Chapter IV

Multi-Objective Benchmark Problems, Results and

Discussion

As previously stated, the purposes of a multi-objective evolutionary
algorithm are to find good non-dominated solutions which must possess 2
qualities — they should be close to the true Pareto-optimal front and are diverse
along their front [5]. Similarly, Deb [60] stated that there are two tasks that a
multi-objective evolutionary algorithm (MOEA) should do well in solving a multi-
objective optimization problem (MOOP). The first task is to guide the search
towards the true Pareto-optimal region, and the second task is to maintain the
population diversity in the current non-dominated front. He purposed 6
necessary difficult features, multimodality, deception, isolated optimum,
convexity or non-convexity, discontinuity in true Pareto-optimal front, and non-
uniform distribution of solutions in Pareto-optimal front, multi-objective
optimization problems should have. The first 3 features, multimodality, deception,
and isolated optimum, cause difficulty in true Pareto front convergence, while the
last 3 features, convexity or non-convexity, discontinuity in true Pareto-optimal
front, and non-uniform distribution of solutions in Pareto-optimal front, of the
diversity maintenance. Deb [60] also mentioned another difficult feature,
collateral noise, which is a difficult feature of true Pareto front convergence,
comes from the improper evaluation of low-order building blocks (partial
solutions which may lead towards the true Pareto-optimal front) due to the
excessive noise that may come from other part of the solution vector. However,
such problems can be solved by using adequate population size [61]. Therefore
the collateral noise may not be necessary for a benchmark multi-objective

optimization problem.

The necessary difficult features for benchmark multi-objective optimization

problems are described as follows. The first feature, multimodality, represents
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many local Pareto-optimal fronts a multi-objective evolutionary algorithm may
get struck to a local optimal front. The second feature, deception, causes a multi-
objective evolutionary algorithm to get misled towards deceptive attractors. For
the third feature, isolated optimum true Pareto-optimal front is placed isolated
from the rest of the search space. The multi-objective optimization problem that
represents this feature has the significantly low density of solutions near the true
Pareto-optimal front compared to other regions in the search space. The next
feature, the convexity or non-convexity in the true Pareto-optimal front, causes
the difficulty to a multi-objective evolutionary algorithm having fitness of each
solution is assigned proportional to the number of solutions it dominates [60]. For
the fifth feature, true Pareto-optimal front is not continuous in which it contains a
set of discrete sub-regions of the front. By this feature, the multi-objective
evolutionary algorithm may not obtain solutions of all sub-regions since it may
lose solutions within sub-regions in some generations due to the competition
among solutions in current population. The last difficult feature is the non-
uniform distribution of solutions in the true Pareto-optimal front. If the true
Pareto-optimal front is not uniformly represented by feasible solutions, some
regions in the front may be represented by a higher density of solutions than
other regions. In such cases, there is a natural tendency for a multi-objective
evolutionary algorithm to find a biased distribution in the true Pareto-optimal

region.

The benchmark problems for multi-objective evolutionary algorithm
evaluations in this thesis should represent all of the difficult features. In addition,
they should have a tunable number of variables which then creates the adjustable
search space. Many well-established multi-objective optimization problems had
been proposed, most of them are the two-objective optimization problems. The
characteristics of the well-established multi-objective optimization problems,
SCH1-2 [62], KUR [63], FON [64], POL [65], ZDT1-6 [38], VNT1-2 [66], and
DTLZ1-7 [39], are displayed in the Table 4.1.
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Table 4.1 Characteristics summation of well-known multi-objective benchmark

problems.
Difficulty features
Prob. [NOJ | TND
MM | DT | ISL | CV | NCV | DCT | NUF

SCH1-2 2 x x v x v x x x
KUR 2 X X X X X v v X
FON 2 v x x x x ve x x
POL 2 x x x x x v v x
ZDT1-6 2 4 v v v v v v v
VNT1-2 3 x x x x v v v x
DTZL1-7 | 22 v v x v v v v v

where NOJ and TND represent number of objective and a tunable number of
variables, respectively, while MM, DT, ISL, CV, NCV, DCT, and NUF represent
multimodality, deceptive, isolated, convex, non-convex, discontinuous, and non-

uniformly true Pareto-optimal fronts, respectively.

