CHAPTER I

THE I° SPACES

In this chapter, we shall construct the classical
P spaces over? . Before we can do this, we must obtain
the important inequalities of Minkowski and of Holder which,

in turn, can be easily obtained through convexity argument.

1. Convex functions and Inequalities.

1.1 Definition. 4 real-valued function P defined on

an open interval (a,b) where - coo<£a<b£+w, is called
convex, if  (e{(1- A)xq+ 2x5) % (1- 2) @ (xl) + ,\Q(x2) holds

whenever &<X;4b, adX,<b 'and 6 &AEL

Geometrically, the convexity of (1(x) means that
for any triple X £ X £Xo, the point (x, Q(x)) on the graph
of the function x+~—> G(x) is always below or on the line

segment joining the points (xl, Cg(xl)) and (xz, Q(xg)).

1.2 Theorem. G is convex in (a,b) if and only if
G(t) = G(s) ¢ G(u) - G(t) whenever a<s<tdu<h.
Tt - s u -1t
Proof. Suppose P is convex. Since t can be

written in the form u=-t .s + t-s .u,

u=-s u-s

@(t) = (9(3:2 .S + ;tljg o 1k
_ u=t (p(s) + t-s @ (u)
= u-s u=-s

which yields,
(u-s) @(t) < (u=t)a(s)+ (t-s)@(u).



But u-s = u~-t+ t-s, and so

(u=t+t-s) @(t) < (u~-t)a(s)+(t-s) a(u),

or _ |
(u;t)a(t)+(t—s)&(t) < (u-t)@(s)~+(t-s) @(u)
or

(u=t)( (%) -a(s)) < (t=-s) (@(u) - G (t)).

Hence

G(t) - G@(s) = Gu)- ()
t - s R S

Conversely, assume

a(t) - e(s) /= alu) = G(t)
t - s u-~-1

whenever a<s 4Lt u<b, Then

(u-t) (@ () - @(s)) = (t=8) (@) - «(t))
or

((u=t) + (t=5)) (@(t)) £ (t=8) @(u) + (u-t) @ (s)
and by recarranging term, we get

@(t) = t=sa(u)+ u=-t .al(s).
U=-s u=-s

Substitute u-t . s+ t-s . u for t, we obtain
-3 u=s

O(urt .S + t-s5 . u)::(g' -t .s+ (1 - u=-t) . u)
— u—

=« u-t @(s)+ (l - u—‘t) G (u)

U=5s

This completes the proof.

1.3 Theorem. The exponential function x»—) exp x

is a convex function over ﬂ{,



Proof. Let f(x) = exp x. By Theorem 1.2., the
convexity condition f( >\x1+ (1- A)x,) < )xf(xl)—f»(l-)s,) £(x,)
(o€ )N =1, X1y Xp &) is equivalent to

(1-1) f(b) ~ fla) . f(c) - f(b) for any a<b <ec.
b-a c-b

By the Mean Value Theorem for derivative, we can find

a=s<b and b<t<c such that £(b) - f(a) = f£i(s)
b~a

and f(c) - f(b) = F£'(t). Since f! is a strictly
c-b

increasing function, we have f£!(s) < f!(t), and the inegua-
lity (1~1) follows immediately. Thus

At OERLEN,

Consequently, the exponential function x+—s eXp X 1is a

convex function over (m v

Let p and g be positive real numbers. Then pand q

are called conjugate exponents if

(1~2) 1 1 '
— W == 1.
P i q

Note that Eq(1-2) forces 14p, q 4 4 .5 , since
P, @>o0. We shall consider 1 and « to be conjugate exponents

as well.

1.4 Theorem Let a and b be positive number and supposc

p andq are conjugate exponents with 1<p, q< . Then

b q
ab =< b* .

el fo
e



Proof, In fact, let Xy1=D In a, Xp= q In b, and

. It follows from Theorem 1.3 that

>
H
ol (o8

1 !
=.plna+(l-=)g In b
P 2 ﬁ% ol 4B & (1-1)e% o b
P
Since 1 - 1 -1 , we have abég_li +}£ .
P 4 P q

The Theorem is now proved.

