REFERENCES

- Arthur, W.A. (1990) <u>Physical Chemistry of Surfaces</u>. 6th ed. NewYork: Wiley interscience
- Biggs, S., Habgood, M., Jameson, G.J., Yan, Y.D. (2000) Aggregate structure formed via a bridging flocculation mechanism. <u>Chemical Engineering</u>, 80, 13-22.
- Bhushan, B, Wei, G., Haddard, P. (2004) Friction and war studies of human hair and Skin. Wear, 259, 1012-1021
- Fielden, M.L., Claesson, P.M. and Schillen, K. (1998) Investigate of a 31%charged cationic polyelectrolyte interacting with sodium dodecyl sulfate in bulk solution and as a preadsorbed layer on mica. Low ionic. <u>Langmuir</u>, 14, 5366-5375
- Fraser, R.D.B., Gillepie, J.M., Macrae, T.P., Marshall, R.C. Internal report CSIRO, Division of Protein Chemistry. Parkvill, Vic. Australia, 1981
- Gilanyi, T. and Wolfram, E. (1981) Interaction of ionic surfactants with polymers in aqueous solution. <u>Colloids and Surfaces</u>, 3(2), 181-198.
- Glover, S.M., Yan, Y.D., Jameson, G.J., Biggs, S. (2000) Bridging flocculation studied by light scattering and settling. Chemical Engineering, 80, 3-12.
- Goddard, E.D., and Hannan, R.B. (1976) Cationic Polymer/Anionic surfactant interaction. Colloid and Interface Science, 55(1), 73-79.
- Goddard, E.D., Ananthapadmanabhan, K.P. (Eds). (1993) <u>Interaction of Surfactants with Polymers and Proteins</u>. United state: CRC Press
- Goddard, E.D., Gruber, V.J. (Eds). (1999) <u>Principle of Polymer Science and</u>

 <u>Technology in Cosmetics and Personal Care</u>. United state: Marcel Dekker Inc.
- Goldraich, M., Schwartz, J.R., Burns, J.L. and Talmon, Y. (1996) Microstructure formed in a mixed system of a cationic polymer and an anionic surfactant. <u>Colloids and Surfaces</u>. 125, 231-244.
- Guerrini, M.M., Negulescu, I.I., Daly, W.H. (1998) Interaction of Aminoalkylv-Carbamoyl Cellulosics and Sodium Dodecyl Sulfate. I. Surface Tension. <u>Applied Polymer Science</u>. 68, 1091-1097.

- Hunter, R.J. (1993) <u>Introduction to Modern Colloid Science</u>. New York: Oxford Science.
- Komesvarakul, N., Scamehorn, J.F. and Gecol, H. (2003) Purification of Phenolic-Laden wastewater from the pulp and paper industry by using colloidenhanced ultrafiltration. <u>Separation Science and Technology</u>, 38, 2465-2501.
- Leung, P.S., Goddard, E.D., Han, C. and Glinka, C.J. (1985) A Study of polycation-anionic-surfactant systems. Colloids and Surfaces, 13, 47-62.
- Magdassi, S., Rodel, B.Z. (1996) Flocculation of montmorillonite dispersions based on surfactant-polymer interactions. <u>Colloids and Surfaces</u>. 119, 51-56.
- Mcmullen, R.L., Kelty, S.P.(2001) Investigation of human hair fibers using lateral force microscopy.
- Mukerjee, P..M. (2001) Critical micelle concentration aqueous surfactant system., (1971)
- Mullin, J.W. (1993) Crystallization, 3rd Edition, Oxford: Butterworths/Heinemann
- Rosen, M.J. (Eds). (2004) <u>Surfactant and Interfacial Phenomena</u>. New Jersey: Wiley interscience
- Schwartz, A., Knowles, D. (1963) <u>Journal of Society Cosmetic Chemistry</u>. 14,455
- Voison, D., Vincent, B. (2003) Flocculation in the mixtures of cationic polyelectrolytes and anionic surfactants. <u>Advances in Colloid and Interface</u> Science. 106, 1-22.
- Yamaguchi, Y.,Inaba, Y., Uchiyama, H., Kunieda, H. (1999) Anomalous phase behavior of water-soluble polyelectrolyte and oppositely charged surfactants. <u>Colloid Polymer Science</u>. 277, 1117–1124.
- Zhang, H., Li, Y., Dubin, P. and Kato, T. (1996) Effect of EO chain length of dodecyl ethoxylates (C₁₂E_{n)} on the complexation of C₁₂E_n /SDS mixed micelles with an oppositely charged polyelectrolyte. <u>Colloids and Surfaces</u>. 183, 546-551.
- Zhu, C.F., Xu, Q.M., Zhou, C.Q., Yin, S.X., Shang, G.Y., Wang, C., Lui, C.Q. and Zhang, R.B. (2001) Study on surface streture and composition of the

smaller size organic nanotube and its supermolecule thin film using AFM/curve method. <u>Surface and Interface Analysis</u>, 32, 278-282.

