CHAPTER III

P GENERALIZED TRANSFORMATION SEMIGROUPS

In this chapter, we characterize generalized transformation
semigroups admitting ring structure, in particular, well-known
transformation semigroups admitting ring structure. This is the main

purpose of this thesis.

Recall that if S is a transformation semigroup on a set X and

© € S, then the semigroup S under the operation % defined by
a%xp = alB

for all a,B in S is called a generalized transformation semigroup on X

and it is denoted by (S, 8).

Observe that if a transformation semigroup S has a zero 0, then
for 6 € S, 0 is also the zero of the generalized transformation semigroup

- (S, 9).

Throughout this chapter, the following notation will be used.
For any set A, let 1A denote the identity map on A. Let X be a set. For
any nonempty subset A of X and for a € X , let Aa denote the partial
transformation of X such that ﬁAa = A and VAa = {a}. For a,b,c € X , let

(a,b) and (a,b,c) be the permutations on X defined by

b if x = a,
x(a,b) = <a ifx=0b,

X otherwise,
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and
b if % =ay
c if x =D,
x(a,b,c) = {
a if x=¢,
X otherwise.
.
Recall for the notation of transformation semigroups. For any
set X , let
Tx = the partial transformation semigroup on X ,
qrx = the full transformation semigroup on X ,
I, =  the 1-1 partial transformation semigroup on X ( the

symmetric inverse semigroup on X ),

G the permutation group on X ,

X
Uy = the semigroup of all almost identical partial

transformations of X ,

Vx = the semigroup of all almost identical transformations

of X ,

WX . = the semigroup of all almost identical 1-1 partial

transformations of X ,

MX = the semigroup of all one-to-one transformations

of X ,

Ex = the semigroup of all onto transformations of X ,
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and C = the semigroup of all constant partial transformations

{T’ = {aeT, | Aa=X)
X £ :
I, = {aeT, | o is one-to-one},
U, e {ae Ty | [8(a)} < »H(where S(a) = {x € 4a |xa # x}),
Vx = { a Efrg | IS(G) ] <@},
Fy = {ael, | Iste) | <=},
My T eb.Tx ‘ a is one-to-one} = { a € Iy | aa = X},
Ey = {ace" ¥ | Va=X}={ac Ty | Aa = Va = X}
and Cie = laerT, [|vals 1}

Note that we consider the empty transformation as a constant partial

transformation.

The first theorem gives a characterization of a generalized

permutation group which admits a ring structure.

3.1 Theorem. For a set X , for @ ¢ Gx » the generalized permutation

group (Gx, 9) admits a ring structure if and only if |X| s 2.

Proof : Assume that the semigroup (Gx, @) admits a ring

structure under an addition +. Suppose on the contrary that |X| 3 3.

Let a, b and ¢ be three distinct elements in X . Then

(a,bsc) + (ae) = a



for some o in (GX, 0)°.
Case & = 0. That is, (a,b,c) + (a,c) = 0. Then we have

(2,b,¢)00  (a,e) + (a,c)00 1 (a,c) = 0
and
-1 -1
(a,¢)8 “e(a,b,c)+ (a,c)8 ~0(a,c) = 0,
sc we have (a,b) + 1y = 0 and (b,c) + 1, = 0, respectively. Hence

we have (a,b) = (b,c), which is a contradiction.
Case o # 0. Then we have

(2,5,)807 (a,e) + (2,060 2 (a,c) = a00~2(a,c)

which implies
(a,b) + 1,°= ala,c).

Then we have

(a,5)6 0(a,b) + (a,b)a-lelx (a,b)0 Y0a(a,c)

which implies

1y + (a;b) = (a,b)ala,c).

Thus a(a,e) = (a,b)ala,c). Hence aa(a,c) = a(a,b)efa,c) = bala,c).

Since a(a,c) is a one-to-one map, we have a = L, which is a contradiction.
This proves that |X| ¢ 2.

Conversely, assume that |X| < 2.
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If X =@, then G, = {0} and & = 0, and clearly, (GX, 8)

admits a ring structure.

Case |X| =1 . Say X = {a}. Then Gy = {{al } and @ = {a}a. Thus

(GX’ 9)° is isomorphic to the multiplicative semigroup 12 and hence

(Gx, @) admits a ring structure.

Case [X| = 2. Say X = {a,b}, a#b. Then G, = {1x, (a,b)}.If € =1

X X?

then (GX’ 0)° is isomorphic to the multiplicative semigroup ZS’ so
(GX’ @) admits a ring structure.

