CHAPTER III
QUADRICS OVER A FINITE FIELD

In this chapter, we determine the number of solutions in a

finite field F of the equation

8, Xobeeet B X0 BN
i t't ~ i

where 2 9%esy @, AYE NON=2ZETY0 elements in F and a € F, Every finite
field considered from now cn is of characteristic p» 2, where p is
a prime number, The materials of this chapter are based on

L.E.Dickson [5, 3%} 61-66] «

341 Definition. A non-zero element x of the GF[pn] is called a
square in GF[pn] if and only if there exists y € GF[bn] satisfying

X = y2. Otherwise, x is called a non-square.

3¢2 Theorem, Let F = GF[pn]. Then the number of squares in F

is (p"= 1)/2 and the number of non-squares in F is also (p'= 1)/2.

*
Proof., By Theorem 2.13, F 1is cyclic with pn- 1 elements and say
with generator U Then F = [u] = {u' U yee00y U | .
Since p is an odd prime, pn is odd and thus pn- 1 is even.
Hence 2 fpn- T

We claim that

(3-1) u 2 = =1 e
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p'- 1  p=1 p= 1, -1
Since u e A “ w ° 2 = wP =1« 1, we have
n
B e
(u ) «1 = 0,
or n_ . n_ o,
fu © < 1) (u &0 Y ey 0
: : < k . S U
Since each element in F is of the form uw and if k # p, w # u,
pn- 1 4 Bn_ 1
1 € kyr 4jpn- 1, then u 2 £ uP * T 2 1 and hence (u & g 1) # 0.
n n
p It ) e
Consequently, we have (u /i ) s 0, that is, u 2 e

and the claim is proved,

eh for some h such that

If x€ F is of the form u
1 &2h & pn- 1, we have x = (i uh 2. Thus x is a square. Hence
every element of F which is the even power of u is a square in F,

Moreover, if x is an element of F which is the odd power of u,

t%en X is a non=-square. For if u2h+1 = xe s then
(2h+1) (p"=1) N 2321
u = u = u

n
(P “HPE . (1)

= 1 «(=1) = -1,
by virtue of (3«1)s On the other hand,
(2h+1) (p™=1) p =1
2 2h+1 2
u = (u )
p"-1

= X

= %
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Consequently, we have 1 = =1 and thus 1 + 1 = 0 which is not
possible since characteriétic of F is p ?» 2. Hence the odd powers
of u are non-squares in F.

Therefore there are (pn-1)/2 _squares and as many non-squares

in F,
3¢5 Lemma. The sum of m odd positive integers is odd or even
according as m is an odd or even positive integer.

Proof. Let s be the sum of m odd positive dntegers. Since edch -vdd integer

can be written as 2ni+ 1y 4’ = 1500ey my it follows that

)]
]

(2n1+ 1)+(2n. + 1)+...+(2nm+ 1)

2

1]

2(n1+ N+eset nm)+(1 + 1 4eeeat+ 1)
\"""'_-"r"“-—---u-/

m times

2(n1+ Noteset nm)+ M.

But since the first term of s is even, s is therefore odd or even

according as m is odd or even.

3«4 Theorem. The non-squares of any GF[pn] are non=-squares or

squares in the GF[pnm] according as m is odd or even.

Proof. Let F = GF[p"] and L = GF[p™]. Let u be a generator
* * : nm *
of L o Then L = [u] with uP ~1 = 1« Since |F | = pn— 1,
e * *
where |F f denotes the number of elements in F , and F is a

.‘
subgroup of L, (pn-1)*(pnm-1). Let r = (p"™-1)/(p"=1). Then
H *
v=u isa generator of F . Hence the non-zero elements of F

are given by the formula
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where 8 = 13000, pn-1. Let vk be a non-square in F, so that k
is odde. It will be a non=-square or a square in L according as

kr is odd or even, that is, according as r is odd or even. But

A L/BL TR+ D oot (pn)m-1 )

"

e\ p

1 + Pn+noi+ p(m-1)n .

]

Thus r is the sum of m odd positive integers. Hence by Lemma 3.3
r is odd or even according as m is odd or evene.

The theorem is now proved,.

