INTRODUCTION

A nonempty subset G of a semigroup S is @ subgroup of S if it is

a group under the same operation of S.

An element a of a semigroup S is an idempotent of S if a2= a.

For a semigroup S, 1let E(S) denote the set of all idempotents of S ;

that is,

E(S)—=" {a -5 a’= a}.

A semigroup S is a band if each element of S is an idempotent of S.
Hence, a semigroup S is a band if and only if S = E(S). A commutative

band is a semilattice.

For a semigroup S, the center of S, C(S), is the set of all

elements of S which commute with every element of S, so

e(s) = {aesS| ax=xafor all x € S}.

A semigroup S is left cancellative iffor a,b,x € S, xa = xb

implies a = b. A right cancellative semigroup is defined dually. A

cancellative semigroup is a semigroup which is both left cancellative

and right cancellative.

An element 2z of a semigroup S is called a zero of S if
zx = xz = 2z for all x € S, An element e of a semigroup S is called
an identity of S if ex = xe = x for all x € S. A zero and an identity
of a semigroup are unique if exist and they are usually denoted by 0

and 1, respectively.



Let S be a semigroup, and let 0 be a symbol not representing
any element of S. The notation SUO denotes the semigroup obtained by
extending the binary operation on S to 0 by defining 0.0 = 0 and
0.a = a.0 = 0 for all a € S, and the notation s® denotes the following

semigroup :

S if S has a zero,

SuUo0 if S has no zero.

Similarly, let S be a semigroup and 1 a symbcl not representing
any element of S. The notation SU 1 denotes the semigroup obtaiped by
extending the binary operation on S to 1 by defining 1.1 = 1 and
l.a = a.1 = a for all a € S, and the notation 81 denotes the

following semigroup :

S if S has an identity,
SU1 if S has no identity.
Then for any element a of a semigroup S, Sla = SaU{a}, aS1 = asu {a}

and slas1 = SaS U Sa U asS U {a}.

An element a of a semigroup S is regular if a = axa for some
X € S. A semigroup S is regular if every element of S is regular.

In any semigroup S, if a, x € S such that a = axa, then ax
and xa are idempotents of S, and Sla = Sa, aS1 = aS, Sa = Sxa and
as = axS.

A semigroup S is regular and contains exactly one idempotent if

and only if S is a group.



Let a be an element of a semigroup S. An element x of S is an
inverse of a if a = axa and X = xax. A semigroup S is an inverse
semigroup if every element of S has a unique inverse, and the unique
inverse of the element a in S is denoted by a-i. A semigroup 8 is an
inverse semigroup if and only if S is regular and any two idempotents
of S conmute [2, Theorem 1.17]. Hence, if S is an inverse semigroup,
then E(S) is a semilattice. If S is an inverse semigroup, then for
a, beS, e e E(S), we have that

a and (ab)*i = ]:.»“1.‘:11_1
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[2, Lemma 1.18].

Let S be a semigroup, A a nonempty subset of S. Then A is

called a left [right] ideal of S if SAG A [ASc Al , or equivalently,

%xa € A [ax € A] for all x € S, a € A .We call A an ideal of S if A is
1 gl

both a left ideal and a right ideal of S. For a € S, S"a [a§", S"aS]

is the smallest left ideal [right ideal, ideal]l of S containing a and

it is called the principal left ideal [the principal right ideal, the

principal ideal] of S generated by a.
A semigroup S is left simple [right simple, simple] if S is
the only left ideal [right ideal, ideal] of S. Hence, a semigroup S
is left simple [right simple, simple] if and only if Sa = S [aS = S,

SaS = S] for all a g S.

Let S be a semigroup.Define the relations &f’ ,Q andx on S

as follow :



a;‘;{ b if and only if Sia = Sib,

alp  i1f and only 1f  ag® =, bsd

and

A= Lok .

The relations éf ~ ,_JR, and gf are called Green's relations om
S and they are clearly equivalence relations on S. For a € S, 1let

Ha U"a’ Ral denote the %- class [%— class,ﬁ - class] of S containing a.

For a semigroup S, a, X ¢ S such that a = axa, we have that
a,%e xa and a.(R ax.

In a semigroup S, any % - class of S contains at most one
idempotent [2, Lenﬁna 2,15}, ana - class of S containing an idempotent
e of S is a subgroup of S [2, Theorem 2,16], and it is the greatest
subgroup of S having e as its identity. Hence, every subgroup of a

semigroup S is contained in H_  for some idempotent e of S.