Table 4.1 shows that for two-objective optimization problems, the
problems ZDT1-6 represent all features that cause difficulties to multi-objective
evolutionary algorithms and also have a tunable number of decision variables.
While the other well-known two-objective optimization problems represent only
some features and most of them have a fixed number of decision variables. For
three-or-more objectives optimization, the problems DTZL1-7 represent most of
necessary difficult features, only the deceptive true Pareto-optimal front is not
include in the problems, and also have a tunable number of decision variables.
On the other hand, the problems VNT1-2 represent only convex or non-convex
and discontinuous true Pareto-optimal front and cannot tune the number of
decision variables which is fixed with two. It can be then noted that DTZL1-7 are
more suitable than VNT1-2. Therefore, from the above discussion this thesis will
employ the problems ZDT1-6 and DTLZ1-7 as the benchmark two-objective

optimization problems and three-or-more-objective optimization problems,
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respectively. However, there is no coupling among decision variable of the ZDT1-
6 and DTLZ1-7 problems, since most real-world problems have linkage between
decision variables, then the problems may not be appropriate for to test MOEAs
because this thesis uses MOEAs to solve continuum topology optimization
problems which are the real-world problems having the linkage among decision
variables. Deb et. al [67] proposed linked problems by introduce linkage among
decision variables into problems ZDT1-6 and DTLZ1-7. This thesis will also
employ linked DTLZ1-7 problems as the benchmark problems. The two
objectives optimization benchmark ZDT1-6 problems, three-or-more objectives
optimization benchmark DTLZ1-7 problems, linked DTLZ1-7 problems,
performance evaluation criteria, and simulation results and discussions will be

described as the following topics.

4.1. Two Objectives Benchmark Problems - ZDT1-6

Zitzler et. al [38] introduced the six two-objective test functions ZDT1-6
with a tunable number of decision variable. The problems ZDT1-6 represent the
different difficult features identified by Deb [60]. ZDT1 has a convex true Pareto-
optimal set. ZDTZ is the non-convex counterpart to ZDT1. ZDT3 has several
convex disconnected regions. ZDT4 has a multi-modal Pareto optimal set. ZDT5
describes a deceptive problem and distinguishes itself from the other test
functions. ZDT6 includes two difficulties caused by the non-uniformly of the
search space; first, the Pareto-optimal solutions are non-uniformity distributed
along the global Pareto-optimal set and second, the density of the solutions is
lowest near the Pareto-optimal front and highest away from the front. For the test
problems ZDT1-6, each of the test functions is structured in the same manner and
consist itself of three functions f;,g,h [60] :

Minimise T(x) = (f,(x), f,(x))
subject to fi(%) = f(x;,%5,..0X,)
(%) = G(X 0,1, Xg,25 -+, X,) x hi(£;, @) (4.1)
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where n is number of variables The function f, is a function of the first g variables
(g < n), the function g is a function of the other n-q variables, while the function
h is a function of g and f,. The benchmark problems ZDT1-6 employ g = 1 for all

problems and are described as follows.
4.1.1. Test Problem ZDT1

The problem ZDT1 has a convex Pareto-optimal front:

fil) = x;
g(%5,X35000y %)= 1+ QZ;x, /(n=1)

h(f,9)=1-f/g (4.2)

where n = 30, and x, € [0,1] for all i. The true Pareto-optimal front (Figure 4.1a)
is formed with g(x) = 1.

1; 3 14

f %

0 f; 1 0 fi 1
(a) ZDT1 (b) ZDT2

Figure 4.1 True Pareto-optimal front of (a) ZDT1, and (b) ZDT2.

4.1.2. Test Problem ZDT2

The problem ZDTZ2 has a non-convex Pareto-optimal front:

filxy) = x
(X5 %5y %, ) =149Y 1 x, /(g —1)
h(f,,9)=1-(£/g)’ (43)
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where n = 30, and x, € [0,1] for all i. The true Pareto-optimal front (Figure 4.1b)
is formed with g(x) = 1.

