TO SOUNT THE THE PARTY OF THE P

CHAPTER III

GENERALIZED TRANSFORMATION SEMIGROUPS

In this chapter, we characterize generalized transformation semigroups admitting ring structure, in particular, well-known transformation semigroups admitting ring structure. This is the main purpose of this thesis.

Recall that if S is a transformation semigroup on a set X and θ ϵ S, then the semigroup S under the operation * defined by

$$\alpha * \beta = \alpha \Theta \beta$$

for all α, β in S is called a generalized transformation semigroup on X and it is denoted by (S, θ).

Observe that if a transformation semigroup S has a zero 0, then for θ ϵ S, 0 is also the zero of the generalized transformation semigroup (S, θ).

Throughout this chapter, the following notation will be used. For any set A, let $\mathbf{1}_A$ denote the identity map on A. Let X be a set. For any nonempty subset A of X and for a ϵ X, let \mathbf{A}_a denote the partial transformation of X such that $\Delta \mathbf{A}_a = \mathbf{A}$ and $\nabla \mathbf{A}_a = \{a\}$. For a,b,c ϵ X, let (a,b) and (a,b,c) be the permutations on X defined by

$$x(a,b) = \begin{cases} b & \text{if } x = a, \\ a & \text{if } x = b, \\ x & \text{otherwise,} \end{cases}$$

and

$$x(a,b,c) = \begin{cases} b & \text{if } x = a, \\ c & \text{if } x = b, \\ a & \text{if } x = c, \\ x & \text{otherwise.} \end{cases}$$

Recall for the notation of transformation semigroups. For any set \boldsymbol{X} , let

 T_{X} = the partial transformation semigroup on X,

 σ_{X} = the full transformation semigroup on X,

 I_X = the 1-1 partial transformation semigroup on X (the symmetric inverse semigroup on X),

 $G_{\mathbf{X}}$ = the permutation group on X ,

 $U_{\rm X}$ = the semigroup of all almost identical partial transformations of X ,

 $V_{\rm X}$ = the semigroup of all almost identical transformations of X ,

 W_{X} = the semigroup of all almost identical 1-1 partial transformations of X ,

 $^{M}_{\chi}$ = the semigroup of all one-to-one transformations of X ,

 $E_{\mathbf{X}}$ = the semigroup of all onto transformations of X ,

and C_{X} = the semigroup of all constant partial transformations of X , thus,

Note that we consider the empty transformation as a constant partial transformation.

The first theorem gives a characterization of a generalized permutation group which admits a ring structure.

3.1 Theorem. For a set X , for $\theta \in G_X$, the generalized permutation group (G_X, θ) admits a ring structure if and only if $|X| \leqslant 2$.

<u>Proof</u>: Assume that the semigroup (G_X, θ) admits a ring structure under an addition +. Suppose on the contrary that $|X| \ge 3$. Let a, b and c be three distinct elements in X . Then

$$(a,b,c) + (a,c) = \alpha$$

for some α in $(G_X, \theta)^{\circ}$.

Case $\alpha = 0$. That is, (a,b,c) + (a,c) = 0. Then we have

$$(a,b,c)\theta\theta^{-1}(a,c) + (a,c)\theta\theta^{-1}(a,c) = 0$$

and

$$(a,c)\theta^{-1}\theta(a,b,c)+(a,c)\theta^{-1}\theta(a,c)=0$$
,

so we have $(a,b) + 1_X = 0$ and $(b,c) + 1_X = 0$, respectively. Hence we have (a,b) = (b,c), which is a contradiction.

Case $\alpha \neq 0$. Then we have

$$(a,b,c)\theta\theta^{-1}(a,c) + (a,c)\theta\theta^{-1}(a,c) = \alpha\theta\theta^{-1}(a,c)$$

which implies

$$(a,b) + 1_X = \alpha(a,c).$$

Then we have

$$(a,b)\theta^{-1}\theta(a,b) + (a,b)\theta^{-1}\theta 1_X = (a,b)\theta^{-1}\theta\alpha(a,c)$$

which implies

$$1_{X} + (a,b) = (a,b)\alpha(a,c).$$

Thus $\alpha(a,c) = (a,b)\alpha(a,c)$. Hence $a\alpha(a,c) = a(a,b)\alpha(a,c) = b\alpha(a,c)$.

