Chapter V

Continuum Topology Optimization Problems, Results and

Discussions

Topology optimization finds the optimal layout of a structure within the
given domain. There are many studies of the topology optimization in mechanical
engineering such as solids mechanics [72]-[81], heat transfer [82]-[84], fluid
mechanics [22], [85], and multi-displinary problems [86]-[88]. As previously
described in Chapter I, the topology optimization may be divided into 3 main
categories — the discrete truss design, unit cell properties, and continuum topology
optimization. The purpose of the continuum topology optimization is to allow the
creation of new boundaries. The space that contains the structure is specified and
divided into a number of grids; different configurations are obtained by selective

filling these grids or leaving the space empty.

Various methods were proposed for continuum topology optimization in
the last twenty years. Many continuum topology optimization problems are solved
by sensitivity analysis methods such as [16], [17], [19]-[23], [72], [78], [82], [84],
[88]-[95]. This method can be generally described as follows. Firstly, an initial
structure is used to evaluate sensitivity results, which are derivative values. Then
during optimization, a decision variable, representing an element of the domain is
changed according to the sensitivity analysis results in order to obtain an updated
structure. The sensitivity results of the updated structure are evaluated again; this
process is continuously repeated until the terminated condition is satisfied. The
sensitivity analysis method is simple to implement. However, it is quite hard to
compute the sensitivity values in practical topology optimization problems, due to
the difficulties in formulating objective functions or design constraints as explicit
mathematical formulations expressed with decision variables, especially for
problems with complex boundary conditions or non-linear problems [25]. In

addition, many previous studies such as [16], [17], [19], [24], [25], [74] ,[83],
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[87] employ density methods which necessarily encode a decision variable by a
real number, whose value is between 0 and 1, representing the material density
of its corresponding element, as optimizers. A density decision variable by this
encoding is artificial as a physically meaningful decision variable must be either 0
or 1. Therefore, it is necessary to deal with material density elements after an

optimized structure is obtained [96].

The density methods are quite simple in applications, they are attractive to
engineers. However, they have the lack of theoretical support on the relationship
between the density and the material properties [25]. Due to these drawbacks of
this optimization, a discrete decision variable, of which value is either 0 or 1, is
more practical. Optimizers using the discrete decision variable do not have such
problems; they are more suitable than the density methods. However, the discrete

decision variable may cause difficulties derivative-based optimizers.

A genetic algorithm (GA) is well-suited to continuum topology
optimization problems, since it does not need explicit mathematical expressions
for objective functions and constraints as well as can deal with problems that are
hard to solve by sensitivity analysis methods. It can encode a structure directly
into a binary string, of which a bit is represented by 0 or 1. In addition, it can be
used to solve multi-material structural topology optimization such as [97], [98].
For a problem in which a structure is constructed by two types of materials, it
encodes a structure into a tri-nary string where O represents an empty element, 1
represents an element filled with the first type of material, and 2 represent for an
element filled by second material. Compared to sensitivity methods, there are
only a few studies such as [99]-[105] which employ GA as the optimizer for

continuum topology optimization problems.

In many previous studies, the problems are solved by single-objective
optimizers in order to obtain one optimum solution by optimizing only one

selected objective while other objectives are considered as problem restrictions
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[15], [89], [93], [106]-[108] or using aggregative method (Figure 2.6) to
transform multiple design objectives into one objective [109]-[112]. Actually, all
design objectives of the problems should be optimized; Pareto-based multi-
objective optimizers which employ the Pareto domination in Definition 2.1 in
order to obtain multiple non-dominated solutions (Figure 2.7) are certainly more

suitable than the uses single-objective optimizers.

In practice, there are many objectives to be designed for most continuum
topology optimization problems. Previous studies in multi-objective continuum
topology optimization problems that solve problems by Pareto-based multi-
objective optimizers such as [34], [113]-[115] are focused on optimization of only
2-3 objectives and do not employ the Pareto domination with goal attainment
[40], described by the equations (2.21)-(2.24). In addition, constraints of
topology optimization problems such as compliance, structural weight, and
number of holes or enclosed boundaries in a structure, can be considered as
design objectives. All design objectives should be solved by multi-objective
optimizer using the Pareto domination with goal attainment in which problem
constraints can be treated as goals of the problems. By considering problem
constraints as design objectives, there are many optimized objective for the
problems. Therefore, multi-objective evolutionary algorithms (MOEAs) which are
developed for optimization problems with many objectives such as improved
compressed-objective genetic algorithm (COGA-Il) and co-operative co-
evolutionary improved compressed-objective genetic algorithm (CCCOGA-II) are

suitable for such problems.

This thesis will use 5 MOEAs, which were empirically studied by
benchmark problems in the previous chapter, and finite volume method (FVM) to
solve continuum topology optimization problems. The employed problems are a
heat conduction problem, a linear-elastic problem, and a thermo-elastic problem,
which can be considered a multi-displinary problem. The numbers of objectives

for the heat conduction problem are 3-6, while those of the linear-elastic problem



106

and the thermo-elastic problem are 2-5. The performances of these MOEAs are
evaluated to guarantee that the proposed MOEAs — co-operative co-evolutionary
multi-objective algorithm (CCMOA), improved compressed-objective genetic
algorithm (COGA-II), and co-operative co-evolutionary improved compressed
objective genetic algorithm (CCCOGA-Il) are not only suited to solve well-
established benchmark problems but also for multi-objective continuum topology
optimization problems. Subsequently, they may be useful for mechanical

engineers in continuum topology optimization of practical problems.
5.1. Overview of Test Problems

This thesis studies 3 continuum topology optimization problems involving
heat conduction, linear elastic, and thermo-elastic problems. In each problem, 4
sub-problems with different numbers of design objectives are considered; the
numbers of objectives in the heat conduction optimization problem vary from 3-
6, while those of the linear-elastic and thermo-elastic problems vary from 2-5.
The descriptions of objectives and employed topology optimization problems are

as follows.
5.1.1. Objectives

The objectives can be categorized into the basic and geometrical
objectives. The numbers of basic objectives in the heat conduction, linear-elastic
and thermo-elastic are 3, 2, and 2 respectively. The numbers of 3 additional
geometrically structural objectives are used to makeup the required numbers. The
variation of number of objectives can be represented by a topology optimization
problem with m basic objectives, which implies that numbers of objectives are m
to m+3. By optimizing only its basic objectives, the number of objectives is equal
to m. The objective number is increased to m+1 by adding the first additional
objective, and will be m+2, after the second additional objective is added and so

on.
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5.1.1.1. Basic Objectives

The basic objectives can be considered as particular performances of
structures for a continuum topology optimization problem without concerning
structural geometry. For example, the basic objectives can be weight, compliance,
maximum stress, and maximum strain of an elastic problem. The basic objectives
of all continuum topology optimization problems — heat conduction, linear-elastic,
and thermo-elastic problems — in this thesis will be described in descriptions of the

problems in the topic 5.2.
5.1.1.2. Additional Objectives

Optimal structures which are obtained from topology optimization require
further interpretation and simplification for shape and sizing design [6]. The
optimal structures with few large holes, smooth perimeter are preferred for
subsequent interpretation and detailed design. Therefore, number of holes, hole
area, hole perimeter, and total structure perimeter (holes plus outer boundary)
should be considered as design objectives. Thus, 3 additional objectives,

minimized objectives, are evaluated from these designed values.

