

The multiplicative structure of any ring is by definition a semigroup with zero. If (S, \cdot) is a semigroup with zero, then the following are clearly equivalent:

- (1) (S, ') is isomorphic to the multiplicative structure of some ring.
- (2) There exists a binary operation + on S such that (S,+,*) is a ring.

A semigroup S (which is not necessary to have a zero) is said to <u>admit</u>

<u>a ring structure</u> if the semigroup S^O satisfies (1) (which is equivalent
to (2)). Observe that if the semigroups S and T are isomorphic, then S
admits a ring structure if and only if T admits a ring structure.

Not every semigroup admits a ring structure. It is shown by the following examples :

Example. A semigroup S is called a <u>left</u> [right] <u>zero semigroup</u> if ab = a [ab = b] for all a, b ϵ S.

Observe that a left [right] zero semigroup S has a zero if and only if |S| = 1.

A left [right] zero semigroup S admits a ring structure if and only if |S| = 1. To prove this for left zero semigroups, assume that

a left zero semigroup S admits a ring structure by an additive operation +. Suppose |S| > 1. Let a, b be two distinct elements in S. Then a + b = c for some c ϵ S^{O} , so

$$a + a = a(a + b) = ac.$$

If $c \neq 0$, then a + a = a, so a = 0, a contradiction. If c = 0, then a + b = 0 = a + a, so a = b which is also a contradiction. This proves that if S admits a ring structure, then |S| = 1. The converse is obvious. Hence, if |S| > 1, S does not admit a ring structure.

Example. A semigroup S with zero 0 is called a Kronecker semigroup if

$$ab = \begin{cases} a & \text{if } a = b, \\ 0 & \text{if } a \neq b. \end{cases}$$

Let S be a Kronecker semigroup. It is obvious that S admits a ring structure if $|S| \le 2$. Claim that S does not admit a ring structure if |S| > 2. Assume that |S| > 2 and S admits a ring structure with an additive operation +. Let a and b be two distinct nonzero elements in S. Then a + b = c for some c ϵ S $\{a, b\}$. Thus

$$0 = ac = a(a + b) = a$$

a contradiction.

This shows that a Kronecker semigroup S admits a ring structure if and only if $|S| \le 2$.

A semigroup S with zero 0 is said to be a zero semigroup if ab = 0 for all $a,b \in S$.

Let (S, .) be a zero semigroup with zero 0. If there is a binary operation + on S such that (S, +) is a commutative group having 0 as its identity, then (S, +, ·) is clearly a ring. We shall show that every zero semigroup admits a ring structure. A proof is given as follows: Let S be a zero semigroup with zero 0.

Case: S is finite. Let |S| = n. Let C_n be a cyclic group of order n with identity e. Then there is a one - to - one map Ψ from S onto C_n with $\Psi(0) = e$. Define an operation + on S by a + b = c if and only if $\Psi(a)$ $\Psi(b) = \Psi(c)$ in C_n . Then (S, +) is a commutative group having 0 as its identity.

(*)
 Case : S is infinite. Let F(S) be the set of all finite subsets of S.
Then |S| = |F(S)| [4, Theorem 22.17]. Define the operation * on
F(S) by

$$A * B = (A \sim B) U(B \sim A)$$

for all A, B ε F(S). It is clearly seen that (F(S), *) is a commutative group having Ø as its identity. Since |S| = |F(S)|, there exists a one - to - one map ψ from S onto F(S) with $\psi(0) = \emptyset$. Define the operation + on S by x + y = z if and only if $\psi(x)$ * $\psi(y) = \psi(z)$. Then (S,+) is a commutative group having 0 as its identity.

Dr. Sidney S.Mitchell kindly provided the proof for the case that S is
infinite. The author would like to thank him for his helpful assistance.

Next, we study semigroups which are unions of groups and admit ring structure.

Let a semigroup S be a union of subgroups. Then $S = {}_{i}U_{i}G_{i}$ for some index set I and for some subgroups $G_{i}(i \in I)$ of S. For each $i \in I$, let e_{i} be the identity of the group G_{i} . Then $G_{i} \subseteq H_{e_{i}}$ for all $i \in I$. Thus S = U $G_{i} \subseteq U$ $H_{e} \subseteq U$ $H_{e} \subseteq S$, and hence S = U H_{e} $e \in E(S)$. This shows that a semigroup S is a union of groups if and only if S = U H_{e} $e \in E(S)$.

For a semigroup S, for a & S, it is clearly seen that the % -class of S containing a is the same as the % -class of the semigroup S° containing a. Thus a semigroup S is a union of groups if and only if S° is a union of groups.