4.1.3. Test Problem ZDT3

The problem ZDT3 has several convex disconnected regions:

filxy) = x
g (%3 Xgpe0r %, ) =149 x,/(n-1)
h(f,9) =1~ /g -(f/g)sin(107 ) (4.4)

where n = 30, and x, € [0,1] for all i. The true Pareto-optimal front (Figure 4.2a)
is formed with g(x) = 1. The introduced sine function in h causes discontinuity in

the Pareto-optimal front. However, there is no discontinuity in the solution space.
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(a) ZDT3 (b) ZDT5
Figure 4.2 True Pareto-optimal front of (a) ZDT3, and (b) ZDT5.

4.1.4.Test Problem ZDT4

The problem ZDT4 has a multi-modality Pareto optimal set which contains
21° local Pareto fronts:

f](xl) =X

(o] ST E 1+10(m—1)+z::2(x,2 —10005(47rx[))
h(f.9)=1-f/g (4.5)
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where n = 10, x; € [0,1], and x;,X3,...,x, € [-5,5]. The global Pareto-optimal
front, which is the same as that of ZDT2 (Figure 4.1b), is formed with g(x) = 1

and convex.
4.1.5. Test Problem ZDT5

The problem ZDT?5 is a deceptive problem:

filx) =1 + u(x)
(X X,) = D0 0{U(x;))
h(f,g)=1/f; (4.6)

where u(x,) gives the number of ones in the bit vector,

2+u(x,) if u(x;)<5 (4.7)

vlu(x,)) = { AN, e

and n = 11, x; € {0,1}*, and x,,...,x,, € {0,1}°. The true Pareto-optimal front

(Figure 4.2a), is formed with g(x) = 10 and convex.
4.1.6.Test Problem ZDT6

The problem ZDT6 presents two difficulties of the non-uniform search
space which are described as follows. First, the true Pareto-optimal solutions are
non-uniformly distributed along the true Pareto front. Second, the density of the

solutions in search space is lowest near the true Pareto front and highest away
from the front

filx,) = 1-e™sin®(67x,)

0.25
g(xpe0x,) =14+ 9[(Z?=2x,)/(n = 1):|
h(f.8)=1-(f/g)’ 4.8)

where n = 10, x; € [0,1] for all i. The global Pareto-optimal front, which is
identical to that of ZDT2 (Figure 4.2a), is formed with g(x) = 1 and non-convex.
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4.2. Three-Or-More Objectives Benchmark Problems - DTLZ1-7

The seven optimization test cases DTLZ1-7 are developed by Deb et al.
[39]. The problems are minimisation problems with n decision variables
represented by a decision variable vector x and m objectives. The decision
variable vector x can be partitioned into 2 non-overlapping variable vectors such
that x = [x, x,,]. For a decision variable vector x = [x;, x, ..., X,] , its partitioned

vectors X, = [Xy, Xp, ..., Xpa] and X, = [X, Xy, -0y X,), then [x,

and |x,,| are m-
1 and k = (n-m+1) respectively. The first six problems — DTLZ1-6 - can be

described in the following form:

Minimize T(x) = (f,(x),..., f,,(x))

subject to £(x) = hy(xy,..., X, 8(X,)),
fo(x) = hy(xy,.., X, 1, 9(%,,)),

f5(%) = hy(xy,..., X, 5, 9(X,,)),

i

Il

Fna(R) = hy (X, %5, 9(x,,))
and Fu(®) = by, (x;, g(x,,)) (4.9)

These test problems reflect various characteristics that can be found in
real-world problems. In addition, the functions that are used to construct all test
problems are also interchangeable. This means that other variants of the test
problems can be easily constructed using the existing functions. Furthermore,
these problems are also scalable in terms of the number of decision variables n =
m+k-1 and the number of objectives m. As a result, a change in the algorithm
performance due to an increase or decrease of the number of decision variables
and/or objectives can be easily interpreted. In this thesis, the problems will be
scaled by changing the number of objectives only where the interested numbers
of objectives are 3-6. By increasing the number of objectives, the difficulty level of

the problem will also increase. Detailed description of each test problem follows.
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4.2.1. Test Problem DTLZ1