The objectives can be described by an example of a structure, which is
presented by shaded region, constructed in the domain of 20 x 12 grids as shown
in the following Figure 5.1.

The first additional objective is the number of holes. For the structure in

Figure 5.1, it is equal to 4.

The second additional objective, which indicates the structural
smoothness, is the ratio of structural perimeter to structural area (R,). The
perimeter of the structure (P,) is equal to sum of the outer perimeter, P,, and hole
perimeters, C,-C,. Thus, P, is equal to P, + C, + ... + C,. The structural area A,
is the area of grey region or the material area. Therefore, the second additional

objective of a structure is generally given by
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where C; is the perimeter of a hole j. Figure 5.2 shows comparison of 2 structures

in the domain with bad and good values of R,,,.
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(a) R,, = 407.0 m’ (b) R,, = 2629 m’

Figure 5.2 Comparison of structures with (a) bad R,, and (b) good R,,,.

The third additional objective, maximum value of ratios of hole perimeter

to hole area (MRH,,,) which indicates smoothness of holes, is given by

MRH,, = max {%] (52)

: j
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where AH, is area of hole j. For a structure with no holes, the third additional
objective, MRH,, of the structure is equal to zero. Figure 5.3 show comparisons of

2 structures with bad and good values of MRH,,, in the domain.

I |

[_] ! ] |
(a) MRH,, = 1333.3 m" (a) MRH,, = 315.8 m’
Figure 5.3 Comparison of structures with (a) bad MRH,,, and (b) good MRH,,.

5.2. Problems Descriptions
The descriptions of all employed problems will be illustrated as follows.
5.2.1. Heat Conduction Topology Optimization Problem

2D heat transfer problem with the convective boundary is used as the case
study (Figure 5.4). The domain of this problem is a 1m-thick space of size 50 x
50 mm. In this thesis, the domain is divided into 5 x 5 grids, 10 x 10 grids, and
20 x 20 grids. Therefore, chromosome lengths are 25, 100, and 400 for domains
with 5 x 5 grids, 10 x 10 grids, and 20 x 20 grids respectively.

Structures are intended to be lightweight configurations that transport heat
from a point source Q at a bottom corner to a thin heating plate placing over the
domain such that the temperature in the plate is evenly distributed. A structure
has one fixed material element, which is shown by the grey element in Figure 5.4.
The bottom surface of the element transfers the heat Q into the structure. There
are 3 basic design objectives which are minimized structural weight, maximized
average temperature T and minimized temperature standard deviation SD; in

the plate.
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Figure 5.4 The heat conduction problem.

In the problem, structures are constructed by AISI C1020 steel of which
thermal conductivity k is 46.73 W/mK [117], heat transfer coefficient h and
ambient temperature, T, are 25 W/m°K and 0°C, respectively. The description of

all design objectives of the problem is conclusively shown in Table 5.1.

Table 5.1 Description of design objectives of the heat conduction problem

Objectives Description
o 1 Minimizing weight of a structure (solution)
E 2 Maximizing average temperature of the plate(T )
3 Minimizing temperature standard deviation SD; in the plate
4 Minimizing number of holes in the structure
g 5 Minimizing ratio of structural perimeter to structural area (R,,)
§ 6 Minimizing maximum value of ratios of hole perimeter
to hole area (MRH,,,)

By the Pareto domination without goal attainment in Definition 2.1, there
are two known extreme true Pareto-optimal solutions which are shown in Figure
5.5. The numbers in the square bracket are their values of all 6 objectives —
weight (% of entire domain), T (°C), SD; (°C), number of holes, R, (m?), and
MRH,,(m™). The first solution (Figure 5.5a) has least weigth which is the best first
objective and equal to 5% of entire domain. The second solution (Figure 5.5b)
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has maximum weight (100% of entire domain) which is the worst first objective,

and maximum T (48.21°C) which is the best second objective.
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(a) [5.0, 31.15, 4.67, 0, 840.0, 0.0] (b) [100.0, 48.21, 0.20, 0, 80.0, 0.0]

Figure 5.5 Two known extreme true Pareto-optimal solutions of the heat

condution problem.

However, these two known extreme true Pareto-optimal solutions may not
be useful in particular way because the first solution has very poor third objective
(SD,) while the second solution has very poor first objective (structural weight).
Therefore, other non-dominated solutions that are more useful than these two

solutions are necessary for the problem.

5.2.2. Linear-Elastic and Thermo-Elastic Topology Optimization
Problems

A simply support plate subjected to concentrated force and thermal
loadings [71] (Figure 5.6), is used as the test cases for linear-elastic and thermo-
elastic topology optimization problems. These plane-stress problems have the 1m-
thick domain of size 400 x 100 mm. The domain is divided into 20 x 5 grids and
40 x 10 grids. Figure 5.6 shows the divided domain of 40 x 10 grids. Due to
symmetry of the domain as shown in Figure 5.6, the corresponding coded
chromosome lengths of the problems are 50 (10 x 5) and 200 (20 x 10) bits for
half domains with 20 x 5 and 40 x 10 grids, respectively.
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The plate is subjected to concentrated and thermal loads. There are 4
fixed material elements of divided domains, in Figure 5.6 the fixed elements are
represented by gray elements; two elements surrounding the concentrated force
and two elements on the supports. A concentrated load P = 1.0 MN, is applied at
the center of the bottom surface in which the ambient temperature, T, and
convection coefficient are 0°C and 120 W/m?K respectively. The material used
for the problems is the steel AISI 304 of which Young elastic, E, Poison’s ration,
v, thermal expansion coefficient, @, and thermal conductivity, k, are 193 GPa,
029, 17.82 w°C, and 16.27 W/mK [117], respectively. The temperature
boundary surface with constant temperature, T, causing thermal load into the
plate is displayed by the horizontal dash line as shown in Figure 5.6. There is no
thermal load for the linear-elastic problem in which the temperature Tj is then
equal to the ambient temperature T.. In the other hand, three values of T, -

10°C, 20°C, and 40°C - are used for the thermo-elastic problem.
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Figure 5.6 The linear-elastic and thermo-elastic topology optimization problems.

There are two design basic objectives for this problem of which the first
objective is the minimized weight and the second objective is the minimized

compliance, IT, which is given by

E
M= LﬁaTu“dV - Ltlude (5.3)
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where T, u,, and t, denote temperature field, displacement field, and surface force.
The description of all design objectives of the linear-elastic and thermo-elastic

problems are shown in Table 5.2.

Table 5.2 Description of design objectives of the linear-elastic and thermo-elastic

problems
Objectives Description

% 1 Minimizing weight of a structure (solution)
- 2 Minimizing compliance, IT, of the structure

3 Minimizing number of holes in the structure
g 4 Minimizing ratio of structural perimeter to structural area (R,,,)
(53 " Minimizing maximum value of ratios of hole perimeter

to hole area (MRH,,,)

By the Pareto domination without goal attainment in Definition 2.1, there
are two known extreme true Pareto-optimal solutions which are shown in Figure
5.7 for the linear-elastic problem. The numbers in the square bracket are their
values of all 5 objectilves — weight (% of entire domain), IT (N-m), number of
holes, R,, (m), and MRH,, (m™*). The first solution (Figure 5.7a) has least weigth,
the best first objective, which is equal to 10% of entire domain. The second
solution (Figure 5.7b) has maximum weight (100% of entire domain) which is the
worst first objective, and minimum compliance IT (63.3 N-m) which is the best

second objective.

