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Thin plate elements used in structural design are often

1.1 Basic Concepts of Buckling

subjected to normal and shearing forces acting in the plane of
the plate. If these in-plane forces are sufficiently small, the

equilibrium is stable and the resulting deformations aré

" characterized by the absence of lateral displacements. As the

magnitude of these in-plane forces increases, at a certain load

intensity, a marked change in the character of the deformation

pattern takes place. That is, simultaneously with the in-plane

deformations, lateral displacements are introduced. In this‘

‘condition, the originally stable equilibrium becomes unstable

and the plate is said to have buckled. The load producing this
condition is called the critical load. The importance of the
critical load is thg.initiafion of a déflection pattern, which,
if the load is further increased, raéi@ly leads to very large
lateral deflections and eventﬁally‘to complete failure of the

plate.

It is important to note that in the classical buckling

theory the path leading from a stable to an unstable egquilibrium



always passes‘thkough a neﬁtral state of equilibriumf In the
elastic stability problems of plates, a bifurcation of the
deformations is assumed as the neutral equilibrium. That is,
at the critical load, of fhe possible two paths of deformations

associated with the stable equilibrium and the unstable

eguilibrium conditions, the plate always takes the buckled form,

as shown in Fig. 1.1. In addition to the existence of this

bifurcation of equilibrium paths, the elastic.stability andlysis

of plates assumes the validity of Hooke's law.
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Fig. 1.1 Bifurcation,diégram.



Besides this cléésical buckling theory, the behavior of
flat plates after buckling is of considerable practical interest.
The postbuckling analysis of platés is uégally difficult, since °
it is basically a nonline;r brobleml Siightly curved plates,
subjec£ed to simultaneous ;ction of in-plane compressive forces
and lateral 1Sads, exhibit a third kind of instability behavior
called snap-through buckling, which is characterized by revepsal
deflections, produced by the nonlinear relationship between'fhe

buckling load and the deflections. During continuous loading

‘the plate may begin to deflect in one direction, but at éuéertainvf

load, it buckles in the reverse direction, assuming again a

stable shape.

1.2 Review of Literature

——

' The previous works of buckling of thin circular plateé

".can be roughly classified as isotropic and anisoﬁropic plates,

with and without a central hole, and symmetric and asymmetric .

modes. Among the researchs of thin circular plates,-Bryan's[1]

was thé first one which was studied in 1891. He obtained the

minimum buckling load for an isotropic circular plate of a
radially symmetric bﬁckling mode without a central hole. Dean[2]
and Willers£16] considered the same -case of a plate as Bryén;
but they subjected the.plate to different ioading_conditions;,
The plate of Dean’s study was sﬁbjected to S8hearing forces‘

distributed along the edges, while the other one was subjected
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to bending moment caused by initial stresses. The buckling of a

circular annular isotropic plate clamped at.the outer edge with

the inner edge free and subaected to uniform radial compresslon

at the outer edge was first studled by Melssner[6] The. buckling
mode was still assumed radlally symmetric. After Melssner's, .
there were also a few studies of the cases with ra@ialiy symnmetric
buckling modes. Those were the ones studied by Olsson/[8] and'
Schubert[10]. In 1959, Yamak1[19] showed_that a radially symmetric
buckling mode did not correspond to th; lowest buckling load. The
same problem as Mﬁissner'a ﬁas repeatgd in 1971 by Majuﬁd;f[SJ,

but he éllowed_the various numbers of waves around the circumference

to occur.

The buckling of thin'isotropicrannular plates was studied
by Wiwat[17] as well. Only the case of applying uniform radial

compression force along the outer edge was studied. He employed

- Galerkin's method to find the solutions of the two combinations

.

of boundary conditionsj bne was the outer and the inner edges
fixed, the other was the outer edge fixed and the inner edge simply
supported. The other distinction of the study from the forementioned

studies was that the axisymmetric buckling mode aséumptioh~was relaxeéd.

The stability of polar orthotropic éircular plates without
- i "

holes was studied by several researchers.’ W01nowsky-Kr1eger[18]

considered the case of plates subaected to unlform in-plane radial

pressure and ‘obtained solutions in the form of Besapl functions for i
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axisymmetric buckling modes. ’Two years latef, Mossakowski[?]
repeated the same problem and offered a general solution in
hypergeoﬁetric series for both syﬁmetric and asymmetric modes.
Instead of the hypergeomeg;ic series, Pandalai and Patei[9] i

used the tebhnique of power series expansion to obtain some

. approximate values for critical buckling loads in the

axisymmetric case. Although many techniques were applied to
reach the solution of a polar orthotropic circular plate, they
were found difficult to empioy when the plate had a hole.

Lately, the analysis of buckling of orthotropic annular“plates,

.due to in-pléne éompressive loads, was investigated by Uthgenannt

and Brand[15] in 1970. He determined the critical buckling loads
for several boundary conditions and'two types of loadings, wifh
equal in-plane compressive loads at both iﬁner énd outervedges

and only in-plane compressive load at the outer edge, by employing

finite-difference equations and the Vianello-Stodola iterative

\procedure. Figures énowing relations between the dimensionless

critical buckling load parameter and the ratio of radii were given
for various moduli of elasticity in the ciréumferential and radial
direct;ons. The assumption of ;xisymmetry was s8till kept in the

analysis. Vijayakumar and Joga Rao[14] egﬁloyed'theiRayleiéh-Ritz
metnod with simple polynomials to analyze axisymmetfic buckling of
orthotropic angular plates with the ratio of the inner ‘and oute; [
rgdii of 0.5. Numeriocal eétimétes to tne critidal buckling loads

were obtained for all combinations of free, simply supported; and.

clamped édge conditions for two loading cases; the outer edge‘alone
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was subjected to uniform in-plane presaure.and both edges were

~subjected to equal in-plane'preasures.

1.3 Statement of the Problem

On the research of Vijayakumar and Jogé Rao, the orthotrépié
plate was assumed to buckle axisymmetrically. As known from
Yamaki's, a radially symmetrio‘buckliné mode did not always agreeA
with the actualAlowest buckling,load‘for the case of an isotropic
plate. Thus, the asymmetric buckling mode may be e;pected\for' the
case of an orthotropic plate as well. This study éonsideré thé‘
buckling'of orthot;opic annular plates with vai;bﬁs edge conditiomns,
and several values of the raiios of the inner and outer.radii,
under the internal and external in-plane compression. The congtraint

of axisymmetrio'buckling is relaxed. Various combinations of

boundary conditions considered are as follows.

'

outer edge. . inner edge
case 1 ¢ clamped oI clamped
case 2 3 Fy o s clamped : _simply supported
c;se 3 3 simply supported 20 clamped

case 4 simply supported simply supported

The ratios of the inner to outer in-plane compression are 0, 0.5, |
' l

and 1.0. The rigidity ratio is also varied, since the materials

of different ratios of moduli of elasticity in the circumferential

and the radial directions are often found in practice.
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Fig. 1.2 An annular piate with radial compressione.

-The buckling equation - of a polar orthotropic annular plate
is derived from the variational method. At this point, Galerkin's
method .is used to solve the governing differenti;l equation.

Then, thé dimensionless parameters of the critical buoklipg'loads-

will be plotted against different‘ratios of ‘the inner to outer radii.

Assumptions for the present problem are as follows ‘[
1). To avoid being a ring, the difference of the hole radius
to the plate radius, b-a, is wuch greater than its

thickness, B
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2). The plate is made of homog_enéous orthotropic material.
" 3). The buckling is elastic.

4). Hooke's law is applicable.
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