Assume © = (a,b). Define the operation + on GXH{O} by

1,40 = 0% T 1y (a,b) + 0 = 0 + (a,b) = (a,b)
and 1, + (a,b) = (a,b) + 1, =/ 0.

It is easy to see that the generalized permutation group (Gx, 8) admits

a ring structure under this addition. O

The following corollary follows from Theorem 3.1 when © = 1X'

3.2 Corollary. For a set X, the permutation group on X admits a ring

structure if and only if |X| ¢ 2.

3.3 Theorem. For a set X, for © ¢ Ix, the generalized 1-1 partial
transformation semigroup (IX’ @) admits a ring structure if and only

if either @ = 0 or |X| < 1.
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Proof : Assume that the semigroup (Ix, €) admits a ring structure

under an addition + and @ # 0. First, we show that |[A6] = 1 and A0 = ve.

Suppose ]Ael > 1.

ae # b8 and

{al, + {a},
for some a € IX’ and thus

{a}aQ{ae}aQ + {a}bg{ae}a9 =

and

{a}ae{be}bg + {a}bG{bQ}bg

which imply {a}ag

e = =
From a a{a}ag

aaefbe}be, we have

because 9 is one-to-

X0 # x. Let B ¢ Ix
(%,

Then

(x,

which implies

{xe}xg +  {x}

and hence

{x}
X

Let a and b be two distinct elements of A®. Then

"
=]

Gg{bg}bg ?

= ae{ae}ag and {a}bg = ae{be} respectively.

be’
aae{ae}ag, we have an® = a®. From b = a{a}b9 =
aad = bO. Hence a® = b6 which is a contradiction

one. This shows that [46] = 1, say A0 = {x}. Suppose

be such that

x6) + {x}, = 8

xG)G{xe}xg + {x}xg{xg}xg = BG{KG}XQ

o se{xe}xg (1)

O{xe}x9 + {x}xe{x}xg = {x}xes{xe}xg



which implies {x} = {x} 0Be{x6} _, and thus x6 = x0B0. Since ©
X6 X X0

is a one-to-one map, x6R = X, and hence x6 € AB. It then follows

that se{xe}xe = {xe}xe. Fron (1), we have
{xe}xg + {x}xg = {xe}xg.
This implies {x}xe = 0, a contradiction. This shows that x8 = x.

Next, we will prove that [X[ € 1. To prove this, suppose

that X~ {x} # #. Let y ¢ X~ {x}.  Then there is an element 1 0

such that

'{x}x + {x}y =y
Then {x}xe{x}x + {x}ye{x}x = Ye{x}x
and

{x}xe{x}X + {x}xe{x}y = {x}xgY s

which imply that {x}x = Yg{x}x and {x}x 1 {x}y = {x}xQY,

respectively. If y = 0, then {x}x = 0, a contradiction. Hence

{x}x'+ fx}y = {x}XQY {x}

xY °

From {x}x = Ye{x}x, we have xy € 80 = {x}, so xy = x. Hence

{x}x + {x}y = {x}x s SO {x}y = 0, a contradiction.

This proves that |X| ¢ 1.

Conversely, assume that @ = 0 op lXI €1. If 0 =0, the

semigroup (IX’ ®) is a zero semigroup, so it admits a ring structure.

If 'X] £ 1, then Ix is {0} or '{0, 1X}’ so (IX’ 8) is either a




30

zero semigroup or a Kronecker semigroup of order € 2, and hence the

semigroup (Ix, @) admits a ring structure. o

3.4 Corollary. For a set X, the 1-1 partial transformation semigroup

on X admits a ring structure if and only if |x| & 1,

Proof : This follows from Theorem 3.3 when @ = 1 (w]

X
3.5 Theorem. For a set X, for 6 ¢ QI%, the generalized full
transformation semigroup (fj;, ®) admits a ring structure if and only
it [%] € 1.

Proof : Assume that the semigroup ({I;, @) admits a ring

structure under an addition +. Suppose |X| > 2. Let a and b be two

distinct elements in X. Then we have
Xa + Xh = o
o

for some a e ( X2 0)" .

Case a = 0. That is, Xa + Xb = 0. Then we have

|
o

xaoxb+ xngb

which implies Xb + xb

0. It then follows that Xa = Xb,

which is impossible because a # b.

Case ¢ # 0. Then we have

RO, + %00 = ek
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which implies Xy *+ Xp = Xy
so Xy = 0, a contradiction.

This proves that |X] £ 1,

The converse is obvious. o

3.6 Corollary. For a set X , the full transformation semigroup on X

admits a ring structure if and only if [X| < 1.