Since $\alpha(a,c)$ is a one-to-one map, we have a=b, which is a contradiction.

This proves that $|X| \le 2$.

Conversely, assume that $|X| \le 2$.

If $X = \emptyset$, then $G_{X} = \{0\}$ and $\theta = 0$, and clearly, (G_{X}, θ) admits a ring structure.

Case |X| = 1. Say $X = \{a\}$. Then $G_X = \{\{a\}_a\}$ and $\theta = \{a\}_a$. Thus $(G_X, \theta)^\circ$ is isomorphic to the multiplicative semigroup \mathbb{Z}_2 and hence (G_X, θ) admits a ring structure.

Case |X| = 2. Say $X = \{a,b\}$, $a \neq b$. Then $G_X = \{1_X, (a,b)\}$. If $\theta = 1_X$, then $(G_X, \theta)^\circ$ is isomorphic to the multiplicative semigroup \mathbb{Z}_3 , so (G_X, θ) admits a ring structure.

Assume $\theta = (a,b)$. Define the operation + on $G_X^{U\{0\}}$ by $1_X + 1_X = (a,b), (a,b) + (a,b) = 1_X, 0 + 0 = 0,$ $1_X + 0 = 0 + 1_X = 1_X, (a,b) + 0 = 0 + (a,b) = (a,b)$ and $1_X + (a,b) = (a,b) + 1_X = 0.$

It is easy to see that the generalized permutation group (G_X, θ) admits a ring structure under this addition.

The following corollary follows from Theorem 3.1 when $\theta = 1_x$.

- 3.2 Corollary. For a set X, the permutation group on X admits a ring structure if and only if $|X| \le 2$.
- 3.3 Theorem. For a set X, for $\theta \in I_X$, the generalized 1-1 partial transformation semigroup (I_X, θ) admits a ring structure if and only if either $\theta = 0$ or $|X| \le 1$.

<u>Proof</u>: Assume that the semigroup (I_X , θ) admits a ring structure under an addition + and $\theta \neq 0$. First, we show that $|\Delta\theta| = 1$ and $\Delta\theta = \nabla\theta$. Suppose $|\Delta\theta| > 1$. Let a and b be two distinct elements of $\Delta\theta$. Then $a\theta \neq b\theta$ and

$$\{a\}_a + \{a\}_b = \alpha$$

for some $\alpha \in I_X$, and thus

$$\{a\}_a \theta \{a\theta\}_{a\theta} + \{a\}_b \theta \{a\theta\}_{a\theta} = \alpha \theta \{a\theta\}_{a\theta}$$

and

$$\{a\}_a \theta \{b\theta\}_{b\theta} + \{a\}_b \theta \{b\theta\}_{b\theta} = \alpha \theta \{b\theta\}_{b\theta}$$
,

which imply $\{a\}_{a\theta} = \alpha\theta\{a\theta\}_{a\theta}$ and $\{a\}_{b\theta} = \alpha\theta\{b\theta\}_{b\theta}$, respectively. From $a\theta = a\{a\}_{a\theta} = a\alpha\theta\{a\theta\}_{a\theta}$, we have $a\alpha\theta = a\theta$. From $b\theta = a\{a\}_{b\theta} = a\alpha\theta\{b\theta\}_{b\theta}$, we have $a\alpha\theta = b\theta$. Hence $a\theta = b\theta$ which is a contradiction because θ is one-to-one. This shows that $|\Delta\theta| = 1$, say $\Delta\theta = \{x\}$. Suppose $x\theta \neq x$. Let $\beta \in I_X$ be such that

$$(x, x\theta) + \{x\}_{x} = \beta$$
.