(a) [10.0, 30374.7, 0, 205.0, 0.0] (b) [100.0, 63.3, 0, 25.0, 0.0]

Figure 5.7 Two known extreme true Pareto-optimal solutions of the linear-elastic

problem
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On the other hand, by the Pareto domination without goal attainment in
Definition 2.1, only one known extreme true Pareto-optimal solution is known in
the thermo-elastic problem for any values of T,. It is the same as the first known
extreme true Pareto-optimal solution of the linear-elastic problem in Figure 5.7a.
It has no elements contacting temperature surface boundary, it is not subjected to
thermal load and is subjected to only mechanical load as the linear-elastic
problem. For any value of T, objectives the known extreme true Pareto-optimal
solution for the thermo-elastic problem are the same as those of the linear-elastic

which are displayed in the square bracket in Figure 5.7a.

Similar to the heat conduction problem, the known extreme true Pareto-
optimal solutions may not be actually useful for the linear-elastic and thermo-
elastic problems. The extreme true Pareto-optimal solution in Figure 5.7a has
very poor second objective (compliance, IT) for the linear-elastic and thermo-
elastic problems while that in Figure 5.7b has very poor first objective (structural
weight) for the linear-elastic problem. Other non-dominated solutions that are

more useful than these two solutions are therefore necessary for the problems.

Figure 5.8 shows optimal structures, whose weights are 30% of the
domain, obtained by design sensitivity analysis (DSA) [71] which employs an
artificial decoded density decision variable. From the structures in Figure 5.8(a)
and Figure 5.8(b), the mechanical loading has more impact than the thermal
loading with the V-shaped material distribution. In the other hand, when the
thermal loading with high temperature T, has more impact than the mechanical
loading, the structure in Figure 5.8(c) has no elements that are in contact with the

temperature surface (Figure 5.6) in order to eliminate the thermal loading.

(a) No thermal load (b) High applied force
Figure 5.8 Optimal solutions for (a) no thermal load, (b) high applied force, and
(c) high thermal load by the design sensitivity analysis (DSA) [71].
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5.3. MOEA Operators for Continuum Topology Optimization

This section will present 6 MOEA operators — structural chromosome
encoding, relevant structural calculation, initial population generation, progressive
refinement run, objective increasing run, and performance matrix calculation —

for the continuum topology optimization problems.
5.3.1. Structural Chromosome Encoding

For a domain which is divided into a number of grids, a structure within
the domain is obtained by selective filling these grids or leaving the space empty.
A structure is encoded into MOEA framework by a binary string or chromosome
whose length is equal to the number of the divided grids. For a domain is divided
into N.xN, grids where N, and N, are number of rows and columns respectively, a
chromosome representing a structure can be described as follows. The first N, bits
of the chromosome representing the first row of the structure, the second N, bits
represents the second row and so on. To illustrate the encoding, Figure 5.9shows
examples of chromosome encoding of two different structures, which are

displayed by the shaded regions, in domains with 5x5 grids.

10101 01111 10110 11011 00101

Figure 5.9 Chromosome encodings of two structures in domain with 5x5 grids.
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5.3.2. Relevant Structural Calculation

Relevant structural determination for the objective calculation for all
continuum topology optimization problems can be described using the heat
conduction problem as an example. For an individual i, of which corresponding
structure is shown in left-hand side of Figure 5.10, the stripped shaded blocks are
useless material which are not in connection with others and necessary for
objective calculation. On the other hand, the non-stripped grey blocks which
connect the fixed structural element to the plate (Figure 5.10) are relevant
material blocks. Thereafter, objectives of the individual i is evaluated by the
structure without the useless blocks which is shown in the right-hand side of the

figure.

[ 11

Figure 5.10 Objective calculation.

In addition, all topology optimization problems employed in this thesis
have the minimized structural weight as the first objective. Compared to another
individual with equal relevant material blocks, an individual having useless
material blocks is, in fact, has a worst first objective. Therefore, the number of
useless material blocks should be added in a comparison of any two individuals,
when their calculated objectives are equal. Then, by the Pareto domination in
Definition 2.1, they do not dominate each other. However, by the consideration
of useless material blocks, the individual with the less number of useless material

blocks considerably dominates the other.
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5.3.3. Initial Population Generation

Unlike the benchmark multi-objective optimization problems in the
previous chapter, a usual randomized individual may not appropriate for all
topology problems. Initial population generation that can create an appropriate
individual for a topology problem is necessary. The initial population generation

for the employed problems is described as follows.

An individual in the initial randomized population should be customized to
employed problems. The specified initial population generations are necessary for
the employed problems. The appropriate individual is generated by taking into
accounts of fixed elements of the problems. An appropriate individual of the heat
conduction problem must have the connectivity between the fixed element, which
transfers input heat into the structure and heating plate (Figure 5.4). Similarly, for
the linear-elastic and thermo-elastic problems, an appropriate individual must
have the connectivity between all 4 fixed material elements (Figure 5.6). The
comparisons of inappropriate and appropriate individuals for the heat conduction
problem with domain 20 x 20 grids, and linear-elastic and thermo-elastic
problems with domain 40 x 10 grids are shown in Figure 5.11 and Figure 5.12,
respectively. Due to symmetry in linear-elastic and thermo-elastic problems, only

halves of the structures are shown in Figure 5.12.

Figure 5.11 An example of (a) an inappropriate individual and (b) an

appropriate individual for the heat conduction problem.



118

(a) (b)
Figure 5.12 An example of (a) an inappropriate individual and (b) an

appropriate individual for the linear-elastic and thermo-elastic problems.

The generation of a randomized appropriate individual can be described
as follows. At first, after a randomized individual is initially created, it is then
checked whether it is appropriate or not. If it is inappropriate, only useless
material and empty elements are re-randomized to obtain another individual
which is checked again. This generation process is then repeated until an
appropriate individual is obtained. The examples of randomized individual
generations for the heat conduction, and linear-elastic and thermo-elastic
problems are shown in Figure 5.13 and Figure 5.14, respectively. In the figures,
simple grey blocks are appropriate material elements while stripped shaded

blocks are inappropriate material elements.

Figure 5.13 An example of the successive generation of randomized individuals

for the heat conduction problem.



Figure 5.14 An example of the successive generation of randomized individuals

for the linear-elastic and thermo-elastic problems.

For the heat conduction problem (Figure 5.13), the first randomly
generated individual (Figure 5.13a) is inappropriate for the problem. Thereafter,
the random generation must be repeated, for the remaining the appropriate
elements, the other elements are repeatedly generated. However, the second
generated individual (Figure 5.13b) is still inappropriate for the problem and the
third generation will be necessary. After this generation, an appropriate individual
(Figure 5.13c) is obtained; therefore this generated individual is an appropriate
randomized individual and is a member of the initial population accordingly.
Similarly, individual generation for the linear-elastic and thermo-elastic problems

(Figure 5.14) uses only two successive generation processes.

In addition, a researcher can add some preferred individuals into the initial
population of a problem but, no preferred individuals are added into initial

population of any employed problems in this thesis.

