CHAPTER II

HOMOGENEOUS SPACES

In this chapter, we introduce an important class of spaces - the homogeneous spaces - which includes the spaces $C(\P)$, $L^p(\P)$ for $1 \le p < +\infty$.

- (1) If $f \in E$ and $h \in \overline{\uparrow}$, then the map $U_{\vec{h}}f : \dot{x} \longmapsto f(\dot{x} + \dot{h})$ is in E.
 - (2) $\| \mathbf{u}_{h} \mathbf{f} \|_{\mathbf{E}} = \| \mathbf{f} \|_{\mathbf{E}}$ for any $h \in \mathbf{T}$
 - (3) $\lim_{h \to h_0} \| U_{h}f U_{h_0}f \|_{E} = 0$ for any $h_0 \in \mathbb{T}$.
- 2. <u>Definition</u>. Let $C(\P)$ denote the space of all complex valued continuous functions defined on \P .
- 3. Proposition. $C(\mathbf{r})$ with the norm defined by $\|\mathbf{f}\| = \sup_{\mathbf{x} \in \mathbf{r}} \|\mathbf{f}(\dot{\mathbf{x}})\|$ is a linear space.

Proof. First we proceed to show that $C(\overrightarrow{\uparrow})$ is a linear space. For any f, g $C(\overrightarrow{\uparrow})$ and $C(\overrightarrow{\downarrow})$ and $C(\overrightarrow{\uparrow})$ and $C(\overrightarrow{\uparrow})$ and $C(\overrightarrow{\uparrow})$ and $C(\overrightarrow{\uparrow})$ and $C(\overrightarrow{\uparrow})$ and $C(\overrightarrow{\uparrow})$ is a linear space. Next we will show that $|\cdot|$ defined by $|\cdot|$ $|\cdot|$ = Sup $|\cdot|$ $|\cdot|$ is a norm on $C(\overrightarrow{\uparrow})$. By the definition, it is clear that $|\cdot|$ $|\cdot|$ o for any $|\cdot|$ $|\cdot|$ and $|\cdot|$ $|\cdot|$ o if and only if $|\cdot|$ o. For any $|\cdot|$ $|\cdot|$ and any scalar $|\cdot|$,

we have

$$||\lambda f|| = \sup_{\dot{x} \in \mathcal{P}} |\lambda f(\dot{x})|$$

$$= |\lambda| \cdot \sup_{\dot{x} \in \mathcal{P}} |f(\dot{x})|$$

$$= |\lambda| \cdot ||f||$$

For any f, $g \in C(\overline{T})$, we get

$$||f+g|| = \sup_{\dot{x} \in P} |(f+g)(\dot{x})|$$
 $||f+g|| = \sup_{\dot{x} \in P} |f(\dot{x}) + g(\dot{x})|$
 $||f+g|| = \sup_{\dot{x} \in P} |f(\dot{x})| + \sup_{\dot{x} \in P} |g(\dot{x})|$
 $||f+g|| = \sup_{\dot{x} \in P} |f(\dot{x})| + \sup_{\dot{x} \in P} |g(\dot{x})|$
 $||f+g|| = \sup_{\dot{x} \in P} |g(\dot{x})|$

The norm as defined in proposition 3. is naturally called the <u>uniform norm</u>.

4. Theorem. $C(\overline{T})$ for the uniform norm is a homogeneous Banach space.

Proof. We will show first that $C(\overline{T})$ is a Banach space. Let $\{f_n\}$ be a Cauchy sequence in $C(\overline{T})$. For any E>0, there exists N such that for all m, $n \ge N$, $\|f_n-f_m\|_{\infty} = \sup_{x \in \overline{T}} \|f_n(x)-f_m(x)\| < E/3 \text{ . In particular, for any } x \in \overline{T},$

 $(\divideontimes) |f_n(\dot{x}) - f_m(\dot{x})| < \xi/3 \text{ for all } m, n \geqslant N.$ So that $\{f_n(\dot{x})\}$ is a Cauchy sequence of complex number, and therefore there exists $f(\dot{x})$ in (such that $\lim_{n \to \infty} f_n(\dot{x}) = f(\dot{x}) \text{ . By letting } m \text{ in } (\divideontimes) \text{ tend to infinity, } n \to \infty$

we then get $|f_n(x) - f(x)| \le \xi/3$. Which implies Sup $|f_n(x) - f(x)| \le \xi/3 < \xi$ for all n > N. That is $x \in \mathbb{T}$ $\lim_{n \to \infty} |f_n - f||_{\infty} = 0$. Now we proceed to show that $f \in C(\mathbb{T})$. Given any $x \in \mathbb{T}$, by triangle inequality, we then get

$$|f(\dot{x}) - f(x_0)| \leq |f(\dot{x}) - f_N(\dot{x})| + |f_N(\dot{x}) - f_N(\dot{x}_0)| + |f_N(\dot{x}_0) - f(\dot{x}_0)|.$$