Then

$$(x, x\theta)\theta\{x\theta\}_{x\theta} + \{x\}_{x}\theta\{x\theta\}_{x\theta} = \beta\theta\{x\theta\}_{x\theta}$$

which implies

$$\{x\theta\}_{x\theta} + \{x\}_{x\theta} = \beta\theta\{x\theta\}_{x\theta}$$
 (1)

and hence

$$\{x\}_{x}\theta\{x\theta\}_{x\theta} + \{x\}_{x}\theta\{x\}_{x\theta} = \{x\}_{x}\theta\beta\{x\theta\}_{x\theta}$$

which implies $\{x\}_{x\theta} = \{x\}_{x}\theta \delta \theta \{x\theta\}_{x\theta}$, and thus $x\theta = x\theta \delta \theta$. Since θ is a one-to-one map, $x\theta \beta = x$, and hence $x\theta \in \Delta \beta$. It then follows that $\beta \theta \{x\theta\}_{x\theta} = \{x\theta\}_{x\theta}$. From (1), we have

$$\{x\theta\}_{x\theta} + \{x\}_{x\theta} = \{x\theta\}_{x\theta}.$$

This implies $\{x\}_{x\theta} = 0$, a contradiction. This shows that $x\theta = x$.

Next, we will prove that $|X|\leqslant 1$. To prove this, suppose that $X\smallsetminus\{x\}\neq\emptyset$. Let $y\in X\smallsetminus\{x\}$. Then there is an element $\gamma\in I_X$ such that

$$\{x\}_{x} + \{x\}_{y} = \gamma$$
.
 $\{x\}_{x} \theta \{x\}_{x} + \{x\}_{y} \theta \{x\}_{x} = \gamma \theta \{x\}_{x}$

and

Then

$$\{x\}_{x}^{\theta\{x\}}_{x} + \{x\}_{x}^{\theta\{x\}}_{y} = \{x\}_{x}^{\theta Y},$$

which imply that $\{x\}_{x} = Y\theta\{x\}_{x}$ and $\{x\}_{x} + \{x\}_{y} = \{x\}_{x}\theta Y$,

respectively. If $\gamma = 0$, then $\{x\}_{x} = 0$, a contradiction. Hence

$$\{x\}_{x} + \{x\}_{y} = \{x\}_{x} \theta Y = \{x\}_{xY}.$$

From $\{x\}_{x} = Y\theta\{x\}_{x}$, we have $xy \in \Delta\theta = \{x\}$, so xy = x. Hence $\{x\}_{x} + \{x\}_{y} = \{x\}_{x}$, so $\{x\}_{y} = 0$, a contradiction.

This proves that $|X| \le 1$.

Conversely, assume that $\theta=0$ or $|X| \le 1$. If $\theta=0$, the semigroup (I_X, θ) is a zero semigroup, so it admits a ring structure. If $|X| \le 1$, then I_X is $\{0\}$ or $\{0, 1_X\}$, so (I_X, θ) is either a

zero semigroup or a Kronecker semigroup of order \leqslant 2, and hence the semigroup (I_X , θ) admits a ring structure. \Box

3.4 Corollary. For a set X, the 1-1 partial transformation semigroup on X admits a ring structure if and only if $|X| \le 1$.

Proof: This follows from Theorem 3.3 when $\theta = 1_X$. O 3.5 Theorem. For a set X, for $\theta \in \mathcal{T}_X$, the generalized full transformation semigroup (\mathcal{T}_X , θ) admits a ring structure if and only if |X| < 1.

<u>Proof</u>: Assume that the semigroup (\mathcal{T}_X, θ) admits a ring structure under an addition +. Suppose $|X| \ge 2$. Let a and b be two distinct elements in X. Then we have

$$X_a + X_b = \alpha$$

for some $\alpha \in (\overline{J}_{X}, \theta)^{\circ}$.

Case $\alpha = 0$. That is, $X_a + X_b = 0$. Then we have

$$X_a \Theta X_b + X_b \Theta X_b = 0$$

which implies $X_b + X_b = 0$. It then follows that $X_a = X_b$, which is impossible because $a \neq b$.

Case $\alpha \neq 0$. Then we have

$$X_a \theta X_b + X_b \theta X_b = \alpha \theta X_b$$

which implies $X_b + X_b = X_b$,

so $X_b = 0$, a contradiction.

This proves that $|X| \le 1$.

The converse is obvious.

3.6 Corollary. For a set X , the full transformation semigroup on X admits a ring structure if and only if |X| < 1.

<u>Proof</u>: This follows from Theorem 3.5 when $\theta = 1_X$.

