CHAPTER III

QUADRICS OVER A FINITE FIELD

In this chapter, we determine the number of solutions in a finite field F of the equation

$$a_1 x_1^2 + \cdots + a_t x_t^2 = a_t$$

where a₁,..., a_t are non-zero elements in F and a ∈ F. Every finite field considered from now on is of characteristic p > 2, where p is a prime number. The materials of this chapter are based on L.E.Dickson [5, 9 61-66].

3.1 <u>Definition</u>. A non-zero element x of the $GF[p^n]$ is called a square in $GF[p^n]$ if and only if there exists $y \in GF[p^n]$ satisfying $x = y^2$. Otherwise, x is called a <u>non-square</u>.

3.2 Theorem. Let $F = GF[p^n]$. Then the number of squares in F is $(p^n-1)/2$ and the number of non-squares in F is also $(p^n-1)/2$.

<u>Proof.</u> By Theorem 2.13, F is cyclic with p^n-1 elements and say with generator u. Then F = $[u] = \{u, u^2, ..., u^{p^n-1} = 1\}$. Since p is an odd prime, p^n is odd and thus p^n-1 is even. Hence $2 \mid p^n-1$.

We claim that

(3-1)
$$\frac{p^{n}-1}{u^{2}} = -1.$$

Since
$$u^{\frac{p^n-1}{2}} \cdot u^{\frac{p^n-1}{2}} = u^{\frac{p^n-1}{2}} + \frac{p^n-1}{2} = u^{p^n-1} = 1$$
, we have $(u^{\frac{p^n-1}{2}})^2 = 1 = 0$,

or $\frac{p^{n}-1}{(u^{2}-1)(u^{2}+1)}=0.$

Since each element in F^* is of the form u^k and if $k \neq r$, $u^k \neq u^r$, $\frac{p^n-1}{2} \neq u^{p^n-1} = 1$ and hence $(u^2-1) \neq 0$. Consequently, we have $(u^2+1)=0$, that is, $u^2=-1$ and the claim is proved.

If $x \in F$ is of the form u^{2h} for some h such that $1 \in 2h \in p^n$, we have $x = (-u^h)^2$. Thus x is a square. Hence every element of F which is the even power of u is a square in F. Moreover, if x is an element of F which is the odd power of u, then x is a non-square. For if $u^{2h+1} = x^2$, then

$$\frac{(2h+1)(p^{n}-1)}{2} = u^{h(p^{n}-1)} \cdot u^{\frac{p^{n}-1}{2}}$$

$$= (u^{p^{n}-1})^{h} \cdot (-1)$$

$$= 1 \cdot (-1) = -1.$$

by virtue of (3-1). On the other hand,

$$u = (u^{2h+1})(p^{n}-1) = (u^{2h+1})^{\frac{p^{n}-1}{2}} = x$$

Consequently, we have 1 = -1 and thus 1 + 1 = 0 which is not possible since characteristic of F is p > 2. Hence the odd powers of u are non-squares in F.

Therefore there are $(p^n-1)/2$ squares and as many non-squares in F.

3.3 Lemma. The sum of m odd positive integers is odd or even according as m is an odd or even positive integer.

<u>Proof.</u> Let s be the sum of m odd positive integers. Since each odd integer can be written as $2n_i + 1$, i = 1, ..., m, it follows that

$$s = (2n_1 + 1) + (2n_2 + 1) + \dots + (2n_m + 1)$$

$$= 2(n_1 + n_2 + \dots + n_m) + (1 + 1 + \dots + 1)$$

$$= 2(n_1 + n_2 + \dots + n_m) + m.$$

But since the first term of s is even, s is therefore odd or even according as m is odd or even.

3.4 Theorem. The non-squares of any $GF[p^n]$ are non-squares or squares in the $GF[p^{nm}]$ according as m is odd or even.

Proof. Let $F = GF[p^n]$ and $L = GF[p^{nm}]$. Let u be a generator of L . Then L = [u] with $u^{p^{nm}-1} = 1$. Since $|F| = p^n - 1$, where |F| denotes the number of elements in F, and F is a subgroup of L, $(p^n-1)(p^{nm}-1)$. Let $r = (p^{nm}-1)/(p^n-1)$. Then $v = u^r$ is a generator of F. Hence the non-zero elements of F are given by the formula

where $s = 1, \ldots, p^n-1$. Let v^k be a non-square in F, so that k is odd. It will be a non-square or a square in L according as kr is odd or even, that is, according as r is odd or even. But

$$r = \frac{p^{nm} - 1}{p^{n} - 1}$$

$$= \frac{1 - (p^{n})^{m}}{1 - p^{n}}$$

$$= \frac{(1 - p^{n})(1 + p^{n} + \dots + (p^{n})^{m-1})}{1 - p^{n}}$$

$$= 1 + p^{n} + \dots + p^{(m-1)n}$$

Thus r is the sum of m odd positive integers. Hence by Lemma 3.3 r is odd or even according as m is odd or even.