1.5 Theorem, (Holder's inequality)

Let p and g be conjugate exponents (l<p, q ¢ = ).
If f and g are complex measurable functions onT , then

2l 1
IfeGi)edaxl < /) E ) Pax] s [ flao1%x] 3.
& - 7 P

1
Proof. Letla{ = [Jlf(:i)lpdze]?p' and
g= [ Jle)%i] a.
' T

Ifdis o, then f=oa:c.,80 that f(x) g(X) = o a.-.
and the inequality reduces to o<o. The same result holds
if p is o. If either o or pism y 2gain the inequality

reduces tosa<od |

Assume then + e > o + 0 F B £ +oo . Let

F(xX) = f(x) and G(xX) = g(X) . By Theorem 1.4, we have
IF(£) 6(x)l = PGP L |e(x)1 @
P q

and therefore
l)'F(:é) G(%) axl = !fIF(x‘) G(x) | ax
T P
2 1 [l Pai p 1 flax)|%ax
P == OLP q = f'q



.

" %+% « 1
Hence
| fe(2) e(2t) az | = [Jlf(x)ipax]%. [ﬂg(;e)lqa}e]“ii,
P s =

1.6 Theorem. (Minkowski's Inequality)
Let 1<p ¢+« . If f and g are complex

measurable function onc?, then

X 1
(1-3) [qjlf(;e) + g Pax | P = Ulf(:e)'lp d:f]P
l?

o[ e paz]?
EF

Proof. We have

(£ + 8GO = 2+ + () (E(H) + 8())PT
so that _
| £(x) +eG) P = 12 (EG+ 8GN 1 a(x) (2 () +(i))F " |
e Pe)+ eGP 4 jex)). e(x)+a)] P71,

Which implie

flet)+e) P < 4&(&)1 | £(2)+ g(x)1PT az
ql

+ fleG) ] | £(t)+g() 1Pt ax
?

Let q be the conjugate exponent of p. Then by

Holder's Inequality, we have
L <
fle(#) vel2)1Pax < [L_‘J;li‘(}i)'pdi}p [flf(i)+g(f)l(P‘l)qa;&]"4
’ i

= 1
+ [J|g('f) | Pdf}P [!If(fJi—g(JEH (p—l)qd}i:l q
7 =



»

(N

and therefore,

| 1 _ ;
(1-4) Jle(2)+ a(x)[Pax < [ﬂf(:ﬁ)-*!-g(x')lpdi}q { [“f(xnpdxj
o < T

It

s
- -+ [S|g(3§j;Pdf]PJ

since %-+ % = 1 implies (p-1) g ,_pfF

Moreover, Ineq (1-3) is obvious if either its left hand
members is o or either one of its right hand summands is +o¢.
Thus assume the left-hand member of Ineg (1-3) to be differas
from o and both of the right-hand summands different from +ce .

We can then divide both sides of Ineq (1-4) by

: 1
[ Jlf(i)ﬁ-g(f)‘pdit]q to get Ineq (1-3) with the observs-

tion that 1 - 1
q

= 4
D

2. The LP - spaces

2.1 Definition. If o04LpP<&ea 2and if f is a complex

measurable function on q], define
1
4 —
Hell = 4 Jie(z) | Pax } P
. i

and let LP (EF) consist of all f for which lffljpegqa,
We call ||fllp the L¥ - norm of f.

2.2 Definition. Suppose g:7 — [0yoe] 1is measur-

able, Let S be the set of all real & such that/ﬂ’(g'l(.i g o)

= 0, Where Al is the "Lebesgue measure" on.qjinduced by the

Lebesgue measure on (0,1).
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If S=g , put B="o. If s+ 4, put 3 = inf S.
; -1 e -1 1 & .
— T — OQ S 11:?
Since g ~ (B, o] = U, & (( B+% s ®]) and since %
union of a countable collection of sets of measure o has

measure o, we see that fa < S.

