CHAPTER I

The multiplicative structure of any ring is by definition a
semigroup with zero. If (S, ) is a semigroup with zero, then the

following are clearly equivalent :

(1) (s, *) is isomorphic to the multiplicative structure of
some ring.

(2) There exists a binary operation + on S such that (8,+,*)
is a ring.
A semigroup S (which is not necessary to have a zero) is said to admit
a ring structure if the semigroup s® satisfies (1) (which is equivalent
to (2)) . Observe that if the semigroups S and T are isomorphic, then S
admits a ring structure if and only if T admits a ring structure.

Not every semigroup admits a ring structure. It is shown by the

following examples :

Example. A semigroup S is called a left [ right ] zero semigroup if

ab=a [ab=Db] for all a, b € S,

Observe that a left [ right ] zero semigroup S has a zero if and

only if |s| = 1.

A left [ right ] zero semigroup S admits a ring structure if and

only if |S| = 1. To prove this for left zero semigroups, assume that



a left zero semigroup S admits a ring structure by an additive operation
+. Suppose |S| >1 . Let a, b be two distinct elements in S. Then

o]
a+b=c¢c for someceS , so

a+a = a(a+b) = ac.

If c#0, thena +a=a, soa=0, acontradiction. If c = 0, then
a+b=0=a+a, soa=>b which is also a contradiction. This proves
that if S admits a ring structure, then |S| = 1. The converse is obvious.

Hence, if |S| >1 , 8 does not admit a ring structure.

Example. A semigroup S with zero 0 is called a Kronecker semigroup if

a if a = b,
abh =
0 if a # b,

Let S be a Kronecker semigroup. It is obvious that S admits a
ring structure if |S| g 2. Claim that S does not admit a ring structure
if |s| > 2. Assume that |S| > 2 and S admits a ring structure with an
additive operation +. Let a and b be two distinct nonzero elements in

S. Then a + b=c for some ¢ € S~{a, b}. Thus

0 = ac = a(a +b)=a,
a contradiction.

This shows that a Kronecker semigroup S admits a ring structure

if and only if |s| < 2.

A semigroup S with zero 0 is said to be a zero semigroup if

ab =0 for all a,b € S.
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Let (S, .) be a zero semigroup with zero 0. If there is a
binary operation + on S such that (S, +) is a commutative group having
0 as its identity, then (S, +,*) is clearly a ring. We shall show
that every zero semigroup admits a ring structure. A proof is given

as follows : Let S be a zero semigroup with zero 0.

Case : S is finite. Let |S| = n. Let C, be a cyclic group of order n

with identity e. Then there is a one - to - one map ¥ from S onto Cn
with ¥(0) = e. Define an operation + on S by a + b = ¢ if and only
if v(a) v(b) = y(e¢) in C, - Then (S, +) is a commutative group having

0 as its identity.

(%)

Case : S is infinite. Let F(S) be the set of all finite subsets of S.
Then |s| = |F(S)| [ 4, Theorem 22.17 ]. Define the operation # on
F(S) by

- A%*B = (A~B) U(B~A)

for all A, B € F(S). It is clearly seen that (F(S), ®*) is a commutative
group having # as its identity. Since |S| = |F(S)|, there exists a
one - to - one map y from S onto F(S) with y(0) = @. Define the operation
+on Sbyx +y=zif and only if ¥(x) * ¥(y) = ¥(z). Then (S,+) is a

commutative group havihg 0 as its identity.

(%)
Dr. Sidney S.Mitchell kindly provided the proof for the case that S is

infinite. The author would like to thank him for his helpful assistance.
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Next, we study semigroups which are unions of groups and admit
ring structure.