Nonetheless, inappropriate individuals may arise during the searching
process. Therefore, a minimized objective and a maximized objective of these

individuals are simply set to the bad values of « and -, respectively.
5.3.4. Progressive Refinement Run

This thesis employs a progressive refinement run [116], which was

proposed for single-objective topology optimization problems, for the employed
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continuum topology optimization problems. It uses a number of running stages in
which divided domains is coarsest in the first running stage and finest in the final
running stage. Thereafter, the chromosome length, which equal to the number of
elements in the designed domain, is increased with the running stage. The
domain in the second running stage is discretized by dividing an element of the
previous stage into 2 x 2 grids and quadrupling chromosome length. For a
problem of which the domain is divided into 5 x 5 grids in the first running stage,
then domains with 10 x 10, and 20 x 20 grids are used in the second and third
running stages, respectively (Figure 5.15).

(a) (b) (c)
Figure 5.15 Divided domains of (a) first stage, (b) second stage, (c) third stage.

Compared to runs that use only the final stage domain for the
optimization, the progressive refinement run can exponentially reduce search
space in early running stages of the problem. If only the finest grid in the final
stage is used in entire run, the number of possible solutions is 2°* ~ 2.58 x 10",
However, in the progressive refinement run, the number of possible solutions are
only 2% ~ 3.36 x 107 and 2! ~ 1.27 x 10® in the first and second stage
respectively.

The procedure of the progressive refinement run is described by Figure
5.16. At first, population in the first running stage domain is randomly generated
and minimum numbers of all running stage, MG, are defined. Stage counter, i,
and generation counter, j, of the running stage are all set to 1. The population is

evolved by an MOEA process as the generation counter j is increased by 1. The
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generation counter, j, is increased until j is more than minimum numbers of
generation of stage i or MG, and solutions are converged. Thereafter the stage
counter i is increased by 1 and generation counter j of the next running stage is
initially set to 1. Initial population and archive in updated stage is generated by
those of previous stage. This generation will be described latter. The procedure is
repeated until generation counter j of final stage i is more than minimum number
of generation of the final stage, MG, and solutions in the final stage are
converged. The non-dominated solutions of the final archive of an MOEA with
archive or those of the final population of an MOEA without archive are output of

the progressive refinement run.

Generate initial population of first running stage. Set stage counter i = 1.
Define minimum number of generations (MG) of all stages.

v

Generation counter of |
currentstagej=1 |

Initialize population
and archive based on =
those of previous stage.

Y

7Increase Increase i = i+1, refine
MOEA process (31 j=j+1 domain and increase
+ chromosome length
G> MG, & Converge?j N 4
Y|

({LF N
» i = Final stage?
N =)

Figure 5.16 Procedure of domain refinement run.

The solution convergence can be described as follows. Given A and B are
sets of solutions of the population (NSGA-II) or the archive (SPEA-Il, CCMOA,
COGA-Il, CCCOGA-II), in the current generation and those in the k™ previous
generation respectively, where k is arbitrary. If k i‘s equal to 10 and A is the set of

solution in the current 100" generation, then, B is the set of solution in the 90"
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generation. The converged condition of solutions is simply given by the following

inequality
C(A,B)<C(BA) (5.4)

where C(A, B) is the coverage of the solution set A over the solution set B while
C(B, A) is the reverse of C(A, B). The solution set coverage, C, which was
proposed by Zitzler et al. [38], is used to compare any two non-dominated

solution sets. It is mathematically defined by

1. ]{a” eX"Ja' e X':a' <a"}
c(x,X")=! e | (5.5)

where a’<a” mean a' covers a”(a’ dominates or equals a") and C(X’,X") €
[0, 1). € (X’, X") = 1 means that all solutions in X"are dominated or equal to
solution inX'. For the other extreme value, C(X',X") = 0 represents the
situation in which none of the solution in X" are covered by the set X'. If
C(X',X") > C(X",X"), it can say that the solution set X' is better than the set
X" according to the coverage definition. By this discussion, the equation (5.5)
shows that the solution set A of the current generation is worse than or equal to

the solution set B of the k™ previous generation.

The generation of the initial population and archive of a running stage i =
2 will be described as follows. At the beginning, for an MOEA with archive, a
certain number of elitist solutions in the final archive of the previous running
stage i-1 are added into the initial archive. The addition of the elitist solutions is
as follows. Non-dominated solutions in the archive of the previous running stage
i-1 are moved into the initial archive of running stage i. If the number of the non-
dominated solutions is more than the defined number of elitist solutions, some
non-dominated solutions are truncated and put back into the final archive of the
previous running stage. Similarly, for an MOEA without archive, a certain number

of elitist solutions, in population of the previous running stage i-1 are added into
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the initial population of the running stage i. After all elitist individuals are
obtained, the other individuals in the initial population or archive are then one-
by-one generated from their predecessor in the remaining final population or
archive in the previous running stage. An example of an individual generation in
a domain with 10 x 10 grids from its 5 x 5 grids predecessor is shown in Figure
5.17. An element in a generated individual is randomly generated by probability
whether it will be material filled or empty. The probability is evaluated from the
contacted elements of its corresponding element in the predecessor. The
probability whether the element is filled or empty is equal to ratio of numbers of

filled or empty contacted elements to the total number of contacted elements.

(a) Predecessor (b) Generated individual
Figure 5.17 An example of a predecessor (a) and (b) its successor individual in a

domain with 10 x 10 grids.

For the predecessor in Figure 5.17(a), the element p has 4 contacted
elements g, r, s, and t, of which 3 is filled and 1 empty. Therefore, the
probabilities of the element p in the generated individual to be material filled and
empty elements are equal to 3/4 and 1/4, respectively as shown in Figure 5.17(b).
In the same way, the element u has only 3 contacted material, the probabilities
are 1/3 and 2/3, respectively. By these generation probabilities, the elements v

and w of the generated individual are certain to be filled and empty, respectively.
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As previously stated, performance objectives of a structure is evaluated by
the finite volume method (FVM). For the progressive refinement run, FVM uses
domain discretization as the domain divisor in the final running stage for the
- objective evaluation of any running stage. The progressive refinement run with 3
running stages is used for the heat conduction problem, while 2 running stages

for the linear-elastic and thermo-elastic problems.
5.3.5. Objective Increasing Run

Although the proposed MOEAs — COGA-II and CCCOGA-II - outperform
the well-established MOEAs — NSGA-Il and SPEA-II, values of M, deteriorate
when the number of objectives is increased when the results of distances from
true Pareto-optimal front, M, of the problems DTLZ1-7 in Table 4.6-Table 4.9
are studied. To reduce this degradation for multi-objective topology optimization
problems, this thesis proposes the objective increasing run. Using only a few
objectives to be optimized in the first run, the number of optimized objectives is

then increased one-by-one to the required number of objectives.

The procedure of the run can be described in Figure 5.18. At the
beginning, the progressive refinement run (Figure 5.16) by an MOEA is used to
search for solutions by optimizing only 2-3 objectives and treating other
objectives as problem constraints with the same as goals for these objectives to
ensure that the goals for all employed topology optimization problems comply
with the stated objectives in Table 5.4. Similar to an inappropriate individual, the
minimized and maximized objectives of an individual which is unable to satisfy
the problem constraints are simply set to « and -, respectively. After search
solutions for the initial number of objectives are converged, the number of
optimized objectives is increase by one while the remaining non-optimized
objectives are again treated as the problem constraints. The final population and
final archive from the search for previous number of optimized objectives are

directly transferred into the initial population and initial archive in the next run
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with the increasing number of optimized objectives. The running process is
continuously repeated until the solutions in the run with all optimized objectives
are converged. Similar to the progressive refinement run, solution convergence is
tested when the number of generation is more than the arbitrarily defined
minimum number of generations for a search of any number of objectives. The
converged solutions of the run with all optimized objectives are therefore output
of the objective increasing run. In addition, the objective increasing run can use
more than one MOEA in runs for the numbers of optimized objectives, while the
progressive refinement run (Figure 5.16) is used only for the initial number of

objectives.