Proof : This follows from Theorem 3.5 when 0 = 1X' u]

If X is a set such that |X| € 1, it is easy to see that for

any 8 € T the semigroup (Tx, 8) admits a ring structure. For any

x’
set X, if @ = 0, then the semigroup (Tx, @) is a zero semigroup, so

it admits a ring structure.

3.7 Theorem. Let X be a nonempty set and let © be a nonzero element
in T& such that A6 = X, V@ = X or @ is one-to-one. If the generalized
partial transformation semigroup (TX’ @) admits a ring structure, then

|x] = 1.

Proof : Assume that the semigroup (Tx, 8) admits a ring structure
under an addition +.

(1) Let AO =X,

Suppose [X| > 1. Let a and b be two distinct elements of X .

Then there exists a € TX such that

Xa + Xs & gl



Case o = 0. Then we have

XaGXb + ngxb = 0
which implies

which is a contradiction.

Case o # 0. Then we have
xaexa + xaexb = Xaea
and thus
Xa + Xb = Xaea.
But XaGa = Xc for some ¢ € X, so
Xa + Xb = Xc.
Therefore we have
XaQXC + ngxc = Xchc
which implies Xc + xc = Xc? Thus XC
This proves that [X| = 1.
(2) Let ve = X.
Let a be an element of V0. Then x8
y € AO. Then
X +X = o
y

for scme a ¢ TX'

X + Xb = 0. It then follows that X =
b a

Xy

0, a contradiction.

a for some x € X. Let
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Case o = 0. That is, Xx + Xy = 0. Then we have
XKOX + XX = 0
% Tx e

which implies X +X = 0, and so X = X . This proves
X X X y

that x = y and hence yo = a.

Case o # 0. Then we have

(S

X 86X + X 68X /X 6a .,
p: Zillhe 4 Xy X
and so

x y xxea'

Let z = %8a. Then

v Z
and hence
X 86X + X eX = KL OXT
X X v X Z X
If z ¢ A, then XK + Xx = Xx’ and so Xx = 0, a contradiction.
Hence 2z ¢ A0. From Xx + Xy = Xz, we also have
{x}xexx + {x}xexy = {x}xexz
which implies
Bt X = &,

and so

{x]xe{a}a + {x}ygfa}a = {x}zé{a}a = 0,



If y6 # a, then {x}a = 0, which is a contradiction. Thus yé = a.
This proves that VO = {a} . Hence |V0|=1 and so |X| = 1.
(3) Let 6 be a one-to-one map.
Let a and b be elements of X such that a® = b, Then we have

Xa + Xb = o

for some a € Tx.

Case a = 0. Then Xa + Xh = 0, and thus

XaQXb 4 xngb = 0
If b ¢ 40, then X 0X = 0 and hence Xy, = X, 8X, =0, which is a
contradiction. Therefore we have b e A0, and so from xaexb + XbGXb

we have Xb+ Xb = 0. It then follows that Xa

Xb, and hence a = b,

Case ¢ # 0. Then we have
xaexa + XaQXb = XaGG.
It then follows that
Xa + Xb = Xaeu.
Hence Xaea = xc for some c¢ e X~ {a,b}. Therefore X+ Xb = X

Cc

and so

34

:0,
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{a}az-}xa + {a}aQXb = {a}agxc
which implies
'{a}a + {a}y = {a}C
and thus
{a}ae{b}b + {a}be{b}b = {a}ce{b}b.

Since a8 = b and ¢ # a, we have that c@ # b, and therefore

{a}éaib}b = 0. Thus

{a}, + {a}be{b}b = 0.

b

If a¢ b, then {a}bg{b}b 0 which implies {a}b 20, a

contradiction. Hence a = b,

This proves that a@ = a for all a € AO.

Next, claim that [&6] = 1. Suppose Iae[ >1. Let x and y be

two distinct elements in A©. Then we have

for some B ¢ TX'

Case 8 = 0. Then we have
XBX +X0X =0
¥ X vy X

and therefore Xx + Xx = 0. It then follows that Xx = Xys

a contradiction.



Case B # 0. Then we have

X eX + X 8X = X BB.
X X Xy X
Thus
X + X = X
X y z
for some z ¢ X~N\{x,y} and hence
{x} 6X + {x}xexy = Az} ex .
It then follows that
{x}X + {x}y = {x}Z
and so
{x} oiy} + Ax} oly} = ({x} o{y}
X % ¥ y v i z y ¥
which implies {x}y = 0, a contradiction.