Let a semigroup S be a union of subgroups. Then S = igIGi for
some index set I and for some subgroups Gi(i € I) of S. For each i€ I,
let e, be the identity of the group G;. Then = Hei for all i ¢ I.
Thus S= U G, € U H &€ U H € S, and hence S = U H .

feI *  der 1  esE(s) eeE(s) ©

This shows that a semigroup S is a union of groups if and only if

S= U He.
ecE(8)

For a semigroup S, for a € S, it is clearly seen that the
% _class of s containing a is the same as the x -class of the semigroup

o - -
S” containing a. Thus a semigroup S is a union of groups if and only if

8° is a union of groups.

1.1 Theorem. Let a semigroup S be a union of groups. If S admits a
ring structure, then for each element a of S, the additive inverse of

a is in Ha; that is, a and the additive inverse of a are in the same

subgroup of S.

Proof : 1In this proof, for ee E(S), ace¢ He’ we will use
the notation al—1 to denote the inverse element of a in the group He.
Assume that the semigroup S admits a ring structure under an additive

operation +,

First, we will prove that this theorem is true for any
idempotent of S. Let e be an idempotent of S. Let x be the additive

inverse of e ; that is, e + x = 0. Then e + Xxe = 0. Therefore
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Xe. Hence we have

E
]

Xe + x2 = X + X = 0.

It then follows that x2= e. Since S is a union of groups, Xx € Hf for

some f e E(S). Then e = xzs Hf. Thus e = f. That is, x ¢ He' This
proves that the additive inverse of e is in H_ .

Next, we will prove the theorem as stated, let a be an element
of S, and let b be the additive inverse of a. Thena +b = 0. Thus we
have aa 2+ ba™? = 0. Since aa ‘¢ E(S), we have that ba le H 4 ® He

aa

Thus ba 2a € H . From aa’ty/pa7 L < 0, we also have aa ‘a + ba la =

a+ba'a=0. It then follows that b = bala. But bala c H, so
be Ha'

This proves that for each element a of S, a and the additive
inverse of a are in the same subgroup of S. o

In general, a semigroup which is a union of groups need not be
an inverse semigroup. The next theorem shows that a semigroup which is
a union of groups and admits a ring structure must be an inverse

semigroup. First, the following lemma is required.

1.2 Lemma. Let R be a ring having the property that for each element
a of S, a2= 0 implies a = 0. Then every idempotent of R is in the

center of R.
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Proof : Let a € R and e € R such that e2= e. Then (ea - eae)2=0

and (ae - eae)2 = 0. By assumption, these imply that
ea -~ eae = 0 = ae - eae, and hence ae = ea. O

1.3 Theorem. Let a semigroup S be a union of groups. If S admits a

ring structure, then S is an inverse semigroup.

Proof : Let a be an element of S° such that a2= 0. Since 8° is

a union of gréups, a e He of §° for some e ¢ E(s°). Then 0 = aze He’
so H, = H = {0} and thus a = 0. By Lemma 1.2, we have that every
idempotent of s® is in the center of s°. This implies that any two

idempotents of S commute. Because S is a union of groups, S is regular.

Hence S is an inverse semigroup. O

A band is clearly a union of trivial groups. By Theorem 1.3,

we have

1.4 Corollary. A band which admits a ring structure is a semilattice.

A semigroup § is a right group if S is right simple and left
cancellative. A left group is defined dually. If S is a right group,
then S is a union of groups and ef = £ for all e, £ € E(S) [ 2,
Exercises for § 1.11(2)]. Dually, if S is a left group, then S is
a union of groups and ef = e for all e, £ ¢ E(S). If a right [left)
group S is an inverse semigroup, then for all e, f € E(S),
£

ef =fe=e [e=ef = fe=f] and thus S is a group. Hence, we

obtain from Theorem 1.3 ~that
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1.5 Corollary. A right [left] group admitting a ring structure is a

group.

