EVALUATION OF PRESERVATIVES IN VARIOUS FORMS

OF

LIQUID PREPARATIONS

Miss Aurapin Rudichuen

A Thesis Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science

in Pharmacy

Department of Microbiology
Chulalongkorn University

การประเมินค่าของยากันบูค ในสิ่งเตรียมที่เป็นของเหลวชนิคต่าง ๆ

นางสาว อรพิน ฤคีซึ่น

006394

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต

แผนกวิชาจุลชีววิทยา

บัณฑิตวิทยาจัย จุฬาลงกรณมหาวิทยาลัย

บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็น ส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

The state of the s

Lansh com In.

คณบคบณฑฅวทยาลย

คณะภรรมการตรวจวิทยานีพนธ

ประชานกรรมการ

חונונח בשנות האונות התונות התת

Worm grolez hwo nssuns

мсся อักสุดูอน บนบบน

Smale Masomm nossunos

อาจารย์ผู้ควบคุมการวิจัย ผู้ช่วยศาสตราจารย์ พิสวาท ทุติยะโพธิ

หัวข้อวิทยานิพนธ์ การประเมินคาของยากันบูค ในสิ่งเตรียมที่เป็นของเหลวชนิค ต่าง ๆ

ชื่อ นางสาว อรพิน ฤดีชื่น แผนกวิชา จุลชีววิทยา

ปีการศึกษา ๒๕๑๖

าเทคัดยก

ได้ทำการศึกษายากันบูดในกลุ่มตาง ๆ ๑๓ ชนิด โดยหาคาความเขมขนตำสุด (Minimal Inhibitory Concentration) ในการฆาเชื้อ Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa Aspergillus niger และหาความเข้มข้นของยาแคละตัวที่สามารถฆาเชื้อได้ในเวลา ๑๐ นาที่ แต่ไมฆาที่ ๕ นาที่ (Bactericidal Activity Concentration) ใช้พคลองกับเชื้อ Staphylococcus aureus, Pseudomonas aeruginosa และ Aspergillus niger สำหรับคา Oil-Water Partition Coefficient ได้ทำการทดลองหาโดยใช้น้ำมัน ๒ ชนิด คือ mineral oil paraffin และน้ำมันพืช ใช้ arachis oil นอกจากนั้นได้ทดลองหา **ที่มีต่อยากันบูคทั้**งใน absorption ของเชื้อ Pseudomonas aeruginosa aqueous solution และที่มี propylene glycol ผสมอยูควย 5% v/v equilibrium dialysis เป็นวิธีที่ใช้ในการศึกษาหาคาการรวมตัวจองยากัน บูคกับ nonionic surface active agent คือ Tween 80 จากผลการทดลองพบว่า ยากันบูดในสิ่งเครียมที่เป็นของเหลว จะมีความเข้ม

ขั้นลดลงได้หลายทาง ในสิ่งเครียมที่เป็นน้ำกับน้ำมัน ตัวยาบางส่วนละลายในน้ำมัน ทำให้

ความเข้มข้นของยาใน aqueous phase ไม่พอที่จะป้องกันการเจริญของจุลินทรีย์ใก้
ค่า partition coefficient ของตัวยากันบูดในน้ำมันจะเป็นประโยชน์ในการ
คำนวณความเข้มข้นของยาที่อยู่ใน aqueous phase ได้ ในสิ่งเตรียมที่มีจุลินทรีย์
ปนอยู่ควยมากจะทำให้ความเข้มข้นของยากันบูดลดลงด้วย จากการหดลองพบว่าเชื้อ

Pseudomonas aeruginosa สามารถ absorb ยาได้มากน้อยต่างกันขึ้นอยู่กับ
ความเข้มข้นและชนิดของยา และสำหรับ propylene glycol 5% v/vทำให้การ
absorb ยาของเชื้อลดลง ส่วน nonionic surface active agent เช่น
Tween 80 สามารถจะรวมกับตัวยากันบูดทำให้ความเข้มข้นของตัวยากันบูดลดลงได้อีกทาง
หนึ่ง พบว่าการรวมตัวของยากันบูดกับ Tween 80 ขึ้นอยู่กับความเข้มข้นของ
Tween 80 แต่ไม่ขึ้นอยู่กับความเข้มข้นของตัวยากันบูด

Thesis Title Evaluation of Preservatives in Various

Forms of Liquid Preparations

Name Miss Aurapin Rudichuen Department Microbiology

Academic Year 1973

ABSTRACT

Thirteen preservatives used in this study were determined for the lowest concentration (Minimal Inhibitory Concentration) which inhibit further growth of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Aspergillus niger by using tube dilution method. The study of the highest dilution of preservative that permitted growth in 5 minutes but inhibited growth within 10 minutes (Bactericidal Activity Concentration) was made by using Staphylococcus aureus, Pseudomonas aeruginosa and Aspergillus niger as the test organisms. Oil-Water Partition Coefficient of the preservatives was then determined using both mineral oil (liquid paraffin) and vegetable oil (arachis oil) Possible absorption of preservative by bacteria was determined in aqueous solution of preservative and in the presence of 5% v/v propylene glycol, the tested organism was Pseudomonas aeruginosa. Equilibrium dialysis method was used for the determination of the binding of preservatives and nonionic surface active agent (Tween 80).