Orders of objectives for the objective increasing run of the heat
conduction, and linear-elastic and thermo-elastic problems are the same as those

in Table 5.1 and Table 5.2, respectively.

Define minimum number of generation (MOG) of any number of
objectives. Set current number of objectives M = the first number
of objectives.

v

Start progressive refinement run with an selected MOEA by
optimizing only the first M objectives and treating the other

objectives as problem constraints.
|

Y
M = M+1, set generation counter for the currentM, k = 0.  <—

Y

Run an MOEA by optimizing only the first M objectives and
treating the others as problem constraints until k > MOG,,, and
solutions are converged.

Y

M = the final number of objectives ? N

Figure 5.18 Objective increasing run.
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5.3.6. Performance Metric

The performance objectives of an individual are numerically evaluated by
the finite volume simulation. However, there are many possible configurations for
each problem, the least number of possible configurations, which of a heat
conduction problem with the domain of 20x20 grids, is equal to 2*° ~
2.58x10'%°, The true Pareto front of the problem can only be generated by an
exhaustive search. Due to limitation of time, it is impossible to evaluate objectives
of all possible configurations in order to obtain the true Pareto front. Similar to
the linked DTLZ problems, artificial true Pareto optimal front obtained from the
non-dominated individuals of merged individuals of all runs is used instead of the
true Pareto front. Similar to evaluation of M, in previous chapter, a distance of a
solution i to true Pareto-optimal front, d,, the Euclidean distance of the solution i

to its nearest solution j on the artificial true Pareto-optimal front, is evaluated by

af Tpf Y
d = i 56
! \jg((mmf(f,,)m] - 3

where f, and f, are objectives k of solutions i and j, respectively. The (f)min @nd

the following equation.

(f)max @re minimum and maximum value of an objective k of the artificial true
Pareto-optimal solutions. The criterion M, of a non-dominated solution set is
equal to the average of d; of non-dominated individuals in the set. For the
diversity criterion, the results of clustering index (CI) of the benchmark problems
in pervious chapter are considered good enough to show diversity of obtained
solutions by employed MOEAs. In addition, it is not necessary to evaluate
performance of employed MOEAs by direct comparisons of solutions, which use
many comparing times, and it is hard for the direct comparisons of solutions in an
optimization problem with more than 2 objectives. The criterion M; is quite

acceptable and easy to evaluate performances of MOEAs. Therefore, only the
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criterion M, is necessary for the comparison of performance of all employed

MOEA:s for all employed continuum topology optimization problems.

The following topic will display simulation results and discussions of

continuum topology optimization problems which are employed in this thesis.
5.4. Simulation Results and Discussions

The progressive refinement and objective increasing runs are not used for
comparison of all employed MOEAs. The domains for the comparison of the
employed MOEAs are divided into 20 x 20 grids, and 40 x 10 grids for the heat
conduction, and linear-elastic and thermo-elastic problems, respectively. The
chromosome length in the heat conduction problem is 400. While due to
symmetry of a structure, the chromosome length for linear-elastic and thermo-

elastic problems is 200.
5.4.1. MOEA Settings

For co-operative co-evolutionary multi-objective algorithm (CCMOA) and
co-operative co-evolutionary improved compressed-objective (CCCOGA-II), as
described in Chapter II, a solution, which is a structure, is divided into several
components or species. The numbers of species used for the heat conduction
problem, and the linear-elastic and thermo-elastic problems are 5 and 10

respectively. Species arrangements for the problems are shown in Figure 5.19.

AN
AN
AN\

(a) (b)

Figure 5.19 Species arrangements in (a) the heat conduction and (b) linear-

AN\
DA

AN
AN
AN

elastic and thermo-elastic problems.
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The parameter setting for the employed MOEAs is shown in Table 5.3. For

the thermo-elastic problem, only one value of temperature T, on the temperature

surface (Figure 5.6), 10°C, is used for comparison.

Table 5.3 Parameter setting of the MOEAs for continuum topology optimization

problems.

Parameter

Setting and Value

Chromosome coding

Binary chromosome with chromosome length of 400
(heat conduction problem), 80 (linear-elastic

problem), and 200 (thermo-elastic problem)

Number of objectives

3-6 (heat conduction problem), 2-5 (linear-elastic and

thermo-elastic problems)

Crossover method

Uniform crossover with probability = 0.9

Mutation method

Bit-flip polynomial mutation with probability = 0.02
(for NSGA-II, SPEA-II,COGA-II) and probability =
0.1 (for CCMOA, CCCOGA-II)

Population size 100
Archive size' 100
No. of generations 600
No. of repeated runs 10

for SPEA-II, CCMOA, COGA-II, and CCCOGA-IL

Goals for design objectives in all problems are shown in Table 5.4; they

are used for the Pareto domination with goal attainment [40] which is described

by equations (2.21)-(2.24). The first objective of any problem, weight of a

structure, is measured by percentage of material elements in domain. By the

Pareto domination with defined goals in Table 5.4, it notes that no true Pareto-

optimal solutions are known for any employed continuum topology optimization

problems.
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Table 5.4 Goals for all design objectives of continuum topology optimization

problems.
Problems | Heat conduction Linear-elastic and Thermo-elastic
Objective 1 < 50% <75%
Objective 2 > 30°C < 600 N-m
Objective 3 = 0.75°C < 5 holes
Objective 4 < 5 holes < 200 m?
Objective 5 < 400 m™ <200 m?!
Objective 6 < 400 m™ -

For the continuum topology optimization problems, the criterion average
distance to artificial true Pareto-optimal front (M;), which is described in the topic
5.3.6, is used for comparing performances of all employed multi-objective
evolutionary algorithms (MOEAs). Thereafter, progressive refinement and
increasing objectives runs by selected MOEAs will be used to search non-
dominated solutions of all problems — heat condution, linear-elastic and thermo-

elastic problems.

Without concerning 3 geometrically structural objectives, the progressive
refinement is used for the problems with only basic objectives. On other hand, the
objective increasing run is used for the problem with all considered objectives. By
the runs, solutions for two numbers of optimized objectives in each problem are
displayed in thesis, where the numbers of optimized objectives are 3 and 6 for the
heat conduction problem, and 2 and 5 for the linear-elastic and thermo-elastic

problems.

The progressive refinement run (Figure 5.16) is used for optimizing basic
objectives cases, while the objective increasing run (Figure 5.18) is used for
optimizing all objectives cases. The orders of increasing objectives are the same as

those in Table 5.1 for the heat conduction problem and Table 5.2 for linear-
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elastic and thermo-elastic problems. The initial optimized objectives of the run are
thus basic objectives of an employed topology optimization problem. There are 2
and 3 initial optimized objectives for the heat conduction, and linear-elastic and

thermo-elastic problems, respectively.