The problem DTLZ1 has a linear Pareto front. The true Pareto front for 3
objectives DTLZ1 is shown in Figure 4.3. The functions that form DTLZ1 are

given by
fi(x) =0.5%,x, - x,,_,(1+ g(x,,)),
fz(x) = 0.5X1X2 e (1 = X1 )1+ g(xm))s
frna(%) = 0.5x, (1 - x,)(1 + g(x,,)),
fa(x)=0.5(1~x,)1 + g(x,,))
and g(x,,) =100||x,|+ D (x, ~0.5)* - cos(207(x, - 0.5)) (4.10)

X\ €Xp,

where x, €[0,1] for all i. The Pareto front is formed with g(x,,) = 0 where the
Pareto optimal solutions correspond to x; = 0.5 for all x; € x,, and the objective
values lie on the linear hyper-surface 3", f = 0.5. A convergence of solutions to
the true Pareto front is difficult to achieve since the search space contains 11™"*'-
1 local Pareto fronts. This means that the solutions generated by a genetic

algorithm can be attracted to the local fronts prior to reaching the true front.

R
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(a) front view (b) side view

Figure 4.3 True Pareto-optimal front of 3 objectives DTLZ1.
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4.2.2. Test Problem DTLZ2

The problem DTLZ2 has a spherical Pareto front. The true Pareto front of
DTLZ2, which is the same as those of DTLZ3 and DTLZ4, is shown in Figure 4.4.
The functions that form DTLZ2 are given by

fi(x)=(1+g(x,,))cos(x, 7/ 2)---cos(x,,_,7 / 2)cos(x,, 7/ 2),
f(x) = (1+ g(x,,))cos(x, 7/ 2)---cos(x,,_,7 / 2)sin(x,,_ 7/ 2),
fi(x) =1+ g(x,,))cos(x,z/2)---sin(x,,_,7/ 2),

fn(x) = (1+ g(x,,))sin(x, 7/ 2)
and glx, )= Z e =0.5) (4.11)

where x, €[0,1] for all i. The Pareto front is formed with g(x,) = O where the
Pareto optimal solutions correspond to x; = 0.5 for all x; € x,, and the objective
values lie on the spherical hyper-surface 3", f*=1. This problem can be used to
identify the ability of the algorithm to scale up its performance when the number

of objectives is large.

(a) front view (b) side view

Figure 4.4 True Pareto front for three-objective DTLZ2-4.
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4.2.3. Test Problem DTLZ3

The problem DTLZ3 also has a spherical Pareto front (Figure 4.4).
However, the problem contains multiple local Pareto fronts. The functions that

form DTLZ3 are given by

fi(x) = (1+g(x,))cos(x, 7/ 2)---cos(x,, o7 | 2)cos(x,, 7/ 2),
f,(x) = (1+ g(x,,))cos(x,7/ 2)---cos(x,, o7/ 2)sin(x,, 7/ 2),

fi(x) =1+ g(x,,))cos(x, 7/ 2)---sin(x,,_,7/2),

f.(x)=(1+g(x,))sin(x,7/2)

and g(x, ) =100 |]xm| + > ([x;—0.5] — cos[207(x, — 0.5)]) (4.12)
where x; € [0,1] for all i. From equation (4.12), the structure of objective
functions in the DTLZ3 problem is similar to that from the DTLZ2 problem while
a(x,,) in the DTLZ3 problem and g(x,) in the DTLZ1 problem are the same
functions. As a result, both the global Pareto front of the DTLZ3 problem and the
Pareto front of the DTLZ2 problem has the same shape. However, the use of
a(x,,) as described in equation (10) makes the DTLZ3 problem more difficult than
the DTLZ2 problem since 3"™*!-1 local Pareto fronts are now introduced to the
problem. It is noted that the global Pareto front of the DTLZ3 problem is formed
with g(x,,) = 0 where the global Pareto optimal solutions correspond to x, = 0.5