This proves that [a@| =1,

Our next step is to show that

exists an element b in X~{a}. Then there exists Y e T

= Y = = i
Xa+ Xﬁ (| (P i 0, then 0 XaGXa

Therefore Y # 0. Frem Xa+ Xb
+ —
XaQXa XaQXb

which implies
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say A® = {a}l. Then 40 = V0 = {a}.

X IYERS)

X

+ X gxa = Xa’ a contradiction.

b

=Y , we have

X_ey
a

We suppose that there

such that
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for some ¢ € X~{a,b}. Hence

{a} ox_ + {a} ox = {a} ex .
Thus
{a}a + {a}b = fal},,
and hence
{a} ofal, + ({ahofa} = {a} efa},
which implies {a}, = 0 since b,e ¢ 40 = {a}. This is a

contradiction. a]

3.8 Corollary. For a set X, the partial transformation semigroup on

X admits a ring structure if and only if |X| < 1.

We characterize almost identical transformation semigroups

admitting ring structure in the three following thecrems.

3.9 Thecrem. For a sct X, the semigroup of all almost identical

partial transformations of X, U admits a ring structure if and only

X’
if x| < 1.

Proof : Assume that the semigroup Uy admits a ring structure
under an addition +. Suppose on the contrary that IXI > 2. Let a and

b be two distinct elements in X. Then we have
{a}a + {a}b = q

for some o € U Therefore

.xc
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{a}a{a}a + {a}b{a}a = ofal,
and
'{a}a{a}a + {a} fa}, = {al o
which imply {al, = a{a}a and {a} + {a} = '{a}a“ »

respectively. From {a}a a{a}a. We have that a € Aad and aa = a.

It then follows that {a}aa {a}a. Hence from {a}a + {a}b = {a}aa, we

have {a}b = 0, a contradiction.
The converse is obvious . ]

3.10 Theorem. For a set X, the semigroup of all almost identical

transformations of X, V admits a ring structure if and only if

x’
IX] = 1.
Proof : Assume that the semigroup VX admits a ring structure

under an addition +. Suppose |X| > 2. Let a and b be two distinct

elements in X. Define the maps a, B : X— X by

b ifx = ay

x  otherwise,
and

a if x = Db,
xR =
X otherwise.

Then o , B € VX’ and so

oa+B =Y

for some ¥ ¢ V;, Thus
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a(a,b) + B(a, b) = vy(a, b)
which implies
B + a z vy(a, b) ,
Hence y = vy(a, b). Next, we claim that b ¢ Vy . To prove this, we

suppose that there is an element x in X such that xy = b. Since

vy = y(a,b), we have

b ==xy = xy(a,b) = bla,b) = a,

a contradiction. Hence b ¢ Vy . From a + B =y , we also have
aB + BB = yB
and thus
B+ B = yB
If y=0, then 0=y =vy8 . If vy #0, then foreachxe X, Xy #b

since b ¢ Vy, and thus xyB = xy . Hence yB = ¥ « Therefore

a+t+B=yvy=yB=8B+8,
so a =B, a contradiction.
The converse is obvious. (m}

3.11 Theorem. For a set X, the semigroup of all almost identical

1-1 partial transformations of X , W admits a ring structure if and

x)
only if |X| < 1.

Proof : A proof of this theorem can be given identically to the

procf of Theorem 3.9, only replacing UX by Wx in every place. O
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Recall that for any set X ,

{a : X—X | & is one-to-one}

=
n

and

‘{a: X=X | a is ontol.

Ex

It is known that for any set X , M, = G if and only if |X| < =

X X

and Ey = Gy if and only if [X| <= .

3.12 Theorem. For a set X , the semigroup of all one-to-one
transformations of X , My s admits a ring structure if and only if

[%| < 2.

Proof : Assume that the semigroup M, admits a ring structure

X
under an addition +. Suppose |X| 2 3. Let a,b and ¢ be three distinct

elements in X. Then

(a,b,e) + (a,e) = a

o)
for some a € MX .

Case ¢ = 0. Then

(a,bsc)(a,e) + (a,e)(a,e) = 0
and
(a2,c)(a,bye) + (ase)(a,c) = 0
which imply (a;b) +1y = 0 and (b,e) +1, = 0, respectively.

X X

It then follows that (a,b) = (b,c), which is a contradiction.
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Case o # 0. Then we have

(agb)(asb’c) T (a,b)(a,c) = (a,b)a
and thus
(a.e) + (a,b,e) = (a,b)ao
which implies o = (a,b)a , and so aa = a(a,b)a = ba , which is a

contradiction because o is a one-to-one map.

Conversely, assume that |X| < 2. Then M, = Gy, which admits

a ring structure by Corollary 3.2. O

3.13 Theorem. For a set X , the semigroup of all onto transformations

of X , Eg » admits a ring structure if and only if |X| < 2.