1.1 Theorem. Let a semigroup S be a union of groups. If S admits a ring structure, then for each element a of S, the additive inverse of a is in H_a; that is, a and the additive inverse of a are in the same subgroup of S.

Proof: In this proof, for $e \in E(S)$, $a \in H_e$, we will use the notation a^{-1} to denote the inverse element of a in the group H_e . Assume that the semigroup S admits a ring structure under an additive operation +.

First, we will prove that this theorem is true for any idempotent of S. Let x be the additive inverse of x; that is, x and x and x are x be the additive inverse of x; that is, x and x are x and x are x are x and x are x are x and x are x and x are x and x are x are x are x and x are x are x are x and x are x are x and x are x are x and x are x are x are x and x are x are x and x are x are x are x and x are x and x are x are x are x are x are x and x are x are x and x are x and x are x and x are x are x are x are x are x and x are x are x are x are x and x are x are x and x are x are x and x are x and x are x are x and x are x are x are x are x are x are x and x are x are x are x and x are x are x are

x = xe. Hence we have

$$xe + x^2 = x + x^2 = 0.$$

It then follows that $x^2 = e$. Since S is a union of groups, $x \in H_f$ for some $f \in E(S)$. Then $e = x^2 \in H_f$. Thus e = f. That is, $x \in H_e$. This proves that the additive inverse of e is in H_e .

Next, we will prove the theorem as stated, let a be an element of S, and let b be the additive inverse of a. Then a + b = 0. Thus we have $aa^{-1} + ba^{-1} = 0$. Since $aa^{-1} \in E(S)$, we have that $ba^{-1} \in H$ and $aa^{-1} = H_a$. Thus $ba^{-1}a \in H_a$. From $aa^{-1} + ba^{-1} = 0$, we also have $aa^{-1}a + ba^{-1}a = a$ and $aa^{-1}a + ba^{-1}a = a$. But $ba^{-1}a \in H_a$, so $b \in H_a$.

This proves that for each element a of S, a and the additive inverse of a are in the same subgroup of S. o

In general, a semigroup which is a union of groups need not be an inverse semigroup. The next theorem shows that a semigroup which is a union of groups and admits a ring structure must be an inverse semigroup. First, the following lemma is required.

1.2 Lemma. Let R be a ring having the property that for each element a of S, $a^2 = 0$ implies a = 0. Then every idempotent of R is in the center of R.

Proof: Let a ε R and e ε R such that $e^2 = e$. Then $(ea - eae)^2 = 0$ and $(ae - eae)^2 = 0$. By assumption, these imply that

ea - eae = 0 = ae - eae, and hence ae = ea. o

1.3 Theorem. Let a semigroup S be a union of groups. If S admits a ring structure, then S is an inverse semigroup.

<u>Proof</u>: Let a be an element of S° such that $a^2 = 0$. Since S° is a union of groups, a ε H_e of S° for some e ε E(S°). Then $0 = a^2 \varepsilon$ H_e, so H_e = H_o = {0} and thus a = 0. By Lemma 1.2, we have that every idempotent of S° is in the center of S° . This implies that any two idempotents of S commute. Because S is a union of groups, S is regular. Hence S is an inverse semigroup.

A band is clearly a union of trivial groups. By Theorem 1.3, we have

1.4 Corollary. A band which admits a ring structure is a semilattice.

A semigroup S is a right group if S is right simple and left cancellative. A <u>left group</u> is defined dually. If S is a right group, then S is a union of groups and ef = f for all e, f ε E(S) [2, Exercises for 5 1.11(2)]. Dually, if S is a left group, then S is a union of groups and ef = e for all e, f ε E(S). If a right [left] group S is an inverse semigroup, then for all e, f ε E(S), f = ef = fe = e[e = ef = fe = f] and thus S is a group. Hence, we obtain from Theorem 1.3 that

- 1.5 Corollary. A right [left] group admitting a ring structure is a group.
- 1.6 Theorem. Let a semigroup S be a union of groups. If S admits a ring structure, then for all a, b ϵ S, Sa + Sb = Sc for some c ϵ S.

