’) into Ll(‘-?). -,
We will now show that P is linear, For
any o , e 3 G:and gy h&Ll(‘?), we have
P(g+p D) /= ((dkg+ph)+£)(x)

1

g(dg +p h)(t) £(x-t)at

= [{aglt) 2G=4) + pr(d) £(-))z
= ;ﬁi(%) £(x-1) d%~+[3{fﬂ%) £(x=t)ct
= gat)x) + 4 (nxe)x)

% P(g)(x) + {3 P(n)(x)

Next we will show that P is stationary.
We have for all x ¢ T and h £,

U, (B(g)(x) = Up(g#£)(x)

= g#f(x + h)

Sg("c) f(x+ h - t)at

?‘g(%+ h) f(x - t)dt
I%J

- Mg(%) f(x - t)at

?
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= (Uge *£)()
P(Upg)(X) |
Hence P is stationary.

This comple tes the proof.

2.11 Proposition. Let f be a given function in IP(;59

1o

(1=p< e ), Then the operator P : g—=>g*f is a

continuous linear stationary operator on LPG?).

Proof. FPor'any g & LPG$5, we have
| = ¥l = : . So that P is
|P(g)||p e ¥}y “f||IJ el 0 i
a bounded operator from LP@P) into itself,
Werwill now show that P is linear,
This follows from 2,10 and the fact that LP()
1
@) c ().
Next we proceed to show that P is stationary.
We have for all xgGl and h (&,
U (B(e))() =  Uglg#€)()
= g#»f(x+H)
= [e(d) £(£+1H - $)as
T |
[e(£+ 1) (¢ = ©)at

L‘_J
fUHg(t') (% - £)at

[.FI
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= (Uﬁg *f)(}.{)
Hence P is stationary.
This completes the proof.

2.12 Proposition. Let f be a given function in A(Y).

Then the operator P : g-—5g#% T is a continuous linear

stationary operator on A(').

Proof. For any g & Al(HH), we have

l = |
=0 2 legte x|
1Y n
= =
2 e ] eyt |
=5 g: (Sﬁp I c,(f) l Yo [ c (g) !
= s ey > Leyle) |
= Sﬁplcn(f)] . ‘ gHA(Ll__l)
Since AG) C Ll(’:ﬁ), in particular A(F?) C c(¥Y,
the linearity of P follows from 2,10,
- Next we will show that P is stationary. For any
\.

x ¢ ¥ we have
Up(P(g))(x) =  Uplg*f)(x)

= gxf(x+h)



jg(‘E) f(X+H - t)at
.I?J

fg(ﬂ-ﬁ) (£ - £)at

IZ1'_]

fuse(£) £( = £)at

I

-
= (Uh-g*f)(x')

]

P(Uye ) (%)

This completes the proof.

o3
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