Let X be a set. A partial transformation of X is a map which

its domain and its range are subsets of X . If a is a partial
transformation of X, let Aa and Va denote the domain and the range. of a,
respectively. The empty transformation of X is referred as a map with
empty domain, and it is denoted by 0. Let Tx denote the set of all
partial transformations of X including the empty transformation 0.For
a,B € TX » define the product aB as follows : If VaN AB = @, let aB = O.

If VaM AB # # , 1let B be the composition map of “'(van 8ot

. -1
(a restricted to (Va M AB)a ") and Bl(VuﬁAB) .



Then for a,B € T AoB = (Van nB)a—j' C Ac and VoB = (Va M AB)B € VB.

X L 2
Thus Ty is a semigroup under the operation defined above and it is

called the partial transformation semigroup on the set’X . Hence

the empty transformation of X is the zero of X and the identity map on X
which is denoted by 1X is the identity of the semigroup Ty A partial

transformation o of X is called a 1-1 partial transformation of X if a

is a one-to-one map. Let I, denote the set of all 1-1 partial

transformations of X; that is,

. 2 HaeT

% i @ is one-to-one}.

X

Then Ix is an inverse subsemigroup of Tx with identity 1X and zero 0,
and it is called the 1-1 partial transformation semigroup or the

symmetric inverse semigroup on the set X. By a tranformation of a set

X we mean a mapping of X into itself. Then an element a € TX is a
transformation of X if and only if Aa = X. Let fo denote the set of

all transformations of X ; that is

‘II'X = {asTx| Aa = X} .

Then trx is a regular subsemigroup of Tx with identity-ix and it is

called the full transformation semigroup on the set X. The permutation

% Then GX = {o e TX | A = Va = X and «

is one-to-one}. Observe that G, C I,cT, and G,C "Txg T

group on X is denoted by G
% * The
semigroup of all one-to-one transformations of X and the semigroup of
all onto transformations of X are denoted by HX and EX’ respectively.

Hence



My = {a: X>X | @ is one-to-one}
= {a eIy | Aa=X}
and E, = {a: X+ X]| ais onto}

X3 .
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We denote the semigroup of all constant partial transformations of X by
Cx 3 that is,

CX = {ae Tx' |Va|< 1} .

Let X be a set. The shift of a partial transformation a of X,
S(a), is defined to be the set {x € Aa | xa # x}. A partial transformation
o of X is said to be almost identical if the shift of o is finitej that is,

|S(a)|< © , where for any set A, |A| denotes the cardinality of A. Let

Uy = {ace Ty | o is almost identicall,
Ve = {a € ‘Ix | o« is almost identical }
and Wy = {oeI, | @ is almost identical }.

If a,8 € T, , then S(aB) € S(a) U S(B). Hence, Uy » V and W, are

X
subsemigroups of Tx,fyx and Iys respectively, and Uy, Vg and W, are

referred respectively as the semigroup of all almost identical partial

transformations of X , the semigroup of all almost identical transformations

of X and the semigroup of all almost identical 1-1 partial transformgtions

of X .

By a transformation semigroup on a set X, we mean a subsemigroup

of the partial transformation semigroup on X. Let S be a transformation

semigroup and let © € S. The semigroup S under the operation * defined

by oaxf = 068 for all a, B € S is called a generalized transformation

semigroup on the set X , and it is denoted by (S,Q).



Let S and T be semigroups and ¥ a map from S into T. The map 1

is a homomorphism from S into T if
(ab) ¢y = (a¥)(by)

for all a, b € S. A homomorphism ¢ from S into T is an isomorphism if
y is a one-to-one map. If there exists an isomorphism from S onto Ts

we say that the semigroups S and T are isomorphic, and we write 8 = T.

Let S be a semigroup, we say that S admits a ring structure if

the semigroup s® is isomorphic to the multiplicative structure of some

ring.

In the first chapter of this thesis, we study admitting-ring
structure of semigroups which are unions of groups. To determine
whether some semigroups of numbers admit ring structure is the purpose
of Chapter II. The main study of this thesis is in the last chapter.
In this chapter, we chafacterize well-known generalized transformation
semigroups admitting ring structure and well-known transformation

semigroups admitting ring structure.
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