3«5 Theorem, Let a s a be non=-zero elements of GF(pn] and let

2
a € GF[pn]. Then the number of solutions of the eguation

2 2
(3=2) a Xy + ajx, = a

is p'= 8 or p'+ (p"- 1)6 according as a £ O or a = 04

where 6 = +1 or -1 according as =a,a_, is a square or a non-

172
square in GF[pn].

Proof. Consider the equation (3-2)

Setting a;x,= y and multiplying a,to (3-2), the equation becomes

11
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2 2
(3-3) Y+ aax, = aa.
We divide into two cases accordiag as —a1a2 is a square or a
non-square.,
: > n 2
Case 1. If -a,a, 1is a square in GF[p ], say =a,a, = b,
then we have
2 22 N /
We set y + bx2 =2, 3> bx2 = Zoy then
y =2(z;+ 25)  and x, = 1(z.,-2.))
> 1 2 2 >h 1 2

Substitute y and X, in (3=4), the equation becomes

[ ( ) 2 > 2
1(z, + = ] - b [Jﬂ(z -7 )] = a.a ,
> 1 2 oh 1 2 1
multiply the equation out we obtain

2 3 2 8.

%(z1+ 27,7+ 52)‘.% (zq- 22,7+ z2) = a,a ,

or
(3-5) 2,2, = a,as

If a # Oy we can assign to z, any one of the pn- 1 non-zero

elements in GF[pn], and the corresponding value of z,1 is determined

by equation (3e5). There are in this case p'= 1 sets of solutions

X,9 X, 1in the field of the given equation.

s R
If a = 0, then we get %425 = 0. Thus zZ, = 0 or Z, = Os
For Z4 = 0, we have y + bx2 = 0 and since y = B %4y We have
A X, = -bxa. There are in this case pn- 1 sets of solutions Xq9 Xse
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For z, = 0, we have y = bxz = 0 and then a X, = bxz. There are
also pn- 1 sets of solutions Xq0 Xope Another solution of the
equation z,z, = 0 is 2z, = 0 and 52 = 0, that is (x1,x2) = (0,0)

is one of the solutions of (3~2). Hence all together there are
1T+ (Pn* 1)*‘(Pn- 1) =1 + 2(pn- 1) ‘sets of solutions of the

equation (3-2) in this case.
Case 2., If -a,a, is a non-=square in the GF{pn], then the
equation

(3=6) 22 = = 4 A

L J
is irreducible in the field § for if x°+ a,a, = 0 is reducible,

then we can write 12+ a,a, = xa- (-a1a2) = (xe=d)(x+d) = 12- a°

for some d € GF[pn], and therefore = a1a2 = d2, this is impossible

since - a,a, is a non-square in GF[bn]. Now f£(x) = x%+ a,a,

/
is irreducible polynomial over F = GF[pn]. Let F be the splitting

s
field of f(x) over Fe Let i be a root of f(x)s Then i € F .

]

= F(i)e. Consequently, E = GF[pzn] by Theorem 24,19 .
n
Now = i are roots of (3%=6) and by Corollary 2,24 , i¥ = -i.

Let

We therefore have the identity

32+ a.a xa = (y + ix)(y + ipnx )
1795 e 2
n n n
= (v +ix,) (3P + 4P 3 ) T — 2,3]

n
= (y+ ixz)(y + ixa)p [by Theorem 2.9 ]

' n+?
(y + ixe)p .

i}
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Then the equation (3-3) becomes

n
Pt
(3=7) (y + ixz) = a,a .

Let 2 =y + ix,, then the equation (3«7) becomes

pn+1
(3-8) :.7) = a1a ™

+
If a = O, then Z = O and therefore a single set of solutions
is (x1= 0y x,= 0)e
If a # 0, let R be a generator of the GF[pzn] and set

aa = Rk. where k is an integer, then
n n
RV L Pt g,

So k(p®=~1) is divisible by pan-1. We may therefore set

k = r(p“+1), where r is a suitable positive integer. Since
2 =y + ix2 € GF[panl y we may set Z = Rt. The equation (3-8)
becomes
n .. 1
Rt(p +1) - Rr(p +1) 4
n = o B, 2n :
Hence tp+1) = 2(p+1) (mod (p©"=1))e This congruence has

pn+1 distinct solutions for t, namely,
t = B, r + p=1, ¢ + 2(pn-1),..., P+ pi(pt=1).
- The corresponding values of Y e y + ix2 give p+1 distinct

sets of solutions X109 %, of the given equation,

346 Theorem, The number of solutions (x1,...,x2m) in the GF[p")

of the equation



(3-9} a x2+-a-+ a

L 2m2m 2y

where every aj is a non-zero element in the field, is

pramst) | o galeet) if aZo

n(2m=1) . 8 (pnm_ pn(m-1)