APPENDICES

Appendix A Visual Appearance Inspection

Code	Immediate after mixing	After 2 hours	After 2days	
N1	turbid	C supernatant + S	C supernatant + S	
N2	turbid	C supernatant + S	C supernatant + S	
N3	turbid	C supernatant + S	C supernatant + S	
N4	turbid	T solution	T supernatant + S	
N5	turbid	C supernatant + S	C supernatant + S	
N6	turbid	T solution	T supernatant + S	
N7	turbid	C supernatant + S	C supernatant + S	
N8	turbid	T solution + slightly S	C supernatant + S	

Remarks:

C = clear

T = turbid

S = sedimentation

Appendix B Equilibrium pH of Studied points in phase diagram at 25 ± 0.5 °C

Code	SLES mM	Polymer g/l	NaCl mM	pH at 25 ± 1 °C		Average	SD
				1	2		
N1	1	0.2	20	6.93	7.00	6.97	0.04
N2	12	0.2	20	7.03	6.91	6.97	0.06
N3	30	0.2	20	7.02	6.80	6.97	0.11
N4	1	0.5	20	6.69	6.96	6.83	0.13
N5	30	0.5	20	7.21	7.35	7.28	0.07
N6	1	1.0	20	6.76	6.46	6.61	0.15
N7	30	1.0	20	7.32	7.12	7.22	0.10
N8	60	1.0	20	7.07	6.98	7.03	0.04

Appendix C Correlation Coefficient Test (Pearson's)

Significant level	5%	1%
	(0.05)	(0.01)
Degree of freedom		33. 10
2	.950	.990
3	.878	.959
4	.811	.917
5	.754	.875
6	.707	.834
7	.666	.798
8	.632	.765
9	.602	.735
10	.576	.708
11	.553	.684
12	.532	.661
13	.514	.641
14	.497	.623
15	.482	.606
20	.432	.537
30	.349	.449
40	.304	.393
60	.250	.325

Test value = [sample correlation coefficient]

Degree of freedom : 2 less than sample size

Appendix D Method for hair switch preparation and cleaning

Hair switch preparation for friction measurement by texture analyzer

- 1. Weight 3.0 grams of hair with 7 inches and 1.5 inches wide dimension.
- 2. Align hair in parallel and secure an inch of the root with Aluminium clip and cover the edge of root end with glue
- 3. The remaining tip hair is trimmed out
- 4. The ready switch is 2.5 grams with 6 inches.

Hair cleaning

- The switches are wetted under tap water at rate 4 litres/minute, 37C for 5 second
- 1.25 grams of 14%SLES is applied from a syringe and agitate with gloved fingers for 30 seconds, followed by rinsing for 30 seconds under tap water
- Another 1.25 grams of 14%SLESis applied for 30 second, followed by rinsing for 30 seconds under tap water
- The switches are then combed through until the fibres are aligned then were left overnight in temperature and humidity control room (22 C, 50%RH) before treatment

Appendix E 3D Morphology of treat and untreated hair fibre surface by AFM

Figure E1 Untreated hair fibre surface

Figure E2 Treated hair fibre surface with 1mM SLES, 0.2g/l Jaguar, 20mM NaCl

Figure E3 Treated hair fibre surface with 12mM SLES, 0.2g/l Jaguar, 20mM NaCl

Figure E4 Treated hair fibre surface with 30mM SLES, 0.2g/l Jaguar, 20mM NaCl

Figure E5 Treated hair fibre surface with 1mM SLES, 0.5g/l Jaguar, 20mM NaCl

Figure E6 Treated hair fibre surface with 30mM SLES, 0.5g/l Jaguar, 20mM NaCl

Figure E7 Treated hair fibre surface with 1mM SLES, 1.0g/l Jaguar, 20mM NaCl

Figure E8 Treated hair fibre surface with 30mM SLES, 1.0g/l Jaguar, 20mM NaCl

Figure E9 Treated hair fibre surface with 60mM SLES, 1.0g/l Jaguar, 20mM NaCl

CURRICULUM VITAE

Name:

Ms. Ratana Giles

Date of Birth:

April 6, 1971

Nationality:

Thai

University Education:

1990-1994 Bachelor of Science Degree in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand.

Working Experience:

1994-1995

Position:

Chemist

Company name:

Lerd Singha Pharmaceutical Ltd.

1995-1997

Position:

Regulatory officer

Company name:

Medicap Ltd.

1997-present Position:

Product development manager

Company name:

Unilever Thai Trading Ltd.