Many factors which influenced the activities of preservatives have been found in this study. Preservatives in twophase systems were partitioned between oil phase and aqueous phase, the concentration of preservatives in aqueous phase were found unable to inhibit the microbial growth. The preservatives in aqueous phase concentration were calculated from the partition coefficient value. Massive microbial contamination in the liquid preparation can decrease the preservative concentrations in aqueous phase. The abosrption of preservatives by Pseudomonas aeruginosa varied on types and concentrations of preservatives, and it was found that 5% v/v propylene glycol can also decrease the absorption of preservatives. The binding of preservatives and nonionic surface active agent (Tween 80) gave an inactivating effect of preservatives, Tween 80 was dependent on the nonionic concentration but independent on the preservative concentrations.

I wish to express my deep appreciation to my advisor,
Assistant Professor Miss Pisawat Dutiyabodhi, Head of the
Department of Microbiology, Faculty of Pharmaceutical
Sciences, Chulalongkorn University, for her continuous
interest, guidance and encouragement throughout the course
of this work.

I would like to express my appreciation to Mr. Santi
Thoongsuwan and the staff members of the Department of
Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University for their useful suggestions during the
course of this study,

I also wish to express my gratitude to Professor M.L.

Pranod Kumsaeng, Head of the Department of Food Chemistry,

Faculty of Pharmaceutical Sciences, Chulalongkorn University,

for his kindness in supplying Unicam S.P. 1800 Ultraviolet

Spectrophotometer.

TABLE OF CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	vi
ACKNOWLEDGEMENT	vii.
TABLE OF CONTENTS	ix
LIST OF TABLES	хi
LIST OF FIGURES	xii
CHAPTER	
1. INTRODUCTION	1
Literature survey	
Procedure emplyed	4
Microorganisms used	12
Preservatives used	20
2. MATERIALS, APPARATUS AND METHODS	31
Determination of Minimal Inhibitory	
Concentration (MIC)	35
Determination of Bactericidal Activity	
Concentration	36
Determination of Oil-Water Partition	
Coefficient	37
Absorption of Preservatives by Bacteria	39
Interaction between Preservatives and	
Emulsifying agent	40

			Page
	3.	RESULTS	43
	4.	DISCUSSION	84
	5.	CONCLUSION	88
REFF	EREN	CES	90
VITA		THE	100

LIST OF TABLES

Table		Page
1.	Minimal Inhibitory Concentration (MIC) of	
	preservatives in broth	44
2.	Bactericidal Activity Concentration of	
	preservatives	46
3.	Total, aqueous and oil phase concentrations	
	for preservatives partitioned between equal	
	volumes of water and either liquid paraffin	
	or arachis oil	48
4.	Absorption of preservatives from aqueous	
	solution by 5 x 108/ml Pseudomonas aeruginosa-	- 51
5.	Absorption of preservatives from aqueous	
	solution by Pseudomonas aeruginosa in the	
	presence of 5% v/v Porpylene glycol	- 53
6.	Relationship of total and free preservatives	
	to concentration of Tween 80 at equilibrium	69
7.	Slope of nonionic surface active agent con-	
	centration against R ratio regressions	83

LIST OF FIGURES

Figure		Page
1.	Absorption of Phenol from aqueous solution	
	by 5 x 108 cells/ml Pseudomonas aeruginosa	54
2.	Absorption of Chlorocresol from aqueous solu-	
	tion by 5 x 108 cells/ml Pseudomonas	
	aeruginosa	55
3.	Absorption of Sorbic acid from aqueous solu-	
	tion by 5 x 108 cells/ml Pseudomonas	
	aeruginosa	56
4.	Absorption of Methyl hydroxybenzoate from	
	aqueous solution by 5 x 108 cells/ml	
	Pseudomonas aeruginosa	57
5.	Absorption of Propyl hydroxybenzoate from	
	aqueous solution by 5 x 108 cells/ml	
	Pseudomonas aeruginosa	58
6.	Absorption of Benzyl alcohol from aqueous	
	solution by 5 x 10 8 cells/ml Pseudomonas	
1	aeruginosa	59
7.	Absorption of Phenylethyl alcohol from	
	aqueous solution by 5 x 108 cells/ml	
	Pseudomonas aeruginosa	60

Figure		Page
8.	Absorption of Phenylmercuric nitrate from	
	aqueous solution by 5 x 10 ⁸ cells/ml	
	Pseudomonas aeruginosa	61
9.	Absorption of Thiomersal from aqueous solu-	
	tion by 5 x 108 cells/ml Pseudomonas	
	aeruginosa	62
10.	Absorption of Benzalkonium chloride from aqueo	us
	solution by 5 x 10 ⁸ cells/ml Pseudomonas	
	aeruginosa	63
11.	Absorption of Propylene glycol from aqueous	
	solution by 5 x 10 ⁸ cells/ml Pseudomonas	
	aeruginosa	64
12.	Absorption of EDTA disodium from aqueous	
	solution by 5 x 10 ⁸ cells/ml Pseudomonas	
	aeruginosa	65
13.	Absorption of Salicylamide from aqueous	
	solution by 5 x 108 cells/ml Pseudomonas	
	aeruginosa	66
14.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Phenol	71

Figure		Page
15.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Chlorocresol	72
16.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Sorbic acid	73
17.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Methyl hydroxybenzoate	74
18.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Propyl hydroxybenzoate	75
19.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Benzyl alcohol	76
20.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Phenylethyl alcohol	77
21.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Phenylmercuric nitrate	78

Figure		Page
22.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Thiomersal	79
23.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Benzalkonium chloride	80
24.	Concentration of nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Propylene glycol	81
25.	Concentration on nonionic surface active	
	agent (Tween 80) against the R ratio of	
	Salicylamide	82