Parameter settings of the progressive and objective increasing runs in all
problems are shown in Table 5.5 and Table 5.6, respectively. Goals for design
objectives in all problems in the progressive refinement and objective increasing

runs are the same as those in Table 5.4.

Table 5.5 Parameter setting of the progressive refinement runs in continuum

topology optimization problems.

Parameter Setting and Value

Binary chromosome whose length is equal to
Chromosome coding number of divided elements in designed

domain of each running stage

3 and 2 for the heat conduction, and linear-
Numbers of objectives
elastic and thermo-elastic problems

Crossover method,
mutation method, Same as in Table 5.3

population size, and archive size

Minimum number of generations
50 for all running stage
in each running stage

k" previous generation for
k = 40 for all running stage
convergence test

Number of elitist individuals from
25% of population’ or archive size?
previous stage

No. of repeated runs 5

! for an MOEA without archive, % for an MOEA with archive
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Table 5.6 Parameter setting of the objective increasing runs in continuum

topology optimization problems.

Parameter Setting and Value

Binary chromosome, chromosome length is
Chromosome coding equal to number of divided elements in

designed domain

6 and 5 for the heat conduction, and linear-

Numbers of objectives
elastic and thermo-elastic problems

Number of initial optimized 3 and 2 for the heat conduction, and linear-

objectives elastic and thermo-elastic problems

Parameter setting of progressive
refinement run for the initial Same as in Table 5.5

optimized objectives

Crossover, mutation methods,
Same as in Table 5.3

population size, and archive size

Minimum number of generation

for each number of optimized 100 for all numbers of optimized objectives

objectives

Problem constraints due to
Same as goals for the non-optimized

remaining non-optimized
objectives in Table 5.4

objectives

k' previous generation for
k = 40 for all convergence test

convergence test

No. of repeated runs 5

5.4.2. Overall results and Discussions

After the simulation run for the comparisons of all MOEAs — fast elitist
non-dominated sortin genetic algorithm (NSGA-II), improved strength Pareto
evolutionay algorithm (SPEA-II), co-operative co-evolutionary multi-objectivew
algorithm (CCMOA), improved compressed-objective genetic algorithm (COGA-
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II), and co-operative co-evolutionary improved compressed-objective genetic

algorithm (CCCOGA-II) - for the employed continuum topology optimization

problems, Comparisons of average (Avg) and standard deviation (SD) values

average distance to artificial true Pareto-optimal front (M) of the MOEAs for the

employed problems are shown in Table 5.7-Table 5.9, respectively.

Table 5.7 Comparisons of average (Avg) and standard deviation (SD) values of

M, of the heat conduction problem.

Number of
NSGA-II SPEA-II CCMOA COGA-II | CCCOGA-II

objectives
3 Avg 0.1134 0.1415 0.2150 0.0435 0.0631
SD 0.0529 0.0790 0.0808 0.0253 0.0659
4 Avg 0.0705 0.0834 0.1805 0.0173 0.0465
SD 0.0216 0.0343 0.1007 0.0088 0.0335
5 Avg 0.1480 0.1240 0.1738 0.0709 0.0797
SD 0.0581 0.0526 0.0485 0.0236 0.0376
P Avg 0.1269 0.1156 0.1087 0.0798 0.0568
SD 0.0346 0.0278 0.0276 0.0266 0.0250

Table 5.8 Comparisons of average (Avg) and standard deviation (SD) values of

M, of the linear-elastic problem.

Number of

S— NSGA-II SPEA-II CCMOA COGA-II | CCCOGA-I

5 Avg 0.0111 0.0121 0.0108 - -
SD 0.0020 0.0036 0.0023 - -

3 Avg 0.1001 0.1282 0.0880 0.0592 0.0299
SD 0.0356 0.0372 0.0303 0.0333 0.0175

1 Avg 0.1057 0.1492 0.1122 0.0816 0.0632
SD 0.0569 0.0498 0.0240 0.0429 0.0150

5 Avg 0.1819 0.1823 0.1561 0.0389 0.0254
SD 0.1590 0.1252 0.0714 0.0129 0.0128




133

Table 5.9 Comparisons of average (Avg) and standard deviation (SD) values of

M, of the thermo-elastic problem.

Number of
shjaatives NSGA-II SPEA-II CCMOA | COGA-II | CCCOGA-I
Avg 0.0206 0.0201 0.0198
; SD 0.0046 0.0078 0.0072
Avg 0.0873 0.0569 0.0524 0.0553 0.0265
; SD 0.0371 0.0239 0.0291 0.0393 0.0082
Avg 0.1095 0.1597 0.1270 0.0777 0.0628
: SD 0.0186 0.0287 0.0221 0.0323 0.0164
Avg 0.1941 0.2743 0.1353 0.0872 0.0573
: SD 0.0362 0.0692 0.0257 0.0627 0.0265

From values of M, of the heat conduction problem in Table 5.7, CCMOA
is worse than NSGA-II and SPEA-II, and in the same way, CCCOGA-II is also
worse than is predecessor, COGA-II, for the problem with 3-5 objectives. This
shows that there is strong coupling among decision variables for this problem.
However, for the highest number of objectives, CCMOA is superior to NSGA-II
and SPEA-II, and CCCOGA-II is superior to COGA-II by the effectiveness of co-
operative co-evolution similar to the linked problems in Chapter IV. By winning
score effectiveness in COGA-Il and CCCOGA-II, COGA-II is superior to NSGA-II
and SPEA-II, and CCCOGA-II is also superior to CCMOA for any numbers of

objectives.

From values of M; of the linear-elastic and thermo-elastic problems in
Table 5.8 and Table 5.9, CCMOA is mostly better than NSGA-Il and SPEA-II.
Only for the problems with 4 objectives that CCOMOA is marginally worse than
NSGA-IL. In the same way, CCCOGA-II is also better than COGA-II, for all
numbers of objectives. Compared to the heat conduction problem, there is less
linkage among decision variables in the linear-elastic and thermo-elastic

problems. However, effects of the linkage among decision variables on co-
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operative co-evolution for multi-objective continuum topology optimization
problem should be further investigated. By the winning score effectiveness in
COGA-II and CCCOGA-II, COGA-II is superior to NSGA-Il and SPEA-II, and
CCCOGA-II is superior to CCMOA, regardless of numbers of objectives.

The simulation results of the comparisons of all employed MOEAs show
that the use of winning score can improve MOEA performance for the continuum
topology optimization problems with three-or-more objectives. On the other
hand, the effectiveness of co-operative co-evolution strategy for multi-objective
continuum topology optimization is problem dependent; previously stated, it

should be further studies.

5.4.3. Progressive Refinement and Objective Increasing Runs — Results

and Discussions

COGA-II is picked for the progressive refinement run (Figure 5.16) for the
heat conduction problem with 3 objectives and all 6 objectives in the objective
increasing run (Figure 5.18) of which the initial number of objectives is equal to 3
(Table 5.6). For the linear-elastic and thermo-elastic problems, CCMOA is picked
for the progressive refinement run for the problems with 2 objectives, and the
initial number of objectives, which is equal to 2, in the objective increasing run,
while CCCOGA-II is selected for the other numbers of objectives in the objective

increasing run.

