CHAPTER I

PRELIMINARIES

In this thesis, we assume a basic knowledge of group theory.

However, this chapter contains review of some important notations

we will be using. Proofs will not be given, and can be found in [6], [8].

1.1 <u>Definition</u>. Let G be a finite group and let $a \in G$.

Then the <u>order of a</u>, denoted by O(a), is defined to be the least positive integer m such that $a^m = 1$, where 1 is the identity of G.

1.2 <u>Definition</u>. A <u>polynomial</u> in X over a field K, denoted by f(X), is defined to be

$$f(X) = \sum_{i=0}^{n} a_i X^i$$
,

where the coefficients a_i , not all of them zero, belong to K, while the indeterminate, $X \notin K$, is considered here commutative with every element $a \in K$.

- 1.3 Notation. K[X] denotes the set of all polynomials in X over K.
- 1.4 <u>Definition</u>. A non-zero element $f(X) \in K[X]$ is said to have <u>degree n</u>, denoted by deg. f = n, if n is the largest positive integer such that X^n has a non-zero coefficient, which itself is called the <u>leading coefficient</u> of f(X).

- 1.5 Definition. Let K be a field. Let f(X) € K[X]. Then
- (i) f(X) is said to be a <u>monic polynomial</u> in X if its leading coefficient is 1.
- (ii) f(X) is said to be an <u>irreducible polynomial</u> if f(X) cannot be written as a product of two polynomials with positive degree.
- (iii) If f(X), $g(X) \in K[X]$, we say that f(X) divides g(X) or g(X) is a <u>multiple</u> of f(X), written $f(X) \mid g(X)$, if there exists $h(X) \in K[X]$ such that $g(X) = f(X) \cdot h(X)$.
- 1.6 <u>Definition</u>. Let K be a field. If K is a subfield of a field F, then we say that F is a <u>field extension</u> of K.
- 1.7 <u>Definition</u>. Let K be a field and let f(X) be a polynomial in K[X] of degree n > 0. Let F be an extension field of K. Then we say that $\underline{f(X)}$ splits into linear factors in F in case

$$f(X) = c(X - a_1)...(X - a_n),$$

where $a_i \in F$, i = 1, ..., n.

1.8 <u>Definition</u>. Let K be a field. Let f(X) be a polynomial in K[X] of degree n > 0. Let F be an extension field of K such that F contains all n roots $\{a_1, \ldots, a_n\}$ of f(X). Then the field $K(a_1, \ldots, a_n)$ is called the <u>splitting field of f(X)</u> over K.

- 1.9 Theorem. Any two splitting fields of the same polynomial over a given field K are isomorphic.
- 1.10 <u>Definition</u>. Let K be a subfield of a field F. Then $\{v_1, \ldots, v_n\} \subseteq F$ is said to be <u>linearly independent</u> over K if and only if for all scalars c_i in K,

 $c_1 v_1 + \dots + c_n v_n = 0$ implies $c_1 = \dots = c_n = 0$.

Otherwise, $\{v_1, \dots, v_n\} \subseteq F$ is said to be <u>linearly dependent</u> over K.

- 1.11 <u>Definition</u>. Let F be a field extension of a subfield K. Then the <u>degree of F over K</u>, denoted by [F: K], is defined to be the maximal number of linearly independent elements of F over K. That is,
- (i) $\{F : K\} = +\infty$, if for any $n \in \mathbb{Z}$ (set of all positive integers), there exists n linearly independent elements of F over K.
- (ii) $[F:K] = n + \infty$, if there exists n linearly independent elements of F over K and if any set of more than n elements in F is linearly dependent over K.
- 1.12 <u>Definition</u>. Let F be a field extension of a field K and a € F. Then a is an <u>algebraic element</u> over K if it is a root of some polynomial over K.

- 1.13 Definition. Let F be an extension field of a field K. Let a be an algebraic element over K and f(X) be the monic polynomial of least degree for which a is a root. Then f(X) is called the minimal polynomial of a over K and the degree of f(X) is called the (algebraic) degree of a over K.
- 1.14 <u>Definition</u>. Let F be a field. Then the characteristic of F, denoted by ch.F, is defined as follows:
- (i) if $ne \neq 0$ for all $n \in \mathbb{Z}^+$, where e is the identity of F, then $ch \cdot F = 0$;
- (ii) if ne = 0 for some $n \in \mathbb{Z}^+$, then ch.F is the smallest integer $d \in \mathbb{Z}^+$ such that de = 0.
- 1.15 <u>Definition</u>. If $f(X) = a_0 X^n + a_1 X^{n-1} + \dots + a_{n-1} X + a_n \in K[X]$, then the <u>derivative of f(X)</u>, written as f'(X), is defined to be

$$f'(X) = na_0 X^{n-1} + (n-1)a_1 X^{n-2} + \cdots + a_{n-1} \in K[X].$$

- 1.16 <u>Definition</u>. Let K be a field and let $f(X) \in K[X]$. Then the element a f(X) is a root of f(X) of multiplicity m if $(X-a)^m \mid f(X)$ whereas $(X-a)^{m+1} \mid f(X)$.
- 1.17 Theorem. Let F be a field and let $f(X) \in F[X]$. If f(X) is irreducible over F, then F[X] / (f(X)) is a field.
- 1.18 Theorem. Let F be a field. Let μ be a root of an irreducible polynomial $f(X) \in F[X]$. Then $F(\mu)$ is a field isomorphic to F[X] / (f(X)).