If X is a set such that $|X| \le 1$, it is easy to see that for any $\theta \in T_X$, the semigroup (T_X, θ) admits a ring structure. For any set X, if $\theta = 0$, then the semigroup (T_X, θ) is a zero semigroup, so it admits a ring structure.

3.7 <u>Theorem</u>. Let X be a nonempty set and let θ be a nonzero element in T_X such that $\Delta\theta = X$, $\nabla\theta = X$ or θ is one-to-one. If the generalized partial transformation semigroup $(T_{\hat{X}}, \theta)$ admits a ring structure, then |X| = 1.

 $\underline{\text{Proof}}$: Assume that the semigroup (T_X , θ) admits a ring structure under an addition +.

(1) Let $\Delta\theta = X$.

Suppose |X| > 1. Let a and b be two distinct elements of X . Then there exists $\alpha \in T_X$ such that

$$X_a + X_b = \alpha$$
.

Case $\alpha = 0$. Then we have

$$X_a \theta X_b + X_b \theta X_b = 0$$

which implies $X_b + X_b = 0$. It then follows that $X_a = X_b$, which is a contradiction.

Case $\alpha \neq 0$. Then we have

$$X_a \theta X_a + X_a \theta X_b = X_a \theta \alpha$$

and thus

$$X_a + X_b = X_a \theta \alpha$$
.

But $X_a \theta \alpha = X_c$ for some $c \in X$, so

$$X_a + X_b = X_c$$
.

Therefore we have

$$X_a \Theta X_c + X_b \Theta X_c = X_c \Theta X_c$$

which implies $X_c + X_c = X_c$. Thus $X_c = 0$, a contradiction.

This proves that |X| = 1.

(2) Let ∇0 = X.

Let a be an element of $\nabla \theta$. Then $x\theta$ = a for some $x \in X$. Let $y \in \Delta \theta$. Then

$$X_x + X_y = \alpha$$

for some $\alpha \in T_X$.

Case $\alpha = 0$. That is, $X_{x} + X_{y} = 0$. Then we have

$$X_x \theta X_x + X_y \theta X_x = 0$$

which implies $X_x + X_x = 0$, and so $X_x = X_y$. This proves that x = y and hence $y\theta = a$.

Case $\alpha \neq 0$. Then we have

$$X_{x} \Theta X_{x} + X_{x} \Theta X_{y} = X_{x} \Theta \alpha$$
,

and so

$$X_{x} + X_{y} = X_{x\theta\alpha}.$$

Let $z = x\theta\alpha$. Then

$$X_x + X_y = X_z$$

and hence

$$X_{\mathbf{x}} = X_{\mathbf{x}} + X_{\mathbf{y}} = X_{\mathbf{z}} = X_{\mathbf{z}} = X_{\mathbf{x}}.$$

If $z \in \Delta\theta$, then $X_x + X_x = X_x$, and so $X_x = 0$, a contradiction.

Hence $z \not\in \Delta\theta$. From $X_x + X_y = X_z$, we also have

$$\{x\}_{x} \theta X_{x} + \{x\}_{x} \theta X_{y} = \{x\}_{x} \theta X_{z}$$

which implies

$$\{x\}_{x} + \{x\}_{y} = \{x\}_{z}$$
,

and so

$$\{x\}_{x}^{\theta\{a\}}_{a} + \{x\}_{y}^{\theta\{a\}}_{a} = \{x\}_{z}^{\theta\{a\}}_{a} = 0.$$

If $y\theta \neq a$, then $\{x\}_{a} = 0$, which is a contradiction. Thus $y\theta = a$.

This proves that $\nabla\theta$ = {a} . Hence $|\nabla\theta|$ = 1 and so |X| = 1.

(3) Let θ be a one-to-one map.

Let a and b be elements of X such that $a\theta = b$. Then we have

$$X_a + X_b = \alpha$$

for some $\alpha \in T_{x}$.