Since f_N is continuous at \dot{x}_o , there exists $\delta>0$ such that $|\dot{x}-\dot{x}_o|<\delta$ implies $|f_N(\dot{x})-f_N(\dot{x}_o)|<\epsilon/3$, so that

$$|f(\dot{x}) - f(\dot{x}_0)| \le \frac{\xi}{3} + \frac{\xi}{3} + \frac{\xi}{3}$$

= \xi.

Thus f $\{ C(\overline{Y}) \}$. Therefore $C(\overline{Y})$ is a Banach space.

Now we will show that $C(\P)$ is a homogeneous space. Let $f \in C(\P)$ and $h \in \P$. Since \P is compact, f is uniformly continuous. Therefore $U_{\dot{h}} f \in C(\P)$. Moreover

$$||U_{h}f||_{\infty} = \sup_{\dot{x} \in \mathcal{T}} |f(\dot{x} + \dot{h})|$$

$$= \sup_{\dot{x} \in \mathcal{T}} |f(\dot{x})|$$

$$= ||f||_{\infty}$$

Since f is continuous on compact set, $||U_{\dot{h}}f - U_{\dot{h}}f||_{\infty} = \sup_{\dot{x} \in T} |f(\dot{x} + \dot{h}) - f(\dot{x} + \dot{h}_{0})| \text{ tends to zero as } \dot{h} \longrightarrow \dot{h}_{0}.$

Hence $C(\overline{T})$ is a homogeneous space .

5. Theorem. For $1 \le p < +\infty$, $L^{p}(\overrightarrow{T})$ is a homogeneous space.

<u>Proof.</u> Let $f \in L^p(\overline{T})$ and $h \in \overline{T}$. We will show that $U_h f \in L^p(\overline{T})$. The measurable property of $U_h f$ will be proved first. Let U be any open set in (. Since a translation is a homeomorphism of (, h+U is open in (. Since f is measurable, $U_h f$ is measurable. Consider the following:

So that Unf & Lp(T) and ||Unf||p = ||f||p

To prove the remainding condition, let $\xi>0$ be given. Since $C(\overline{\uparrow})$ is dense in $L^p(\overline{\uparrow})$, there exists a sequence $\{f_n\}$ of continuous functions converging to f in $L^p(\overline{\uparrow})$, and so there exists n_0 such that for all $n\geqslant n_0$, $||f-f_n||_p<\xi/3$.

We have

$$\begin{array}{rcl} U_{\vec{h}}(f - f_{n_0}) & (\dot{x}) & = & (f - f_{n_0}) & (\dot{x} - \dot{h}) \\ \\ & = & f(\dot{x} + \dot{h}) - f_{n_0}(\dot{x} + \dot{h}) \end{array}$$

$$= U_{h}^{\bullet}f(x) - U_{h}^{\bullet}f_{n_{o}}(x)$$

$$= (U_{h}f - U_{h}f_{n}) (x)$$

so that
$$\| u_{h}f - u_{h}f_{n_{0}} \|_{p} = \| u_{h}(f-f_{n_{0}}) \|_{p}$$
.

By the triangle inequality, it follows that

$$\begin{aligned} ||U_{\hat{h}}f - U_{\hat{h}_{o}}f||_{p} &\leq ||U_{\hat{h}}f - U_{\hat{h}_{o}}f_{n_{o}}||_{p} + ||U_{\hat{h}_{o}}f_{n_{o}} - U_{\hat{h}_{o}}f_{n_{o}}||_{p} \\ &+ ||U_{\hat{h}_{o}}f_{n_{o}} + ||U_{\hat{h}_{o}}f||_{p} \\ &\leq 2||f - f_{n_{o}}||_{p} + ||U_{\hat{h}_{o}}f_{n_{o}} - ||_{h_{o}_{o}}f_{n_{o}}||_{p} \\ \end{aligned}$$