P ) iz a = 0,

; ; m :
where @ is +1 or =1 according as (=1) a, ees a,, is a square or a

1

non=square in the field,

Proofe By Theorem 3,5, the theorem is true if m = 1. To prove the

theorem by induction, we suppose it true for equations in 2(m=1)

variables. The equation (3=9) is equivalent to the system of two

equations-
2 2
(3=10) a X7+ a,x5 = 1. .
2 2
(3=11) AxXgteaetdy X = |la -11 .

Case 1« Let a # O. For each of the pn— 2 values of'q
different from a and O, the equation (3-10) has pn- B sets of

solutions, while by hypothesis the equation (3-11) has

pn(szB)_ ppn(m-Z)‘ where B = i1 according as —a,a, is a square

or a non=-square and p = 21 according as (-1)m-1a3..- 8y is a

square or a non=squares For’q‘= 0, the equations become

a x2+ a xa = 0 and a x2 = Be
2m 2m

1%9% 2255 =

S e B
3D

They have respectively, by Theorem 3«5 and hypothesis.pn+(pn-1)ﬁ
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n(Zm—B)_ p‘Pn(m—z)

and p sets of solutions, TFinally, for ? = Ay
we have
2 2 2 2
A X+ a2x2 = a and a3x3+...+ a2mx2m = Oy

They have respectively pn- g and Pn(am—3)+ p(pn(m-1)— Pn(m-&))

sets of solutionses The total number of sets of solutions is

therefore

(pn_z)(pn_B)(pn(am-B)_upn(m-Z))+ {pn+(pn_1)ﬂ}{pn(Em-})_upn(m-z)}

(pmapy{pR(2n=3)  (n(m=1)_ n(n-2),)

P23 {5 2) (5 P ) (5™ (p721) ) +5mpd 467" {0}

+pn(m-2){-u(pn~2)(pn-B)-u(pn+(pn-1)B)*P(Pn'ﬂ)}

pn(Zm-1)_Bupn(m-1)

Since the product of two squares or of two non=squares is again
2 squarej but the product of a square by a non-square is a non-square-

Pu = O« Hence the induction is complete,

Case 2. Let a = 0. For each of the p =1 values of ”q %05
the equation (3=10) has pnn B sets of solutions, while the equation

(3=11) has pn(am—B)_ppn(m-Z)’ where B = =1 according as -a

12, is
a + y me=1
a2 square or a non=square and p = =1 according as (=1) a3-.. Bsm
is a square or a nonesquare, For ?{ = 0, the equations become
a x2+ a x2 = 0 and a x2+...+ a g = 0.

1%4T 2%, %3 2m*2m
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Thus they have respectively p +(p"=1)p and Pn(Zm-3)+u(pn(m-1).pn(m—a))

sets of solutions., We find the total number of solutions to be

(Pn_1)(pn_B){pn(Zm-B)“upn(m-Z)}+{pn+(pn_1)ﬂHpn(Zm-3)+u(Pn(m-1)_pn(m-z))}

"

pn(Zm-:){(pn_,i)(pn_B)+(pn+(pn_,1)B)} +pn(m-2){'u(pn_1)(pn_ﬁ)

_u(Pn_'_(Pn_“)B)} +pn(m-1 ){u(pn.‘_(pn_,,l)ﬁ)}

. pn(Zm-1)+Bu(an_pn(m—1))
Pn(am-1)+e(an_pn(m—1)).
Hence the theorem is proved.