Case $\alpha = 0$. Then $X_a + X_b = 0$, and thus

$$X_a \Theta X_b + X_b \Theta X_b = 0$$

If b $\notin \Delta\theta$, then $X_b \theta X_b = 0$ and hence $X_b = X_a \theta X_b = 0$, which is a contradiction. Therefore we have b $\in \Delta\theta$, and so from $X_a \theta X_b + X_b \theta X_b = 0$, we have $X_b + X_b = 0$. It then follows that $X_a = X_b$, and hence a = b.

Case $\alpha \neq 0$. Then we have

$$X_a \theta X_a + X_a \theta X_b = X_a \theta \alpha$$
.

It then follows that

$$X_a + X_b = X_a \theta \alpha$$
.

Hence $X_a \theta \alpha = X_c$ for some $c \in X \setminus \{a,b\}$. Therefore $X_a + X_b = X_c$ and so

$$\{a\}_{a} \theta X_{a} + \{a\}_{a} \theta X_{b} = \{a\}_{a} \theta X_{c}$$

which implies

$${a}_a + {a}_b = {a}_c$$

and thus

$$\{a\}_a \theta\{b\}_b + \{a\}_b \theta\{b\}_b = \{a\}_c \theta\{b\}_b.$$

Since $a\theta = b$ and $c \neq a$, we have that $c\theta \neq b$, and therefore $\{a\}_{c}^{\theta}\{b\}_{b}^{\theta} = 0$. Thus

$$\{a\}_b + \{a\}_b \theta\{b\}_b = 0.$$

If $a \neq b$, then $\{a\}_b^{\theta\{b\}}_b = 0$ which implies $\{a\}_b^{\theta\{b\}} = 0$, a contradiction. Hence a = b,

This proves that $a\theta = a$ for all $a \in \Delta\theta$.

Next, claim that $|\Delta\theta|$ = 1. Suppose $|\Delta\theta|$ > 1. Let x and y be two distinct elements in $\Delta\theta$. Then we have

$$X_{x} + X_{y} = \beta$$

for some $\beta \in T_X$.

Case $\beta = 0$. Then we have

$$X_{\mathbf{x}} \Theta X_{\mathbf{x}} + X_{\mathbf{y}} \Theta X_{\mathbf{x}} = 0$$

and therefore $X_x + X_x = 0$. It then follows that $X_x = X_y$, a contradiction.

Case $\beta \neq 0$. Then we have

$$X_{\mathbf{X}} \stackrel{\Theta}{\times} \mathbf{X} + X_{\mathbf{X}} \stackrel{\Theta}{\times} \mathbf{Y} = X_{\mathbf{X}} \stackrel{\Theta}{\otimes} \mathbf{B}.$$

Thus

$$X_x + X_y = X_z$$

for some $z \in X \setminus \{x,y\}$ and hence

$$\{x\}_{x}^{\theta X} + \{x\}_{x}^{\theta X} = \{x\}_{x}^{\theta X}_{z}.$$

It then follows that

$$\{x\}_{x} + \{x\}_{y} = \{x\}_{z}$$

and so

$$\{x\}_{x}^{\theta\{y\}}_{y} + \{x\}_{y}^{\theta\{y\}}_{y} = \{x\}_{z}^{\theta\{y\}}_{y}$$

which implies $\{x\}_{v} = 0$, a contradiction.

This proves that $|\Delta\theta| = 1$, say $\Delta\theta = \{a\}$. Then $\Delta\theta = \nabla\theta = \{a\}$.

Our next step is to show that |X|=1. We suppose that there exists an element b in $X \sim \{a\}$. Then there exists $Y \in T_{\mathbf{X}}$ such that $X_a + X_b = Y$. If Y = 0, then $0 = X_a \theta X_a + X_b \theta X_a = X_a$, a contradiction.

Therefore $Y \neq 0$. From $X_a + X_b = Y$, we have

$$X_a \Theta X_a + X_a \Theta X_b = X_a \Theta Y$$

which implies

$$X_a + X_b = X_c$$

for some $c \in X \setminus \{a,b\}$. Hence

$$\{a\}_a \Theta X_a + \{a\}_a \Theta X_b = \{a\}_a \Theta X_c.$$

Thus

$${a}_a + {a}_b = {a}_c,$$

and hence

$$\{a\}_a \theta \{a\}_a + \{a\}_b \theta \{a\}_a = \{a\}_c \theta \{a\}_a$$

which implies $\{a\}_a = 0$ since b,c $\not\in \Delta\theta = \{a\}$. This is a contradiction.