The selection of MOEAs for the runs is considered by the emperical results
of criteria M; and CI of benchmark problems in Chapter IV (Table 4.6-Table
4.21) and the results of M, (Table 5.7-Table 5.9). In practical, it is not necessary
to tested all candidated MOEAs by the criteria. From the empirical results, the
employment of winning score in COGA-II and CCCOGA-II can improve the
performance of MOEAs for all problems with three-or-more objectives. Although
co-operative co-evolution in CCMOA and CCCOGA-II can improve the

performance of MOEAs in most employed problems, it is not suitable for some
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problems such as the linked DTLZ6 and heat condution problems. Its
effectiveness should be further studied. However, a user may know whether it is

suitable for a particular problem or not by experience.

Therefore, the selection of MOEAs for an optimization problem can be
described as follows. For a problem which the co-operative co-evolution is
suitable, CCMOA should be picked for a searching run with only 2 optimized
objectives while CCCOGA-II should be picked for a searching run opimizing
three-or-more objectives. On the other hand, if the co-operative co-evolution is
not suitable, NSGA-II or SPEA-II can be picked in a searching run opimizing 2
objectives while COGA-II should be used for a searching run with three-or-more

optimized objectives.

For a continuum topology optimization, objectives of a solution are
evaluated by numerical method such as finite element method and finite volume
method. The computational time of objective evaluation is then much more than
that of MOEA process. Then, total computational time of a search can be
indicated by the number of objective evaluations. Since it is hard to reduce the
computational time of objective evaluations, a suitable searching run with a good
MOEA which can reduce total computational time is necessary. The proposed
searching runs — progressive refinement and objective increasing runs — with the
suitable selected MOEA can accelerate solutions and reduce the number of
objective evalutions in order to reduce the number of objective evalutions and

total computational time.

Average computational time on the same computer (a Pentium IV 3.06
GHz processor with 2.00 GB of RAM) of the proposed searching runs for the

employed continuum topology optimization problems are displayed in Table
5.10.

The non-dominated solutions of all employed continuum topology

optimization problems are as following topics. The objectives of a non-dominated
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solution which will be displayed in the following topics are not exact values. They
are only tended values, since they are evaluated by coarse mesh due to restriction

of time.

Table 5.10 Average computational time of progressive refinement and objective

increasing runs of employed continuum topology optimization problems.

Problem Progressive Refinement Run | Objective Increasing Run

Heat Condution 6.12 minutes 7.58 minutes
Linear-Elastic 109.39 minutes 139.20 minutes

T, = 10°C 154.54 minutes 197.18 minutes
Thermo-

T, = 20°C 170.64 minutes 211.01 minutes
Elastic

T, =40°C 182.96 minutes 220.31 minutes

The multiple non-dominated solutions are shown for each employed
problem. As previously stated in Chapter II, this thesis will not choose one

solution for an employed problem as that in Figure 2.7.

True Pareto-optimal solutions of an .employed continuum topology
optimization can be obtained by only an exhaustive search. However, due to
restriction of time, it is impossible to evaluate objectives of all possible
configurations in order to obtain the true Pareto-optimal solutions. The non-
domainted solutions which are shown in the following topics may not the true

Pareto-optimal solutions, they are only approximated solutions.
1. Heat Conduction Non-dominated Solutions

The non-dominated front with 20 selected non-dominated solutions with
temperature (°C) profile in the heating plate and temperature (°C) contours of
the selected solutions of the problem with 3 objectives and 6 objectives are shown
in Figure 5.20-Figure 5.23. For a structure in Figure 5.20 and Figure 5.22,

numbers in the bracket ( ) are corresponding objectives of the structure.
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Figure 5.20 Non-dominated front and 20 selected solutions with temperature
(°C) profile in the heating plate of the heat conduction problem with 3 objectives

(Weight, T, SD,).
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Figure 5.22 Non-dominated front and 20 selected solutions with temperature

profile in the heating plate of the heat conduction problem with 6 objectives
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Figure 5.23 Temperature (°C) contours of 20 selected solutions of the heat

conduction problem with 6 objectives.
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From Figure 5.20 and Figure 5.22, optimized structures transfer heat into
middle elements in top rows, and distribute the heat to a plate in order to reduce
temperature standard deviation SD; in the plate. In addition, some structures
which are displayed by the numbers 3, 6-8, 11, 12, 18, 19 in Figure 5.20 and 3,
4, 7,10, 12, 14, 15 in Figure 5.22 have convective surface below middle portion
of the plate, in which temperature is higher than other portions, to transfer heat to
the surroundings in order to reduce temperature in the portion and the SD; in the

plate.

The obtained solutions in Figure 5.20 and Figure 5.22 are not dominated
by two extreme true Pareto-optimal solutions by Pareto domination without goal
attainment in Figure 5.5. They are much more useful than the extreme true
Pareto-optimal solutions; an objective of the obtained solutions is not very poor

as that of the extreme true Pareto-optimal solutions.

By optimizing all design objectives in Figure 5.22, structures with small
inside holes such as the eleventh structure in Figure 5.20 and complex structures
such as the first structure in Figure 5.20 are eliminated. And also, no structures
with inside holes by this optimization are obtained. Compared to structures in
Figure 5.20, in overall, the structures in Figure 5.22 are quite simpler than those
are obtained by optimizing only 3 basic objectives in Figure 5.20.

2. Linear-Elastic Non-dominated Solutions

After all repeated runs, examples of 12 selected non-dominated solutions
and vertical deflection contours of the selected structures for 2 and 5 objectives
are shown in Figure 5.24-Figure 5.27. In addition, objectives and vertical
deflection contours of 4 solutions — A, B, C, and D - approximated from the
optimized solution by the design sensitivity method analyis (DSA) [71] which
employs an artificial decoded density decision variable in Figure 5.8(a), are

shown in Figure 5.24 and Figure 5.25.
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Figure 5.24 Non-dominated front and 12 selected solutions of the linear elastic

problem with 2 objectives (Weight, Compliance).

Figure 5.25 Vertical deflection (mm) contours of 12 selected solutions of the

linear elastic problem with 2 objectives.
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Figure 5.26 Non-dominated front and 12 selected solutions of the linear elastic
problem with 5 objectives (Weight, Compliance, No. holes, R,,, MRH,,,)
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Figure 5.27 Vertical deflection (mm) contours of 12 selected solutions of the

linear elastic problem with 5 objectives

Compared to the previous study [71], the obtained structures are more V-

shaped. Since the concentrated force is applied at the middle point of a structure
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(Figure 5.6), material elements in the middle portion of the structures can more
reduce deflection or compliance than those of other portions. Therefore, the
optimized structures in Figure 5.24 and Figure 5.26 have v-shaped material
distribution. They are quite different from the structure the structure of the study
for the linear-elastic problem in Figure 5.8a. Since they have more material
elements material elements in the middle portion, they are better than the
structure in Figure 5.8a. This can be described the comparison of solutions
obtained by the progressive refinement run with the second proposed MOEA -
CCMOA - and 4 approximated solutions — A, B, C, and D - which are evaluated
from the solution by design sensitivity analysis method [71] in Figure 5.24. From
the graph in Figure 5.24, the obtained solutions are much superior to the

approximated solutions.