347 Theorem. The number of solutions in the GF[pn] of the equation-

2

2
(3-12) a . X, ¥Yeseet a2m+1 x2m+1

71 = R
where each aj is a nonwzero element in the field and a belongs to
the field, is pan+ wpnm y where W= +1, =1 or O according as

(1) an. see & is a square, a non-square or zero in the field,

1 2m+1

Proof, Consider the equivalent system of equations

I

2
(3-13) a4%X, "E '

2 2 >
(3-14) azx2+.'-+ a2m+1x2m+1 = a —T{ °

B 2 12 = 0, then (3=-13) has only one solution x,= O,

‘1‘:
If?{ # 0, we have x,al = 7{ /a,‘ and then (3-13) has two or no solutions
according as /a1 is a square or a non-square, that is, according

as a%’q /9‘1 = a,'Y is a square or a non-square. Let



+1 if a,a is a square,
po= -1 if 2,4 is a non%square,
O ifa:O.

We may express the number of solutions of the equation (3=14) by

. + - m i
Theorem 3.6, if we set 6 = =1 according as (=1) Byese 8,4 288

square or a non~square, Evidently we have uf® =), that is,

W= +1, =1 or 0 according as (=1)"aa...s a

is a square, a non=
1 2m+1 a v

square or zero in the field,
Case 1« (p = 0)s For ‘7 = 0, we get

2 2 2 A
a x1 = ) and a2x2+...+ a2m+1x2m+1 = 0,

The first equation has one solution while the second has
pn(am-1)+e(pnm_pn(m-1)). For 7{ # 0, the equations become

‘
2m+12me1 -? K

2 2
a X, = q and A X tesst A
The first equation has solution only when 311 is a square and
there are (p"=1)/2 values of such W} since the number of squares
in GF[p"] is (p™-1)/2 by Theorem 3.2. Thus for each of the
(p™=1)/2 values of‘? y the first equation has two solutions while
the second has p n(2m=1)_ n(m—1). Hence according as p = 0,

the total number of solutions of the pair of equations is

1.{pn(2m-1)+a(pnm_pn(m-1))} { n(2m-1)_epn(m—1)}

+ 2'(2n-1) P
2

_ pn(am-1){1+pn_1}+epnm_pn(m-1){e+e(pn_1)}




o
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Case 2o (p = +1). For 1 = 0, the equation (3=13) has only
one solution while the equation (3=14) has Pn(Em—1)_epn(m-1)'

For ‘T = a, we get

a xa = a and a x2+...+ a 2 = Oy

1%1 2%2 2m+172m+1
Since a,a is a square, the first equation has two solutions.
At the same time, there are pn(2m—1)+e(pnm_pn(m—1)) sets of solutions
for the second equation. For each of the [(p"=1)/2}-~1 = (p"-3)/2
values of 71 different from O and a2, the equation (3=13) has two

solutions while the equation (3«14) has p . Hence

n(2m-1)_epn(m-1)
according as 1 = +1, the total number of solutions of the pair of

equations is

1.{pn(2m-1)_epn(m—1)}+ 2_{pn(2m-1)+e(pnm_pn(m-1) ){Pn(em-ﬁ)

)]+ 2-(2n—3
2

epn(m—1)}

= p(@m=N g o 0n s)y (M=) o 56 _gpPi30}+26pP"

2nn nm
=p +Ep

-

Case 3. (p = =1). For 1l = 0, the equation (3«13) has only

-I- —
one solution while the equation (3-14) has pn(gm 1)-Epn(m 1).
For 1! = a, we have a1x§ = as This equation has solution only when

a/a1 is a square, that is, a and a, are both square or non=square,

1

but this is not possible since a,a is non-square. Thus for q = a,
the equation (3-13) has no solution. For # 0, the equation (3=13)
is a1x§ = 7 # 0. Then for each of the (p"=1)/2 values of'Y s it has



1
is a square, a ¥4 , that is, a-Tz A Os

two solutions according as a,}ﬂz is a square. ©Since a,a is a

» non=square and a,

Therefore the equation (3=14) has p

n(2m-1)_6pn(m-1) SSb ot

solutions. Hence the total number of solutions of the pair of

equations for u = =1 is

1.{Pn(2m-1)_epn(m- n(2m—1)_spn(m-1)}

1)} + 2¢¢p =1 {p
=T

pn(2m-1){1+pn_1} A pn(m-1){_8-epn+e}

Enm_.B nm.

= P P

Therefore there are p2nm+ﬂopnm sets of solutions of (3-12)
where W= +1, =1 or O according as (-1)maa1... a5 me is a square,

a non=square or zero in the GF[pn].
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