for all x, € x, and the objective values lie on the spherical hyper-surface

Z:1 sz =1
4.2.4. Test Problem DTLZ4

The test problem DTLZ4 also has a spherical Pareto front with the shape
similar to that from the DTLZ2 problem (Figure 4.4). The functions that form
DTLZ4 are given by

fi(x)=(1+g(x,))cos(x’ 7 /2)---cos(x’_,x/2)cos(x? ,x/2),
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f,(x) = (1+ g(x,,))cos(xf x| 2)-+-cos(x2_,x | 2)sin(x] 7/ 2),

f,(x) = (1+ g(x,))cos(x/ 7/ 2)---sin(x’_,7 / 2),

f.(x)=(1+g(x,))sin(x’z/2)

and g(xm) = Z (x! —0.5)2 (413)
where x;, € [0,1] for i = 1, ..., n. It can be seen that the objective function in
equation (11) are created by replacing x; for i = 1, ..., m-1 in equation (4.11)

with x”. In this investigation, A is set to 100; this modification allows a dense set
of solutions to exist near the f,-f, plane. In other words, the Pareto optimal
solutions are non-uniformly distributed along the Pareto front. The condition for a

solution to be Pareto optimal for this problem is the same as that given for the
DTLZ2 problem.

4.2.5. Test Problem DTLZ5

The Pareto front of the problem DTLZ5, which is identical to that of
DTLZ6, can be visually displayed as a curve. The true-Pareto front of 3 objectives
DTLZ5 is shown in Figure 4.5.The functions that form DTLZ5 are given by

fi(x)=(1+g(x,,))cos(@,)---cos(8,_,)cos(b,,;),
fo(x)=(1+g(x_))cos(b,)::-cos(b,_,)sin(@,_,),
fa(x) = (1+ g(x,,))cos(d,)---sin(6,,_5),

fn(x)=(1+g(x,,))sin(6))

with g(x,)= Y. (x,—0.5)’
where 6, =xz/2
and 0=—2" (1+2g(x )x)fori=2,...,m-1 (4.14)

4(1+g(x,,))
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where x; € [0,1] for all i. This test problem is created by changing the argument of
the sinusoidal functions within the DTLZ2 objective functions from mx/2 to 6. As
a result, this problem will test the ability of the search algorithm to produce
converged solutions that form a curve. The performance can be visually observed
by plotting the f, objective with any other objectives. The conditions for a
solution to be Pareto optimal for this problem are also the same as that given for
the DTLZ2 problem.

- b @;5sz' 0.5.0" T
(a) front view (b) side view

Figure 4.5 True Pareto front for three-objective DTLZ5 and DTLZ6.

4.2.6.Test Problem DTLZ6

The problem DTLZ6, of which 3 objectives true Pareto front is shown in
the Figure 4.5, is a harder version of the test problem DTLZ5. Similar to the
modification done on the DTLZZ2 problem in order to create the DTLZ3 problem,
the modification made to the DTLZ5 also involves the use of a different g(x,,)
function, which leads to the introduction of local Pareto fronts. However, in the
test problem DTLZ6 the g(x,,) function is given by

g(x,,)= Z X (4.15)

X EXyy,



80

The true Pareto front is formed with g(x,,) = 0 where the Pareto optimal solutions
correspond to x; = O for all x; € x,,. Multiple local Pareto fronts make this problem

a hard problem.
4.2.7. Test Problem DTLZ7

This problem is constructs using the problem stated in equation (4.9). This

problem has a disconnected set of Pareto-optimal regions:

fi(x)=x,,
fz(x) = Xog,
f3(x) = x,,

fm(x) = (1 + g(xm))h(.ﬁ!fzv"!fM.—lsg)
where g(xm)=1+i X,

|Xm] XXy

m-1

and h(fl,fz,...,fM_l,g)=m—Z[%—;(l+sin(37rfi))} (4.16)
i=1

where x, € [0,1] for all i. This test problem has 2™ disconnected Pareto-optimal

regions in the search space. The true-Pareto front of 3 objectives DTLZ7 is shown

in the Figure 4.6. The function g requires |x, | = k decision variables inn = m +

k-1. The Pareto-optimal solutions corresponds to x,, = 0.