Since $f_n \in C(\overline{T})$, it follows by Theorem 2.4 that $\lim_{h \to h_0} \| U_h f_{n_0} - U_{h_0} f_{n_0} \|_{\infty} = 0. \text{ Using the property}$ of L^p - normed and property of integration, we obtain $\| U_h f_{n_0} - U_{h_0} f_{n_0} \|_p^p = \int_{\overline{T}} | U_h f_{n_0}(\dot{x}) - U_{h_0} f_{n_0}(\dot{x})|^p dx$ $\leq \sup_{\dot{x} \in \overline{T}} | U_h f_{n_0}(\dot{x}) - U_{h_0} f_{n_0}(\dot{x})|^p \int_{\overline{T}} d\dot{x}$ $= | U_h f_{n_0} - U_{h_0} f_{n_0} |_{\infty}.$

Hence $\lim_{h \to h_0} ||_{U_h f_{n_0}} - ||_{h_0 f_{n_0}}||_p = 0.$

That is, there exists $\eta > 0$ such that for all $h \in \mathbb{T}$, $|h - h_0| < \eta$ implies $||U_h f_{n_0} - U_{h_0} f_{n_0}||_p < \xi/3$. So that for any $\xi > 0$, we can choose $\eta > 0$ such that for all $h \in \mathbb{T}$, $|h - h_0| < \eta$ implies $||U_h f - U_{h_0} f||_p < \xi$.

Therefore $\lim_{n \to h_0} ||u_n f - u_n||_p = 0$. Thus the Theorem is now proved.

6. Theorem. L (T) is not homogeneous under the norm $||\cdot||_{\infty}$

Proof. By counter example, let
$$F : \mathbb{R} \longrightarrow \{0, 1\}$$

defined by

$$F(x) = \begin{cases} 1 & \text{if } x - [x] & \xi [0, \frac{1}{2}) \\ 0 & \text{if } x - [x] & \xi (\frac{1}{2}, 1) \end{cases}$$

Then F is a 1 - periodic function over \mathbb{R} .

Observe that $\lim_{h\to 0} \|U_h f - f\|_{\infty}$ does not converge to 0.

Hence L (\mathbb{T}) cannot be homogeneous.

- 7. Definition Let $A(\overline{T})$ be the set of all continuous complex valued function f over such that $\sum_{n \in \mathbb{Z}} |c_n(f)|$ is a convergent series, where $c_n(f)$ is the fourier coefficient of f.
- 8. Theorem. $A(\overline{T})$ is a linear space under the natural pointwise addition and scalar multiplication.

Proof. For any f, g in A(7), $\left\{\sum_{n=-k}^{k} |c_n(f)|\right\}$ and $\left\{\sum_{n=-k}^{k} |c_n(g)|\right\}$ are bounded sequences. And so $\left\{\sum_{n=-k}^{k} |c_n(f+g)|\right\}$ is a bounded sequence.

Which implies $\sum_{n \in \mathbb{Z}} |c_n(f+g)| \le \sum_{n \in \mathbb{Z}} |c_n(f)| + \sum_{n \in \mathbb{Z}} |c_n(g)|$ is a convergent series. Thus f+g is in $A(\overline{\uparrow})$.

For any complex number of and for any f in $A(\overline{T})$, \propto f is in $A(\overline{T})$. In fact, $\sum_{n \in \mathbb{Z}} |c_n(\bowtie f)| = | \propto |\sum_{n \in \mathbb{Z}} |c_n(f)| . \text{ Since } \sum_{n \in \mathbb{Z}} |c_n(f)|$ is a convergent series, $| \propto |\sum_{n \in \mathbb{Z}} |c_n(f)|$ is a convergent series. Hence it now follows easily that $A(\overline{T})$ is a linear space .

Set $||f||_{A(T)} = \sum_{n \in \mathbb{Z}} |c_n(f)|$.

Then it can be easily seen that the mapping $f \mapsto ||f||_{A(T)}$ defines a norm over A(T).

9. Theorem. Under the above norm, A(T) is a homogeneous Banach space .

<u>Proof.</u> First we will show that $A(\overline{T})$ is a Banach space. Given any $\{>0$, Let $\{f^{(k)}\}$ be a Cauchy sequence in $A(\overline{T})$. There exists an integer N such that, for all k, $k \geqslant N$, $||f^{(k)}-f^{(k')}|| < \{$. Fix any n in \mathbb{Z} , since

 $|c_n(f^{(k)}) - c_n(f^{(k')})| \leq ||f^{(k)} - f^{(k')}||_{A(T)} < \xi,$ for all k, k' \geqslant N, $\{c_n(f^{(k)})\}$ is a Cauchy sequence in (, which is complete. There exists $c_n(f)$ ξ (such that $c_n(f^{(k)}) \longrightarrow c_n(f)$ as k $\rightarrow \infty$. By uniqueness, it follows that $c_n(f)$ is the n-th Fourier coefficient of f in A(Γ). Next we proceed to show that $\lim_{k\to\infty} ||f_k - f||_{A(\Gamma)} = 0$.