The theorem is now proved.

3.5 Theorem. Let a_1 , a_2 be non-zero elements of $GF[p^n]$ and let $a \in GF[p^n]$. Then the number of solutions of the equation

$$(3-2) a_1x_1^2 + a_2x_2^2 = a$$

is $p^n - \theta$ or $p^n + (p^n - 1)\theta$ according as $a \neq 0$ or a = 0, where $\theta = +1$ or -1 according as $-a_1a_2$ is a square or a non-square in $GF[p^n]$.

Proof. Consider the equation (3-2)

$$a_1x_1^2 + a_2x_2^2 = a$$
.

Setting $a_1x_1 = y$ and multiplying a_1 to (3-2), the equation becomes

$$(3-3) y^2 + a_1 a_2 x_2^2 = a_1 a_1$$

We divide into two cases according as -a₁a₂ is a square or a non-square.

Case 1. If $-a_1a_2$ is a square in $GF[p^n]$, say $-a_1a_2 = b^2$, then we have

$$(3-4) y^2 - b^2 x_2^2 = a_1 a_1.$$

We set $y + bx_2 = z_1$, $y - bx_2 = z_2$, then

$$y = \frac{1}{2}(z_1 + z_2)$$
 and $x_2 = \frac{1}{2b}(z_1 - z_2)$.

Substitute y and x, in (3-4), the equation becomes

$$\left[\frac{1}{2}(z_1+z_2)\right]^2-b^2\left[\frac{1}{2b}(z_1-z_2)\right]^2=a_1a.$$

multiply the equation out we obtain

$$\frac{1}{4}(z_1^2 + 2z_1z_2 + z_2^2) - \frac{1}{4}(z_1^2 - 2z_1z_2 + z_2^2) = a_1a,$$

or

$$(3-5)$$
 $z_1 z_2 = a_1 a_1$

If $a \neq 0$, we can assign to z_2 any one of the p^n-1 non-zero elements in $GF[p^n]$, and the corresponding value of z_1 is determined by equation (3-5). There are in this case p^n-1 sets of solutions x_1, x_2 in the field of the given equation.

If a = 0, then we get $z_1 z_2 = 0$. Thus $z_1 = 0$ or $z_2 = 0$. For $z_1 = 0$, we have $y + bx_2 = 0$ and since $y = a_1 x_1$, we have $a_1 x_1 = -bx_2$. There are in this case $p^n - 1$ sets of solutions x_1, x_2 . For $z_2 = 0$, we have $y - bx_2 = 0$ and then $a_1x_1 = bx_2$. There are also $p^n - 1$ sets of solutions x_1 , x_2 . Another solution of the equation $z_1z_2 = 0$ is $z_1 = 0$ and $z_2 = 0$, that is $(x_1,x_2) = (0,0)$ is one of the solutions of (3-2). Hence all together there are $1 + (p^n - 1) + (p^n - 1) = 1 + 2(p^n - 1)$ sets of solutions of the equation (3-2) in this case.

Case 2. If $-a_1a_2$ is a non-square in the $GF[p^n]$, then the equation

$$(3-6)$$
 $x^2 = -a_1 a_2$

is irreducible in the field; for if $x^2 + a_1a_2 = 0$ is reducible, then we can write $x^2 + a_1a_2 = x^2 - (-a_1a_2) = (x-d)(x+d) = x^2 - d^2$ for some $d \in GF[p^n]$, and therefore $-a_1a_2 = d^2$, this is impossible since $-a_1a_2$ is a non-square in $GF[p^n]$. Now $f(x) = x^2 + a_1a_2$ is irreducible polynomial over $F = GF[p^n]$. Let F' be the splitting field of f(x) over F. Let i be a root of f(x). Then $i \in F'$. Let E = F(i). Consequently, $E = GF[p^{2n}]$ by Theorem 2.19. Now f' is an are roots of (3-6) and by Corollary 2.24, f' is f' in f' is f'.