Proof: Assume that S admits a ring structure under an addition +. Let $a,b \in S$. Since S is a regular semigroup, Sa = Se and Sb = Sf for some e, $f \in E(S)$. Let e' = f - fe. Claim that Se + Sf = Se + Se'. To prove this, let $x_1, x_2 \in S$. Then $x_1e + x_2f = (x_1 + x_2f)e + x_2(f - fe) = (x_1 + x_2f)e + x_2e'e \cdot Se + Se'$. Thus Se + Sf $\subseteq Se + Se'$. Conversely, we have $x_1e + x_2e' = x_1e + x_2(f - fe) = (x_1 - x_2f)e + x_2f \in Se + Sf$. Thus Se + Se' $\subseteq Se + Sf$. It follows that Se + Sf = Se + Se'. Next, claim that Se + Se' = S(e + e'). Observe that e' = 0. By Theorem 1.3, S is an inverse semigroup, so ee' = e'e = 0. Let $y_1, y_2 \in S$. Then $y_1e + y_2e' = (y_1e + y_2e')(e + e') \in S(e + e')$. Thus Se + Se' $\subseteq S(e + e')$. Conversely, we have $y_1(e + e') = y_1e + y_1e' = y_1e + y_1(f - fe) = (y_1 - y_1f)e + y_1f \in Se + Sf = Se + Se'$. Thus $S(e + e') \in Se + Se'$. Hence S(e + e') = Se + Se'. It then follows that Sa + Sb = Se + Sf = Se + Se' = S(e + e').

Let S be a regular semigroup. Assume $E(S) \subseteq C(S)$. Let a ε S. Then a = axa for some x ε S, so ax, xa ε $E(S) \subseteq C(S)$ which implies ax = axax = a(xa)x = xaax = xa(ax) = xaxa = xa. Since a = axa, a \mathscr{L} xa and a \mathscr{R} ax. Thus a \mathscr{L} xa and hence a ε H which is a subgroup of S. This shows that if S is a regular semigroup with $E(S) \subseteq C(S)$, then S is a union of groups.

An inverse semigroup need not be a union of groups. The following theorem shows that an inverse semigroup which admits a ring structure is a union of groups.

1.7 Theorem. Let S be an inverse semigroup. If S admits a ring structure, then S is a union of groups.

<u>Proof</u>: Assume that S admits a ring structure under an additive operation +. Since S is inverse, S^{O} is inverse. Let a ϵ S^{O} such that $a^{2} = 0$. Then $a + a^{-1}a = x$ for some $x \in S^{O}$, and thus

$$x^2 = (a + a^{-1}a)^2 = a + a^{-1}a = x.$$

Therefore $x \in E(S^{\circ})$. Since S° is an inverse semigroup, any two idempotents of S° commute. Then we have

$$xa^{-1}a = a^{-1}ax = a^{-1}a(a + a^{-1}a) = a^{-1}a$$

because $a^{-1}a \in E(S)$. It follows that 003767

$$a^{-1}a = xa^{-1}a = (a + a^{-1}a)a^{-1}a = a + a^{-1}a$$

which implies a = 0. By Lemma 1.2, $E(S^{\circ}) \subseteq C(S^{\circ})$ and hence $E(S) \subseteq C(S)$. But S is regular, so S is a union of groups. \square

Let Y be a semilattice. Let a semigroup $S = U G_{\alpha}$ be a disjoint union of subgroups G_{α} of S. We call S a <u>semilattice</u> Y of groups G_{α} if $G_{\alpha}G_{\beta} \subseteq G_{\alpha\beta}$ for all α , $\beta \in Y$.

If S is a semilattice of groups, then $E(S) \subset C(S)$ [2, Lemma 4.8] and hence S is an inverse semigroup.

Let S be an inverse semigroup which is a union of groups. Then

S = U H and E(S) is a semilattice. If e, f & E(S), then for e&E(S)

 $a \in H_e$, $b \in H_f$, we have

$$abb^{-1}(abb^{-1})^{-1} = abb^{-1}(bb^{-1}a^{-1}) = abb^{-1}a^{-1} = ab(ab)^{-1},$$

and

$$(abb^{-1})^{-1}$$
 $abb^{-1} = (bb^{-1}a^{-1})abb^{-1} = (bb^{-1})(a^{-1}a)(bb^{-1}) = fef = ef.$

Since $abb^{-1}(abb^{-1})^{-1} = (abb^{-1})^{-1} abb^{-1}$, $ab(ab)^{-1} = ef$. Let $g \in E(S)$ such that $ab \in H_g$. Then we have $g = ab(ab)^{-1} = ef$, and hence $H_g = H_{ef}$. It then follows that $ab \in H_{ef}$. Hence $H_eH_f \subseteq H_{ef}$. This proves that S is a semilattice E(S) of groups H_e .

Hence from Theorem 1.3, we have the following remark: If S is a semigroup which is a union of groups and S admits a ring structure, then S is a semilattice of groups. Also, from Theorem 1.7, we have the following: If an inverse semigroup S admits a ring structure, then S is a semilattice of groups.