Since for any m, we have $\sum_{n=-m}^{m} |c_n(f^{(k)}) - c_n(f^{(k')})| < \xi.$ By letting k' tend to c_0 , we get $\sum_{n=-m}^{m} |c_n(f) - c_n(f)| < \xi;$ so that $||f^{(k)} - f|| = \sum_{n=-\infty}^{\infty} |c_n(f^{(k)}) - c_n(f)| < \xi \text{ for all } k \geqslant N.$ This completes the proof .

Now we will show that A(\overline{T}) is a homogeneous space. Let f ξ A(\overline{T}) and h ξ \overline{T} . Consider

$$c_{n}(U_{\hat{h}}f) = \langle U_{\hat{h}}f, E_{n} \rangle$$

$$= \int_{0}^{1} f(x+h) e^{-2i\pi nx} dx$$

$$= \int_{0}^{1} f(x) e^{-2i\pi n(x-h)} dx$$

$$= \langle f, U_{-\hat{h}} E_{n} \rangle$$

$$= \langle f, E_{n}(-\hat{h}) E_{n} \rangle$$

$$= \langle f, E_{n} \rangle E_{n}(\hat{h})$$

$$= c_{n}(f) E_{n}(\hat{h}) .$$

And so

$$\begin{array}{rcl} ||U_{\hat{\mathbf{h}}^{\mathbf{f}}}||_{\mathbf{A}(\overline{T})} & = & \underset{n \in \mathbb{Z}}{\mathbb{Z}} |c_{n}(U_{\hat{\mathbf{h}}^{\mathbf{f}}})| \\ & = & \underset{n \in \mathbb{Z}}{\mathbb{Z}} |c_{n}(\mathbf{f})| = & ||\mathbf{f}||_{\mathbf{A}(\overline{T})} \end{array}.$$

Hence A(T) satisfies conditions (1) and (2) of being a homogeneous spaces.

To prove the remainding condition, given any $\xi > 0$, since $\sum_{n \in \mathbb{Z}} |c_n(f)|$ converges, there exists N such that $\sum_{n \in \mathbb{Z}} |c_k(f)| < \varepsilon_{/2}$. For any n, E_n is continuous. And so for each $|n| < \mathbb{N}$, there exists $\eta_n > 0$ such that for $|h - h_0| < \eta_n$, implies that $|E_n(h) - E_n(h_0)| < \varepsilon_{2||f||A(T)}$. Let $\eta = \min\{|\eta_n||n| < \mathbb{N}\}$. Then for any h(T), $|h - h_0| < \eta$ implies $|E_n(h) - E_n(h_0)| < \varepsilon_{2||f||A(T)}$.

$$\begin{split} & \underset{|k| < N}{\underset{|k| < N}{\text{c}_{k}}} \left(U_{\hat{h}} f - U_{\hat{h}_{\hat{0}}} f \right) \Big| = \underset{|k| < N}{\underset{|k| < N}{\text{c}_{k}}} \left(c_{k}(f) \left(E_{k}(\hat{h}) - E_{k}(\hat{h}_{\hat{0}}) \right) \right) \\ & \leq \underset{2||f||A(\overline{\uparrow})}{\underbrace{\varepsilon}_{2||f||A(\overline{\uparrow})}} \cdot \left| |f||_{A(\overline{\uparrow})} \right) \\ & = \underset{\overline{\varepsilon}}{\underbrace{\varepsilon}_{2}} . \end{split}$$

Consequently, for any $\hat{h} \in \mathbb{T}$, $|\hat{h} - \hat{h}_0| < \eta$, we have $||U_{\hat{h}}f - U_{\hat{h}_0}f||_{A}(\mathbb{T}) = \underset{n \in \mathbb{Z}}{\sum} |c_n(U_{\hat{h}}f - U_{\hat{h}_0}f)|$ $= \underset{|k| < N}{\sum} |c_k(U_{\hat{h}}f - U_{\hat{h}_0}f)| + \underset{|k| \ge N}{\sum} |c_k(U_{\hat{h}}f - U_{\hat{h}_0}f)|$ $< \underset{\mathbb{Z}}{\xi} + \underset{\mathbb{Z}}{\xi} = \xi.$

Therefore $A(\nabla)$ is a homogeneous space .

for any | n | < N. And so

This completes the proof