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APPENDICES

Appendix A Calculations and Experimental Data

Gas Permeability

Gas permeation experiments were obtained from Brugger Gas Permeability
Tester. The sample films were cut into circular shape with 110 mm in diameter
according to ASTM 1434-82. The thickness of the films was measured with the
peacock digital thickness gauge model PDN 12N by reading ten points at random
position over the entire test area and the results were averaged. The films were

placed in a desicator over CaCl, and kept for not iess than 48 h. prior to test.

Gas trasmission rate (GTR)

GER, oK
A-At-Ap
Permeability (Q)
AM - L
Q = =en1
-At-Ap
O = GTRxL
where:
AM . : o v 3
—~ = amount of gas passing through film in unit time (cm?/s)
A = area(m?)
Ap = the differntial partial pressure of the permeat gas across the film (bar)

L = film thickness (mm)



The gas permeability rate, G, in units of cm*/(m? day.bar) is calculated from,

7.76x10” xV

78.5K x 29N
where:
A% = volume of the evacuation chamber
K = absolute temperature {degrees Kelvin)
N = the slope of the graph which is determined by dividing the time (s) by the

scale divisions (mm)

if the evacuation chamber volume, V, is 0.4370 cm® then this expression simplifies

to,

1.49x107
G = ———— cm’ (m*-day-bar)
KN W' -day-bar)

\
G = 1.49x 1()){; 0.9896 cm® (m* - day - atm)
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Table A1 Time and scale divisions of PP at 299.7 K (Film thickness : 0.0968 mm)

Time (s) Scale divisions (mm)
0 100
1800 83.5
2400 78
3000 72
3600 66.5
Slope (N) > 10732
R? :0.9998

Table A2 Time and scale divisions of PP-g-MA/PP at 297.7 K (Film thickness :
0.1211 mm)

Time (s) Scale divisions (mm)
0 100.5
600 95
1380 87.5
1980 82
2580 75.5
Slope(N)  : 103.78

R? :0.9992
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Table A3 Time and scale divisions of PMH-C,,/PP-g-MA/PP at 299.4 K (Film
thickness : 0.1029 mm)

Time (s) Scale divisions (mm)

0 100
660 93.5

1260 86.5
1860 80.5

2460 74
Slope (N) : 92,683
R? : 0.9996

Table A4 Time and scale divisions of PMH-C,¢/PP-g-MA/PP at 298 K (Film
thickness : 0.1235 mm)

Time (s) Scale divisions (mm)
0 100
600 94
3120 70
3780 62.5
4380 58
Slope (N) : 102.62

R? : 0.9993



67

Table AS Time and scale divisions of PMH-C,s/PP-g-MA/PP at 298.2 K (Film

thickness : 0.1095 mm)

Time (s) Scale divisions (mm)
0 100
600 93.5
1200 87
1800 80.5
2400 74
Slope (N) 92.308
R 1

Table A6 Time and scale divisions of PBH-C;,/PP-g-MA/PP at 299.4 K (Film

thickness : 0.0944 mm)

Time (s) Scale divisions (mm)
0 100
600 93.5
1200 88
1800 81
2400 74.5
Slope (N) 94.377
R? 0.9988
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Table A7 Time and scale divisions of PBH-C,¢/PP-g-MA/PP at 298.1 K (Film

thickness : 0.1233 mm)

Time (s) Scale divisions (mm)
0 100
780 92
1380 85.5
1980 79
2580 72
Slope (N) 92.227
R? 0.9994

Table A8 Time and scale divisions of PBH-C,¢/PP-g-MA/PP at 300K (Film

thickness : 0.1201 mm)

Time (s) Scale divisions (mm)
0 100
600 94
1200 87
1800 80.5
2520 73
Slope (N) 92.433
R? 0.9995



Appendix B Types of Adsorption Isotherm and Hysteresis Loop

Figure B1 Types of adsorption isotherm according to BDDT classification.

Amount of gas adsorbed

Relative pressure, P/P,

Figure B2 Types of hysteresis loop according to De Boer classification.

Amount of gas adsorbed

Relative pressure, P/P,

=
e
e

B3 Types of hysteresis loop according to IUPAC classification.

H1 H2 H3 H4

Amount of gas adsorbed

Relative pressure, P/P,



Appendix C Supplementary Results

Figure C1 TEM images of cal-PMH-C,3.
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Figure C2 TEM images of cal-PBH-C),.
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Figure C4 TEM images of cal-PBH-Cjs.
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