$$y^{2} + a_{1}a_{2}x_{2}^{2} = (y + ix_{2})(y + i^{p}x_{2})$$

$$= (y + ix_{2})(y^{p} + i^{p}x_{2}^{p}) \quad [by Lemma 2.3]$$

$$= (y + ix_{2})(y + ix_{2})^{p} \quad [by Theorem 2.9]$$

$$= (y + ix_{2})^{p^{n}+1}.$$

Then the equation (3-3) becomes

$$(3-7) \qquad (y + ix_2)^{p^n+1} = a_1 a_2.$$

Let $Z = y + ix_2$, then the equation (3-7) becomes

$$(3-8) z^{p^n+1} = a_1 a.$$

If a = 0, then Z = 0 and therefore a single set of solutions is $(x_1 = 0, x_2 = 0)$.

If a \neq 0, let R be a generator of the GF[p²ⁿ] and set $a_1a = R^k$, where k is an integer, then

$$R^{k(p^{n}-1)} = (a_{1}a)^{p^{n}-1} = 1.$$

So $k(p^n-1)$ is divisible by $p^{2n}-1$. We may therefore set $k = r(p^n+1)$, where r is a suitable positive integer. Since $Z = y + ix_2 \in GF[p^{2n}]$, we may set $Z = R^t$. The equation (3-8) becomes

$$R^{t(p^{n}+1)} = R^{\hat{r}(p^{n}+1)}$$

Hence $t(p^n+1) \equiv r(p^n+1) \pmod{(p^{2n}-1)}$. This congruence has p^n+1 distinct solutions for t, namely,

$$t = \hat{r}, r + p^{n}-1, \dot{r} + 2(p^{n}-1), \dots, r + p^{n}(p^{n}-1).$$

The corresponding values of $R^t = Z = y + ix_2$ give p^n+1 distinct sets of solutions x_1 , x_2 of the given equation.

3.6 Theorem. The number of solutions (x_1, \dots, x_{2m}) in the $GF[p^n]$ of the equation

$$(3-9) a_1 x_1^2 + \dots + a_{2m} x_{2m}^2 = a,$$

where every a is a non-zero element in the field, is

$$p^{n(2m-1)} - \theta p^{n(m-1)}$$
 if $a \neq 0$

$$p^{n(2m-1)} + e(p^{nm} - p^{n(m-1)})$$
 if $a = 0$,

where θ is +1 or -1 according as $(-1)^m a_1 \cdots a_{2m}$ is a square or a non-square in the field.

Proof. By Theorem 3.5, the theorem is true if m = 1. To prove the theorem by induction, we suppose it true for equations in 2(m-1) variables. The equation (3-9) is equivalent to the system of two equations

$$(3-10) a_1 x_1^2 + a_2 x_2^2 = \eta,$$

$$(3-11) a_3 x_3^2 + \cdots + a_{2m} x_{2m}^2 = a - \eta.$$

Case 1. Let $a \neq 0$. For each of the p^n-2 values of η different from a and 0, the equation (3-10) has $p^n-\beta$ sets of solutions, while by hypothesis the equation (3-11) has $p^{n(2m-3)}-\mu p^{n(m-2)}$, where $\beta=\frac{1}{2}1$ according as $-a_1a_2$ is a square or a non-square and $\mu=\frac{1}{2}1$ according as $(-1)^{m-1}a_3\cdots a_{2m}$ is a square or a non-square. For $\eta=0$, the equations become

$$a_1x_1^2 + a_2x_2^2 = 0$$
 and $a_3x_3^2 + \cdots + a_{2m}x_{2m}^2 = a$.

They have respectively, by Theorem 3.5 and hypothesis, $p^{n}+(p^{n}-1)\beta$

and $p^{n(2m-3)} - \mu p^{n(m-2)}$ sets of solutions. Finally, for $\eta = a$, we have

 $a_1x_1^2 + a_2x_2^2 = a$ and $a_3x_3^2 + \cdots + a_{2m}x_{2m}^2 = 0$. They have respectively $p^n - \beta$ and $p^{n(2m-3)} + \mu(p^{n(m-1)} - p^{n(m-2)})$ sets of solutions. The total number of sets of solutions is therefore

$$(p^{n}-2)(p^{n}-\beta)(p^{n(2m-3)}-\mu p^{n(m-2)}) + \{p^{n}+(p^{n}-1)\beta\}\{p^{n(2m-3)}-\mu p^{n(m-2)}\}$$