We call [3 the essential supremum of g .

If f is a complex measurable function on T s We
define || f “00 to be the essential supremum of | f| and

we let I~ ('T) consist of all £ for which || £l < oo,

2.3 Theorem. If 'p/and q are conjugate exponents,
1< p €00, and if £ 4£/1P ('?r') and g ¢ L% ('?J, then
1
<l I .
fg ¢ L~ (T) ana ||/ gg ;< £ll,. lelly

Proof. For 14 p < + oo, it is simply Holder

inequality,
Negll , =" Jieety ety | ax

)

2] ) e#) | ax

[+=

j'

o 1

(S 12 1Paz)P( [] g) 1 9az)2
o P

If p - 4+ e, note that

Il

| £(2) | e(£) 1
< [l £ ”% | g(%)] for almost all

l£(%) g(x) |

. |
X 1in ‘T y So that |
JleGe) etidlas < 1zl S1eGl az

o &



% 3

Hence

l2egll, = Ilelly IMelly .
Similarly for p=1l, we have

Weelly < (12l Welly, .

2.4 Theorem.

et l=p< + o and f & LP (L_F\),
g & Lp(?). Then f+g naLP('?), and

e+ ell, & Well oy Hell

Prooci. For I 4Lp {4 o0 , it follows from

Minkowski's inequality. /'For p=1 or p= + &, it follows

from |f+gl|l £ Vel /+.1lgl . ¥For p=1, we have

flez)+ o = M e@)lax + flg(f)l dx.

? . ?

Hence  |lf+gll i el +Hlglly. Forp= + «,
we have lt+g| = Hf“w + g”m
and so ||f+g|‘w = ”f““ ¥ || g”co.

2.5 Remark. Fix p, l€p< +% ., 1fr f ¢ 1P (),

A is a real number, then o f & IP (LF).

Proof. Observe that for l<p £+ oo.

i 1
(S tasz)[Pag) ® = (1P £(£) | Paz) P
T T 1
= Jot|( f 1£(x) Pax) P .
1?
On the other hand I o f Il% = 'O“ S ”o‘:J « Thus

we have proved the Remark.
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By Theorem 2.4 and Remark 2.5 we ":hi':.'ﬁl"h;éq'é"ily see

that IF ﬁ!) is a linear space.

For 1l=p < + e , we defined
a(t,e) = Mz-egll, (f,6e1P (M)
Then it follows from Theorem 2,4 and Remark 2.5 that d
satisfies all the axioms of a metric excepting that d(f,g)
= o0 does not nccessarily imply that f=g. To remedy this

situation, we define a relation on IP () :

f~rg if and only if d(f,g) = ”f—gHP = 0, It is
easy to see that ~ is an eguivalence relation on L¥ ('?)
and, therefore, partitioned IP (F) into equivalonce classcs.
If [£f] and [g] are equivalence classes and if od,PB are

complex numbers, we define

(1) d(t£3, lel ) =a(f,s) = Ilf-ng §
(2) A [£31+ B [g] = [eatr + Bel.
(1) is well defined since if f, ~f, g ~g, then
a(fy, £)= 0, dlgy, €)=0 . So that
d(fl, gl) < d(fls f) + d(f: gl)
£ d(fa g) + d(gs gl)
= d(f! g) .
Similarly, we have d(f,g) < d(fl, g1). Hence d4(f, g)

(2) is also well defined since if f~f, and g~g,
implie X f+ Bg -~ o(fl+ ﬁgl .
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With these operations, the set of all equivalence
classes of IF ([?) by ~ forms a linear space with a metric
@ which is compatible with its structure. From now on we

shall also use the symbol IF (T) for the metrizable lincar

space of equivalence classes.