Proocf : Assume that the semigroup Ey admits a ring structure
under an addition +. Suppose |X| 2 3. Let a, b and ¢ be three distinct

elements in X . Then we have

(asb.c) + (aye) = o
Q
for some a € E
X
Case a = 0. That is, (a,b,c) + (a,c) = 0. Then we have
(a,bsc)(a,e) + (a,c)(a,e) = O
and
(a,c)(a,b,e) + (a,c)(a,c) = 0
which imply (a,b) + 1y = 0 and (b,e) + 1y = 0, respectively.

Thus (a,b) = (b,c), a contradiction.
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Case a # 0. Then we have

(a,b,e)(a,c) + (a,e)(a,e) = ala,c)

and thus

(a,b) + 1x .= a(a,c) .

Therefore

a(a,c)(a,b)

(a,b)(a,b) + 1y(a,b)

which implies

1, + (a,b) a(a,c,b).

X
It then follows that a(a,c) = a(a,c,b). Since a is onto, there is

an element x in X such that xa = ¢. Then

a = xa(a,e) = xa(a,c,b) = c(a,c,b) = b,

a contradiction.
Conversely, assume that |X| < 2. Then E, = Gy which admits

a ring structure by Corollary 3.2. O

Let X be a set. Recall that the semigroup of all constant partial
transformations of X , CX = {ae Ty l [va| < 1}. The next two theorems
deal with the semigroup CX and the semigroup (CX’ @) for 0 € Cy »

respectively.

3.14 Theorem. For a set X , the semigroup of all constant partial
transformations of X , Cy » admits a ring structure if and only if

I%] € 4.
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Proof : Assume that the semigroup Cx admits a ring structure
under an addition +. Suppose there are two distinct elements in X, say

a,b. Let A = {a,b}. Then
A+ {b}b = o

for some o € CX :
Case a = 0. Then we have

Aa{b}b + {b}h{b}h 570

which implies '{b}b = 0, a contradiction

Case o« # 0. Then a = Bc for some nonempty subset B of X and for -

some ¢ € X. Thus we have

AaAa * Aa{b}b % Ach
and
AA, +{bLA = BA
which imply that Aa = Ach and Aa + {b}a = BcAa’ respectively.
From A = AB , we have a = ¢, and thus RA =B = B . Hence
a ac ca a c

A+ {b}a B EA 4 {b}b and therefore a = b, a contradiction.

This proves that |X| < 1.
The converse is obvious. D
3.15 Theorem. For a set X, for 0 ¢ CX’ the generalized transformation

semigroup (Cx, ) admits a ring structure if and only if either 6 = 0 or

I s 2.
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Proof : Assume that the semigroup (Cx, @) admits a ring
structure under an addition +. Suppose 0 # 0. Let A be a nonempty
subset of X and x € X such that @ = Ax' Let y € A. Suppose that x # y,
Let B = {x,y}. Then

B+ {y}y = a
for some a € C,,.

X

Case x A. Then we have that

BAB, + {y}yAxBx = oA B,
and
BAB, + BAIy = BAa,
which imply {y}x = oA and B =B a, respectively. From

0 # {y}x = @A, we have Aa = {y} since |Va| = 1 and Va c A.

Thus Bx = Bxu = 0, a contradiction.

Case x € A. Because
BxAxBx & BxAx{y}y g BxAxa’

we have that Bx = Bxa, and hence Va = {x}.

Let Ao = C. Then B_ + {y}y C,» SO

BAB {y}yﬂxBx = CAB

which implies

B % {y}x = C,.



It then follows that Bt {y}y x Bow {y}x which implies y = x,

a contradiction.
Hence this proves that A = {x} and thus @ = {x}x ;

The next step is to prove that [X] € 1. GSuppose that there

exists an element y in X~{x}. Let D = {x,y}. Then we have

D +D = B
y
for scme 8 ¢ CX' Thus
Dx{x}xDx £ Dy{x}xDx = B{x}xDx
which implics D, = B{X}x, and hence AB = D and VB = {x}.

-

It then follows that Dx + Dy = Dy, which implies Dy =0, a
contradiction.

Conversely, assume € = O or |X| € 1. If 6 = 0, then (Cys ©)
is a zero semigroup, so it admits a ring structure. If [X| € 1, then
Cx = {0} or {0, 1X}g so (Cx, 8) is either a zero semigroup or a

Kronecker semigroup of order < 2, and hence it admits a ring structure.

o



	Chapter III Generalized Transformaiton Semigroups