3.8 Corollary. For a set X, the partial transformation semigroup on X admits a ring structure if and only if |X| < 1.

We characterize almost identical transformation semigroups admitting ring structure in the three following theorems.

3.9 Theorem. For a set X, the semigroup of all almost identical partial transformations of X, U_X , admits a ring structure if and only if $|X| \le 1$.

<u>Proof</u>: Assume that the semigroup U_X admits a ring structure under an addition +. Suppose on the contrary that $|X| \ge 2$. Let a and b be two distinct elements in X. Then we have

$$\{a\}_a + \{a\}_b = \alpha$$

for some $\alpha \in U_{\chi}$. Therefore

$$\{a\}_{a}\{a\}_{a} + \{a\}_{b}\{a\}_{a} = \alpha\{a\}_{a}$$

and

$$\{a\}_a \{a\}_a + \{a\}_a \{a\}_b = \{a\}_a \alpha$$

which imply $\{a\}_a = \alpha\{a\}_a$ and $\{a\}_a + \{a\}_b = \{a\}_a^\alpha$, respectively. From $\{a\}_a = \alpha\{a\}_a$. We have that $a \in \Delta \alpha$ and $a\alpha = a$. It then follows that $\{a\}_a^\alpha = \{a\}_a$. Hence from $\{a\}_a + \{a\}_b = \{a\}_a^\alpha$, we have $\{a\}_b = 0$, a contradiction.

The converse is obvious .

3.10 Theorem. For a set X, the semigroup of all almost identical transformations of X, V_X , admits a ring structure if and only if $|X| \le 1$.

<u>Proof</u>: Assume that the semigroup V_X admits a ring structure under an addition +. Suppose $|X| \gg 2$. Let a and b be two distinct elements in X. Define the maps α , $\beta: X \longrightarrow X$ by

$$x\alpha = \begin{cases} b & \text{if } x = a, \\ x & \text{otherwise,} \end{cases}$$

and

$$x\beta = \begin{cases} a & \text{if } x = b, \\ x & \text{otherwise.} \end{cases}$$

Then α , $\beta \in V_{\chi}$, and so

$$\alpha + \beta = \gamma$$

for some $Y \in V_X^{\circ}$. Thus

$$\alpha(a,b) + \beta(a,b) = \gamma(a,b)$$

which implies

$$\beta + \alpha = \gamma(a, b)$$
.

Hence $\gamma = \gamma(a, b)$. Next, we claim that $b \not\in \nabla \gamma$. To prove this, we suppose that there is an element x in X such that $x\gamma = b$. Since $\gamma = \gamma(a,b)$, we have

$$b = xy = xy(a,b) = b(a,b) = a,$$

a contradiction. Hence b $\not\in \nabla \gamma$. From $\alpha + \beta = \gamma$, we also have

$$\alpha\beta + \beta\beta = \gamma\beta$$

and thus

$$\beta + \beta = \gamma \beta$$

If $\gamma=0$, then $0=\gamma=\gamma\beta$. If $\gamma\neq 0$, then for each $x\in X$, $x\gamma\neq b$ since $b\notin \nabla\gamma$, and thus $x\gamma\beta=x\gamma$. Hence $\gamma\beta=\gamma$. Therefore

$$\alpha + \beta = \gamma = \gamma \beta = \beta + \beta$$
,

so $\alpha = \beta$, a contradiction.

The converse is obvious.

3.11 Theorem. For a set X, the semigroup of all almost identical 1-1 partial transformations of X , W_X , admits a ring structure if and only if $|X| \le 1$.

 $\underline{\text{Proof}}$: A proof of this theorem can be given identically to the proof of Theorem 3.9, only replacing $U_{\mathbf{x}}$ by $\mathbf{W}_{\mathbf{x}}$ in every place. \Box

Recall that for any set X ,

$$M_{X} = \{\alpha : X \longrightarrow X \mid \alpha \text{ is one-to-one}\}$$

and

$$E_{X} = \{ \alpha : X \rightarrow X \mid \alpha \text{ is onto} \}.$$

It is known that for any set X , $M_X = G_X$ if and only if $|X| < \infty$ and $E_X = G_X$ if and only if $|X| < \infty$.