1.6 Theorem. Let a semigroup S be a union of groups. If S admits a

ring structure, then for all a, be S, Sa + Sb = Sc for some ¢ € S,

Proof : Assume that S admits a ring structure under an addition
+. Let a,b ¢ S. Since S is a regular semigroup, Sa = Se and Sb = Sf for
some e, £ € E(S), Let ¢ = f - fe. Claim that Se + Sf = Se + Se. To
prove this, let Xys X, € 8. Then x.e + ng = (x1+ xzf)e + x2(f - fe) =
(x1+ xzf)e + x2e’ e Se + Se. Thus Se + Sfg Se + Se. Conversely, we
have x.e + x2e’ = xet x2(f - fe) = (xi— x2f) e + x,f € Se + Sf.
Thus Se + Se’g Se + Sf. It follows that Se + Sf = Se + Se' . Next,
claim that Se + Se’ = S(e + €). Observe that e e = 0. By Theorem 1.3,
S is an inverse semigroup, so e’ = e’e = 0, Let Yis ¥p € S. Then
vy + yze"': (yie + y2e!)(e +€) e S(e +&). Thus Se + Se’c_; s(e + €) .
Conversely, we have y,(e + é) = y,e + yie" = y.e +y,(f - fe)

s (yi- yif)e + Yif € Se + SF = Se + Se. Thus S(e + e) & Se + se .
Hence S(e + &) = Se + Se’. It then follows that Sa + Sb = Se + Sf

= Se + 8¢ = S(e + €). o

Let 8 be 2 regular semigroup.Assume E(S)( C(S). Let a ¢ S.
Then a = axa for some x € S, so ax, xa ¢ E(S)( C(S) which implies
ax = axax = a(xa)x = xaax = xa(ax) = xaxa = xa. Since a = axa, a-?xa
and aﬁ ax. Thus a & xa and alR xa and hence a ¢ Hxa which is a
subgroup of S. This shows that if S is a regular semigroup with

E(S) g C¢(S), then S is a union of groups.
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An inverse semigroup need not be a union of groups. The
following theorem shows that an inverse semigroup which admits a ring

structure is a union of groups.

1.7 Theorem. Let S be an inverse semigroup. If S admits a ring

Structure, then S is a union of groups.

Proof : Assume that S admits a ring structure under an additive
operation +. Since S is inverse, s® is inverse. Let a € S° such that

a2 = 0, Then a + a_ia = x for some x € So, and thus

x2is (a + a-la)2 =-a+a a = X

Therefore x ¢ E(So). since s° is an inverse semigroup, any two
idempotents of g° commute. Then we have

-1 X -1 o =
Xa "a/ =\‘@ 1ax = a ala + a 1a) % aa

- T
because a 1a € E(S). It follows that ()613: ? {

arda—x za i & (a\+ a_ia)a"ia = a+ata

which implies a = 0. By Lemma 1.2, E(S°) c c(s®) and hence

E(S) C c(S). But S is regular, so S is a union of groups. Q

Let Y be a semilattice. Let a semigroup S = U Ga be a disjoint
oeY

union of subgroups G, of S. We call S a semilattice Y of groups G, if

GaGB & GaB for all o, B e V.

If S is a semilattice of groups, then E(S) ¢ C(S) [2, Lemma
4.8] and hence S is an inverse semigroup.
Let S be an inverse semigroup which is a union of groups. Then
§ = UE(S)He and E(8) is a semilattice. Ife, f ¢ E(S), then for
ee

[ 19150609
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ae He s beH we have

f ]

1

abb-Leabp 1yt = apb HEn 2at) wiabb ra Tt = abab),

and

(abb1)"? abb? = b~ laLyabb? = (bb~L)(a ta)(bb Y)=fef = ef.

Sitice Abb apb )2 w (abb Y)Y apb Y, ablab)”t = ef. letig e E(S)

such that ab ¢ Hg. Then we have g = ab(ab)_1 = ef, and hence Hg = H g

It then follows that ab € H Hence Herg; Hef' This proves that S

f.
is a semilattice E(S) of groups H -

Hence from Theorem 1.3, we have the following remark : If S
is a semigroup which is a union of groups and S admits a ring structure,
then S is a semilattice of groups. Also, from Theorem 1.7, we have the
following : If an inverse semigroup S admits a ring structure, then S

is a semilattice of groups.
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