Similar to the heat conduction problem, the obtained solutions in Figure
5.24 and Figure 5.26 are not dominated by two extreme true Pareto-optimal
solutions by Pareto domination without goal attainment of the linear-elastic
problem in Figure 5.7. They are much more useful than the extreme true Pareto-
optimal solutions; an objective j of the obtained solutions is not very poor such as
the second objective, compliance (IT), and the first objective, structural weight, of

the first and second known exireme true Pareto-optimal solutions, respectively.

Since the structures by optimizing only 2 objectives are quite simple, then
there is little difference between in Figure 5.24, and those by optimizing all design
objectives in Figure 5.26.

3. Thermo-Elastic Non-dominated Solutions

After all repeated runs, examples of 12 selected non-dominated solutions,
deflection and temperature contours of the selected solutions of the problems
with 2 and 5 objectives for all 3 values of T, — 10°C, 20°C, and 40°C - are
shown in Figure 5.28-Figure 5.43. Since optimized solutiond for T, = 40°C have

no elememts that contact to temperature boundary surface in, then there are no
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thermal load for this value of T,. Temperature contours of the selected solutions

of only 2 values of T, - 10°C, 20°C - are shown.
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Figure 5.29 Vertical deflection (mm) contours of 12 selected solutions of the

thermo-elastic problem with 2 objectives for T, = 10°C.



Figure 5.30 Temperature (°C) contours of 12 selected solutions of the thermo-
elastic problem with 2 objectives for T, = 10°C.
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Figure 5.31 Non-dominated front and 12 selected solutions of the thermo-elastic
problem with 5 objectives for T, = 10°C.



Figure 5.32 Vertical deflection (mm) contours of 12 selected solutions of the

thermo-elastic problem with 5 objectives for T, = 10°C.

Figure 5.33 Temperature (°C) contours of 12 selected solutions of the thermo-

elastic problem with 5 objectives for T, = 10°C
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Figure 5.34 Non-dominated front and 12 selected solutions of the thermo-elastic
problem with 2 objectives for T, = 20°C.
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Figure 5.36 Temperature (°C) contours of 12 selected solutions of the thermo-
elastic problem with 2 objectives for T, = 20°C.
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Figure 5.37 Non-dominated front and 12 selected solutions of the thermo-elastic

problem with 5 objectives for T, = 20°C.
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Figure 5.38 Vertical deflection (mm) contours of 12 selected solutions of the

thermo-elastic problem with 5 objectives for T, = 20°C.
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Figure 5.39 Temperature (°C) contours of 12 selected solutions of the thermo-
elastic problem with 5 objectives for T, = 20°C.
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Figure 5.41 Vertical deflection (mm) contours of 12 selected solutions of the

thermo-elastic problem with 2 objectives for T, = 40°C.
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thermo-elastic problem with 5 objectives for T, = 40°C.
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The material distribution of optimized structures for all three values of T, in
Figure 5.28-Figure 5.42 can be described as follows.

Similar to the linear-elastic problem, the optimized structure in for the
problem with T, = 10°C also have material elements in middle portion of the
optimized structures, which reduce the vertical displacement at the applied load
point, in order to reduce the mechanical compliance. However, the optimized
structures have only a few elements in the middle portion that contact the
temperature boundary surface (Figure 5.6) to avoid the thermal loading as much
as possible in order to reduce the thermal compliance. In addition, the optimized
structures have more convective area to transfer heat from the temperature

surface in order to reduce their thermal compliances.

For T, = 20°C, material distributions of optimized structures of which
weight is less than 65% of the domain are similar to those for T, = 10°C.
However, since thermal compliance, which is represented by the first term in
equation (5.3), is an integral over structural volume. The thermal compliance of a
structure is equal to the summation of thermal compliance of all material
elements of the structure. For any 2 structures with similar average temperatures
in entire material regions, average thermal compliance densities of the structures
are then closed to each other. However, since thermal compliance of a structure
is equal to the summation of thermal compliance of all material elements, the
thermal compliance of the structure with more material region area or volume is
more than that of the other. In addition, since a structure with high weight has
many material elements which can reduce vertical deflection at applied force
location. Then, impact of mechanical loading tend to decrease while that of
thermal tend to increase, when structural weight is more. Therefore, due to higher
thermal loading of T, = 20°C, a high-weight structure has much more thermal
compliance than that of the problem with T, = 10°C, the thermal loading exerts
more impact than the mechanical loading. Elements contacting temperature

surface of the structure are eliminated in order to vanish thermal compliance.
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Similar to the high-weight structure for T, = 20°C, thermal loading has
much more impact than mechanical loading for the highest temperature, T, =
40°C. Therefore, to avoid any thermal loading, and be subjected to only
mechanical loading, all optimized structures in Figure 5.40 and Figure 5.42 do
not have elements contacting the temperature surface. In addition, due to this
avoidance, a optimized structures have many material elements in the middle
bottom portion in order to reduce the mechanical compliance which is the total

structural compliance.

Compared to the previous study [71], for T, = 10°C and 20°C, the
material of the obtained structures with weight of about 30% of the domain is
distributed in V-shape which is similar to the solution of the previous study in
Figure 5.8(b). Then, at this weight, the mechanical loading exerts more impact
than the thermal loading for these temperatures. On the other hand, the thermal
loading has more impact than the mechanical loading for T, = 40°C; the
material of the obtained structures with weight of about 30% of the domain is
similar to the solution of the previous study in Figure 5.8(c). Thus, the optimized
structures which are obtained from the progressive refinement and objective

increasing runs by the proposed MOEAs in Figure 5.20-Figure 5.42 are reliable.

The obtained solutions in Figure 5.24, Figure 5.26, Figure 5.28, Figure
5.31, Figure 5.34, Figure 5.37, Figure 5.40, and Figure 5.42 are not dominated
by only one known extreme true Pareto-optimal solutions by Pareto domination
without goal attainment for any values of T, in Figure 5.7a. They are much more
useful than the extreme true Pareto-optimal solutions; an objective j of the
obtained solutions is not very poor such as the second objective, compliance (IT),

of the known extreme true Pareto-optimal solution.

By optimizing all 5 design objectives including 3 geometrically structural
objectives, the obtained structures are quite simpler than those are obtained by
optimizing only 2 basic objectives. In addition, optimized structures with many
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small holes, such as optimized structures for T, = 10°C in Figure 5.28, T, =
20°C in Figure 5.34, and light-weight structures for T, = 40°C in Figure 5.40, are
replaced by the optimized structures with a few large holes. For example, by
optimizing all design objectives, the seventh optimized structure, which is
obtained by optimizing only 2 basic objectives of the thermo-elastic problem with
T, = 10°C, in Figure 5.28 is replaced by the seventh optimized structure in
Figure 5.31. Although by considering only 2 basic objectives, the optimized
structure from Figure 5.31, is marginally worse than that from Figure 5.28; it is

simpler and much easier for further detailed design such as shape design.
5.5. Closing Remarks

From the simulation results of this chapter, proposed MOEAs — CCMOA,
COGA-II, and CCCOGA-II — are better than NSGA-II and SPEA-II. This shows
that the proposed MOEAs can improve performances of MOEAs not only for
benchmark problems, but also for continuum topology optimization problems,
which are real-world problems. They can also search for reliable solutions for the
continuum topology optimization problems. Due to the previously stated weak
point of a sensitivity analysis method of the previous study [71] and solutions
comparison in the linear-elastic problem in Figure 5.24, the proposed MOEAs are

therefore more suitable for continuum topology optimization problems.
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