3.12 Theorem. For a set X , the semigroup of all one-to-one transformations of X , $M_{\tilde{X}}$, admits a ring structure if and only if $|X| \le 2$.

<u>Proof</u>: Assume that the semigroup M_X admits a ring structure under an addition \div . Suppose $|X| \geqslant 3$. Let a,b and c be three distinct elements in X. Then

$$(a,b,c) + (a,c) = \alpha$$

for some $\alpha \in M_X^O$.

Case $\alpha = 0$. Then

$$(a,b,c)(a,c) + (a,c)(a,c) = 0$$

and

$$(a,c)(a,b,c) + (a,c)(a,c) = 0$$

which imply $(a,b) + 1_X = 0$ and $(b,c) + 1_X = 0$, respectively. It then follows that (a,b) = (b,c), which is a contradiction. Case $\alpha \neq 0$. Then we have

$$(a,b)(a,b,c) + (a,b)(a,c) = (a,b)\alpha$$

and thus

$$(a,c) + (a,b,c) = (a,b)\alpha$$

which implies $\alpha=(a,b)\alpha$, and so $a\alpha=a(a,b)\alpha=b\alpha$, which is a contradiction because α is a one-to-one map.

Conversely, assume that $|X| \le 2$. Then $M_X = G_X$ which admits a ring structure by Corollary 3.2. \square

3.13 Theorem. For a set X , the semigroup of all onto transformations of X , E_X , admits a ring structure if and only if $|X| \le 2$.

<u>Proof</u>: Assume that the semigroup E_X admits a ring structure under an addition +. Suppose $|X| \ge 3$. Let a, b and c be three distinct elements in X. Then we have

$$(a,b,c) + (a,c) = \alpha$$

for some $\alpha \in E_X^O$

Case
$$\alpha = 0$$
. That is, $(a,b,c) + (a,c) = 0$. Then we have $(a,b,c)(a,c) + (a,c)(a,c) = 0$

and

$$(a,c)(a,b,c) + (a,c)(a,c) = 0$$

which imply $(a,b) + 1_X = 0$ and $(b,c) + 1_X = 0$, respectively.

Thus (a,b) = (b,c), a contradiction.

Case $\alpha \neq 0$. Then we have

$$(a,b,c)(a,c) + (a,c)(a,c) = \alpha(a,c)$$

and thus

$$(a,b) + 1_X = \alpha(a,c)$$

Therefore

$$(a,b)(a,b) + 1_X(a,b) = \alpha(a,c)(a,b)$$

which implies

$$1_X + (a,b) = \alpha(a,c,b).$$

It then follows that $\alpha(a,c) = \alpha(a,c,b)$. Since α is onto, there is an element x in X such that $x\alpha = c$. Then

$$a = x\alpha(a,c) = x\alpha(a,c,b) = c(a,c,b) = b,$$

a contradiction.

Conversely, assume that $|X| \le 2$. Then $E_X = G_X$ which admits a ring structure by Corollary 3.2. \square

Let X be a set. Recall that the semigroup of all constant partial transformations of X , $C_X = \{\alpha \in T_X \mid |\nabla\alpha| \le 1\}$. The next two theorems deal with the semigroup C_X and the semigroup (C_X, θ) for $\theta \in C_X$, respectively.

3.14 Theorem. For a set X , the semigroup of all constant partial transformations of X , C_X , admits a ring structure if and only if $|X| \le 1$.

<u>Proof</u>: Assume that the semigroup C_X admits a ring structure under an addition +. Suppose there are two distinct elements in X, say a,b. Let $A = \{a,b\}$. Then

$$A_a + \{b\}_b = \alpha$$

for some $\alpha \in C_X$.

Case $\alpha = 0$. Then we have

$$A_a{b}_b + {b}_b{b} = 0$$

which implies ${b}_b = 0$, a contradiction

Case $\alpha \neq 0$. Then α = B_c for some nonempty subset B of X and for some c ϵ X. Thus we have

$$A_a A_a + A_a \{b\}_b = A_a B_c$$

and

$$A_a A_a + \{b\}_b A_a = B_c A_a$$

which imply that $A_a = A_a B_c$ and $A_a + \{b\}_a = B_c A_a$, respectively.