$$+ (p^{n}-\beta)\{p^{n(2m-3)}+\mu(p^{n(m-1)}-p^{n(m-2)})\}$$

$$= p^{n(2m-3)}\{(p^{n}-2)(p^{n}-\beta)+(p^{n}+(p^{n}-1)\beta)+p^{n}-\beta\}+p^{n(m-1)}\{\mu(p^{n}-\beta)\}$$

$$+ p^{n(m-2)}\{-\mu(p^{n}-2)(p^{n}-\beta)-\mu(p^{n}+(p^{n}-1)\beta)-\mu(p^{n}-\beta)\}$$

$$= p^{n(2m-1)}-\beta\mu p^{n(m-1)} .$$

Since the product of two squares or of two non-squares is again a square; but the product of a square by a non-square is a non-square. $\beta\mu = \theta_\bullet \quad \text{Hence the induction is complete.}$

Case 2. Let a=0. For each of the p^n-1 values of $\eta \neq 0$, the equation (3-10) has $p^n-\beta$ sets of solutions, while the equation (3-11) has $p^{n(2m-3)}-\mu p^{n(m-2)}$, where $\beta=\frac{1}{2}$ according as $-a_1a_2$ is a square or a non-square and $\mu=\frac{1}{2}$ according as $(-1)^{m-1}$ $a_3\cdots a_{2m}$ is a square or a non-square. For $\eta=0$, the equations become $a_1x_1^2+a_2x_2^2=0$ and $a_3x_3^2+\cdots+a_{2m}x_{2m}^2=0$.

Thus they have respectively $p^n+(p^n-1)\beta$ and $p^{n(2m-3)}+\mu(p^{n(m-1)}-p^{n(m-2)})$ sets of solutions. We find the total number of solutions to be

$$(p^{n}-1)(p^{n}-\beta) \{ p^{n(2m-3)} - \mu p^{n(m-2)} \} + \{ p^{n} + (p^{n}-1)\beta \} \{ p^{n(2m-3)} + \mu (p^{n(m-1)} - p^{n(m-2)}) \}$$

$$= p^{n(2m-3)} \{ (p^{n}-1)(p^{n}-\beta) + (p^{n}+(p^{n}-1)\beta) \} + p^{n(m-2)} \{ -\mu (p^{n}-1)(p^{n}-\beta) \}$$

$$-\mu (p^{n}+(p^{n}-1)\beta) \} + p^{n(m-1)} \{ \mu (p^{n}+(p^{n}-1)\beta) \}$$

$$= p^{n(2m-1)} + \beta \mu (p^{nm}-p^{n(m-1)})$$

$$= p^{n(2m-1)} + \theta (p^{nm}-p^{n(m-1)}) .$$

Hence the theorem is proved.

3.7 Theorem. The number of solutions in the GF[pn] of the equation

$$(3-12) a_1 x_1^2 + \cdots + a_{2m+1} x_{2m+1}^2 = a_1$$

where each a_j is a non-zero element in the field and a belongs to the field, is $p^{2nm} + \omega p^{nm}$, where $\omega = +1$, -1 or 0 according as $(-1)^m aa_1 \cdots a_{2m+1}$ is a square, a non-square or zero in the field.

Proof. Consider the equivalent system of equations

$$(3-13)$$
 $a_1x_1^2 = \eta$,

$$(3-14) a_2 x_2^2 + \cdots + a_{2m+1} x_{2m+1}^2 = a - \eta.$$

If $\eta = 0$, then (3-13) has only one solution $x_1 = 0$. If $\eta \neq 0$, we have $x_1^2 = \eta/a_1$ and then (3-13) has two or no solutions according as η/a_1 is a square or a non-square, that is, according as $a_1^2 \eta/a_1 = a_1^2 \eta$ is a square or a non-square. Let

$$\mu = \begin{cases} +1 & \text{if } a_1 a \text{ is a square,} \\ -1 & \text{if } a_1 a \text{ is a non-square,} \\ 0 & \text{if } a = 0. \end{cases}$$

We may express the number of solutions of the equation (3-14) by Theorem 3.6, if we set $\theta = \frac{1}{2}$ according as $(-1)^m a_2 \cdots a_{2m+1}$ is a square or a non-square. Evidently we have $\mu\theta = \omega$, that is, $\omega = +1$, -1 or 0 according as $(-1)^m aa_1 \cdots a_{2m+1}$ is a square, a non-square or zero in the field.