2,6 Theorem. IF () is a complete metric space for
Proof. Consider  I1€p<L co-

Let {fn} be a Cauchy sequence in IP (q]).
Take & = %, there exists ny EZ (> 0) such that ”fn—- fnlil,"-‘-

< % for all n> . Suppose we have obtained a sequence

nEn, <€ ....... <nJ Then letting ¢ = & s there existc
b 2 k 21{
; ; 1 3
n, =>n. 4 in /7 (> o) such that “fn— fnk |)p P k for all
i 1
n= n, . Hence we obtain a sequence 4 fni ¢y Nq= nzé veoe
such that
= -1i .
(2=1) I s - f I = 2 FOPr ! T m 1, 2y voeeves o
Pie1 By P ' t
Define
= | | S |
S R T U il s PR Y

Since (2-1) holds, the Minkowski's inequality shows that,
for any k gZ (>o0),

1 L
e I = (H_Jlgklpdj,) P =(%gkpdﬂ> 2

k 1
£ 2 (jlfn_ -fn_lpd)u)ﬁ
i=1 ‘? i+ 1 1
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K k . - .
_ = “fn'—l‘ £ ”péig“l( £ &L o
i=1 . 1 i=1 i=1

Hence an application of Fatou‘s lemma to < gkp}

gives ”g ”P= (?Jgpd/u ) (j 1im gkpd/u) D

l"-—)oe

£ lim jgkpd# )P <1,
k—3 o

and g g I¥ (Pimplies g is finite a.e on P, so that the
<o

series < (fn of ) converges absolutely a.e., on .
i=1 i+1 i

Then the series

L] % - -
(2-2) £, G+ 2/ M) —e, ()

converges absolutely a.e on'y . We denote the sum of (2-2)
by f(X) for thoseix at which (2-2) converges, put f(xX) = O

on the remaining set of measure zeroe. Since

. k=1 L = .
- (x)+. §=' ' <fni+l(x) - fni(xJ>= fnk (xX),

we see that

f(x) = 1lim : (X) a.e.
k—s 00 k

Since {fn]g is a Cauchy sequence in LY ('1_"'). For any
given ¢ > o, there exists N ¢Z (> o) such that

flfn—-fmlpd# <_¢_p ifn}.N,m;N,Foreverym};.
(=

and for some i cnwards we have ni‘?, N so that

/

J |fn - fmlpd/-i'ff_p. For every fa»N, Fatou's lemma therefore
ah

shows that



15

p P By _ P
(2-3) ,%lf_fml W = Cgil_lx}n.w tfni ol Tap

1im J]f - f | Pg
i:—Z‘SOc»c]:r o T M

I\

= &P

“We conclude from (2-3) that 5 4 Q‘LP (clj), hence that
£ ¢IF (), and finally that WE - £ llp tends to zero

as m tends to oo .  This completes the proof for the case

-

1€Dp <oo . .
b= . 006151
Oo .
In L° (), suppose. ¥ fn} is a Cauchy sequence

in I (), let A, and B . be the sets, respectively,

t

weere tz,(x) | > )¢ I and £ (%) - £_(x) |

oy
> Il £ -f lles , and let E be the union of these sets,
for k, m, n = 1, € Grree - Then s (E) = 0, and we show
that on the complement of E the sequence {fn} convergeo
uniformly to a bounded-function. For any X g E°, {fn(i):i’

is a Cauchy sequence in f[ y which is complete, so that

lim £ (x) = £(£). For any ¢ > o, there exist B
n—sco % ;
n; £Z (>o0) such that for all n> n_, Il (£) - £(x) |
i - T << -é_'. 2
<3 and for all m> ny, n=n, an Im“cb 7 - Let

& — max (no, nl). For any n> n* there is an x'o g E€

c
such that for ¥ ¢ E-,

sup  1£,(6) - £ = e (2) - 22 ) | + <
x & E°

= 15,6 - a1+ leaGi) - 221+ £

1 1%0901 02
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eyl = o) - g, GO 1+ |an(XJ|<E+|fno(}5)|

- }fn (;E)] 5|1fn HOQ =< e

(0] o

Define f(X) = o for x g¢ B. Then f §g > () ana

'“f‘n— fllg— 0 &5 n—eo .

Hence the Theorem is now proved,
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