From $A_a = A_a B_c$, we have a = c, and thus $B_c A_a = B_a = B_c$. Hence $A_a + \{b\}_a = B_c = A_a + \{b\}_b$ and therefore a = b, a contradiction.

This proves that $|X| \le 1$.

The converse is obvious.

3.15 Theorem. For a set X, for $\theta \in C_X$, the generalized transformation semigroup (C_X, θ) admits a ring structure if and only if either $\theta = 0$ or $|X| \le 1$.

<u>Proof</u>: Assume that the semigroup (C_X, θ) admits a ring structure under an addition +. Suppose $\theta \neq 0$. Let A be a nonempty subset of X and x ϵ X such that $\theta = A_X$. Let y ϵ A. Suppose that x \neq y. Let B = $\{x,y\}$. Then

$$B_{x} + \{y\}_{y} = \alpha$$

for some $\alpha \in C_X$.

Case x & A. Then we have that

$$B_{\mathbf{X}}A_{\mathbf{X}}B_{\mathbf{X}} + \{y\}_{\mathbf{Y}}A_{\mathbf{X}}B_{\mathbf{X}} = \alpha A_{\mathbf{X}}B_{\mathbf{X}}$$

and

$$B_{y}A_{x}B_{x} + B_{y}A_{x}\{y\}_{y} = B_{y}A_{x}\alpha,$$

which imply $\{y\}_{x} = \alpha A_{x}$ and $B_{x} = B_{x}\alpha$, respectively. From $0 \neq \{y\}_{x} = \alpha A_{x}$, we have $\Delta \alpha = \{y\}$ since $|\nabla \alpha| = 1$ and $\nabla \alpha \subseteq A$. Thus $B_{x} = B_{x}\alpha = 0$, a contradiction.

Case x & A. Because

$$B_{x}A_{x}B_{x} + B_{x}A_{x}\{y\}_{y} = B_{x}A_{x}\alpha,$$

we have that $B_{x} = B_{x}\alpha$, and hence $\nabla \alpha = \{x\}$.

Let $\Delta \alpha = C$. Then $B_x + \{y\}_y = C_x$, so

$$B_{\mathbf{x}}A_{\mathbf{x}}B_{\mathbf{x}} + \{y\}_{\mathbf{y}}A_{\mathbf{x}}B_{\mathbf{x}} = C_{\mathbf{x}}A_{\mathbf{x}}B_{\mathbf{x}}$$

which implies

$$B_{x} + \{y\}_{x} = C_{x}.$$

It then follows that $B_x + \{y\}_y = B_x + \{y\}_x$ which implies y = x, a contradiction.

Hence this proves that $A = \{x\}$ and thus $\theta = \{x\}_{x}$.

The next step is to prove that $|X| \le 1$. Suppose that there exists an element y in $X \setminus \{x\}$. Let D = $\{x,y\}$. Then we have

$$D_x + D_y = \beta$$

for some $\beta \in C_X$. Thus

$$D_{\mathbf{x}}\{\mathbf{x}\}_{\mathbf{x}}D_{\mathbf{x}} + D_{\mathbf{y}}\{\mathbf{x}\}_{\mathbf{x}}D_{\mathbf{x}} = \beta\{\mathbf{x}\}_{\mathbf{x}}D_{\mathbf{x}}$$

which implies $D_x = \beta\{x\}_x$, and hence $\Delta\beta = D$ and $\nabla\beta = \{x\}$. It then follows that $D_x + D_y = D_x$, which implies $D_y = 0$, a contradiction.

Conversely, assume $\theta = 0$ or $|X| \le 1$. If $\theta = 0$, then (C_X, θ) is a zero semigroup, so it admits a ring structure. If $|X| \le 1$, then $C_X = \{0\}$ or $\{0, 1_X\}$, so (C_X, θ) is either a zero semigroup or a Kronecker semigroup of order ≤ 2 , and hence it admits a ring structure.