Case 1.
$$(\mu = 0)$$
. For $\eta = 0$, we get
$$a_1 x_1^2 = 0 \quad \text{and} \quad a_2 x_2^2 + \dots + a_{2m+1} x_{2m+1}^2 = 0.$$

The first equation has one solution while the second has $p^{n(2m-1)} + \theta(p^{nm} - p^{n(m-1)})$. For $\eta \neq 0$, the equations become

$$a_1x_1^2 = \eta$$
 and $a_2x_2^2 + \cdots + a_{2m+1}x_{2m+1}^2 = -\eta$.

The first equation has solution only when a η is a square and there are $(p^n-1)/2$ values of such η since the number of squares in $GF[p^n]$ is $(p^n-1)/2$ by Theorem 3.2. Thus for each of the $(p^n-1)/2$ values of η , the first equation has two solutions while the second has $p^{n(2m-1)}-6p^{n(m-1)}$. Hence according as $\mu=0$, the total number of solutions of the pair of equations is

$$1 \cdot \left\{ p^{n(2m-1)} + \theta(p^{nm} - p^{n(m-1)}) \right\} + 2 \cdot \left(\frac{p^{n} - 1}{2} \right) \left\{ p^{n(2m-1)} - \theta p^{n(m-1)} \right\}$$

$$= p^{n(2m-1)} \left\{ 1 + p^{n} - 1 \right\} + \theta p^{nm} - p^{n(m-1)} \left\{ \theta + \theta(p^{n} - 1) \right\}$$

$$= p^{2nm}$$

Case 2. $(\mu = +1)$. For $\eta = 0$, the equation (3-13) has only one solution while the equation (3-14) has $p^{n(2m-1)}-ep^{n(m-1)}$. For $\eta = a$, we get

$$a_1x_1^2 = a$$
 and $a_2x_2^2 + \cdots + a_{2m+1}x_{2m+1}^2 = 0$.

Since a_1a is a square, the first equation has two solutions. At the same time, there are $p^{n(2m-1)}+\theta(p^{nm}-p^{n(m-1)})$ sets of solutions for the second equation. For each of the $[(p^n-1)/2]-1=(p^n-3)/2$ values of 7 different from 0 and a, the equation (3-13) has two solutions while the equation (3-14) has $p^{n(2m-1)}-\theta p^{n(m-1)}$. Hence according as $\mu=\pm 1$, the total number of solutions of the pair of equations is

$$1 \cdot \left\{ p^{n(2m-1)} - 6p^{n(m-1)} \right\} + 2 \cdot \left\{ p^{n(2m-1)} + 6(p^{nm} - p^{n(m-1)}) \right\} + 2 \cdot \left(\frac{p^{n} - 3}{2} \right) \left\{ p^{n(2m-1)} - 6p^{n(m-1)} \right\}$$

$$= p^{n(2m-1)} \{1+2+p^n-3\} + p^{n(m-1)} \{-\theta-2\theta-\theta p^n+3\theta\} + 2\theta p^{nm}$$
$$= p^{2nm} + \theta p^{nm}.$$

Case 3. $(\mu = -1)$. For $\eta = 0$, the equation (3-13) has only one solution while the equation (3-14) has $p^{n(2m-1)}$ - $ep^{n(m-1)}$. For $\eta = a$, we have $a_1x_1^2 = a$. This equation has solution only when a/a_1 is a square, that is, a and a_1 are both square or non-square, but this is not possible since a_1a is non-square. Thus for $\eta = a$, the equation (3-13) has no solution. For $\eta \neq 0$, the equation (3-13) is $a_1x_1^2 = \eta \neq 0$. Then for each of the $(p^n-1)/2$ values of η , it has

two solutions according as a η is a square. Since a is a non-square and a η is a square, a $\neq \eta$, that is, a- η $\neq 0$. Therefore the equation (3-14) has $p^{n(2m-1)}$ -6 $p^{n(m-1)}$ sets of solutions. Hence the total number of solutions of the pair of equations for μ = -1 is

$$1 \cdot \{p^{n(2m-1)} - \theta p^{n(m-1)}\} + 2 \cdot (p^{n} - 1) \{p^{n(2m-1)} - \theta p^{n(m-1)}\}$$

$$= p^{n(2m-1)} \{1 + p^{n} - 1\} + p^{n(m-1)} \{-\theta - \theta p^{n} + \theta\}$$

$$= p^{2nm} - \theta p^{nm}.$$

Therefore there are $p^{2nm} + \omega p^{nm}$ sets of solutions of (3-12) where $\omega = +1$, -1 or 0 according as $(-1)^m aa_1 \cdots a_{2m+1}$ is a square, a non-square or zero in the $GF[p^n]$.