(a) front view (b) side view

Figure 4.6 True Pareto front for three-objective DTLZ7.
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There are no linkage among decision variables of DTLZ1-4, and DTLZ7
problems, while DTLZ5-6 problems have linkage among decision variables.
However the DTLZ5-6 problems are not enough for the evaluation of
performance of MOEAs. The linked benchmark problems, which are linked
DTLZ1-7 problems, will be presented in the following topic.

4.3. Linked Benchmark Problems - Linked DTLZ1-7

Although the ZDT and DTLZ problems have suitable difficult features,
there are no linkages among variables or bits representing any variable, which
can cause difficulty for MOEA, especially for MOEAs employs co-operative co-
evolution [43] such as [31], [32], [35]. These problems may not be appropriate,
since in most real-world optimization problems, there is linkage among decision
variables in encoded chromosome of any solution. Deb et al. [67] introduced
explicit linkages among variables so as to develop difficult to the benchmark ZDT
and DTLZ problems, this thesis will use the linked DTLZ problems to test
performance of the proposed MOEAs, improved compressed genetic algorithm
(COGA-II), co-operative co-evolutionary multi-objective algorithm (CCMOA),
and co-operative co-evolutionary improved compressed-objective genetic
algorithm (CCCOGA-II). The linked DTLZ problems are necessary for the last two
proposed MOEAs, CCMOA and CCCOGA-II, for the reason that these MOEAs

employ co-operative co-evolution [43].

For a linked DTLZ problem with an encoded decision variable vector x =
(x4 ..., X,,), @ temporary variable vector y = (y;, ..., y,) is a function of x, and
another variable vector z = (z,, ..., z,) of which each representative variable z, =
y?. Similar to that of normal DTLZ problems, the variable vectors x, y and z are
partitioned into two non-overlapping vectors such that x = [x, x,.], v = [y, v,.]
and z = [z, z,] in which the first partitioned vector, x,, y,, and z, are size of n-k
and the second partitioned vectors are size of k. By the variable vector z, linked

DTLZ problems can be described in the following form:
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Minimise T(2) = (f(2),.... f,(2))
subject to fi(z) = h(z,,...,2,4,9(z,)),
fo(2) = hy(2y,... 2,1, 9(2,)),
f:(2) = hy(2y,...,2,, 2, 9(2,,)),

fmh1 (z) = hm_l (zu Zg, g(zm))s
and f.(z)=h,(2,,9(z,)) (4.17)

There are there types of linked problems, which identified by the function
representing for the variable vector y. For a mapping function, by a constant nxn
metric M, a linear mapping function, which is employed for the first and second
types of the linked problems, is given by y = M=x. The metric M can be
partitioned into 4 non-overlapping metrics A, B, C, and D, thereafter the linear

mapping function can be written in the following form:

I O & 4.18

v.| |C D|x, lel
where the size of the metrics A, B, C, and D are (n-k) X (n-k), (n-k) Xk, kX (n-k),
and kX k respectively.

For a first type of linked DTLZ, L,-DTLZ, by setting B = 0 and C = 0, the

mapping function of y is given by

v | A 0| x,
)lo o] @19
where A = [q,], g, is a random number € [-1,1], and D = [d], d, is a random

number e [-1,1].

For the L,-DTLZ, a partitioned vector of y is a function of only its
corresponding partitioned vector of x only, subsequently there are no coupling
between x, and x,. On the other hand, in order to make coupling between

variable vectors x, and x,,, the second type of DTLZ, L,-DTLZ, employs non-zero
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metrics B and C, therefore the mapping function for L,-DTLZ can be written by

the following equation.
y=M-x (4.20)
where M = [M,], of which M; is a random number € [-1,1].

The L,-DTLZ, and L,-DTLZ employ linear mapping functions. On the
other hand, the third type of linked DTLZ, L,-DTLZ, uses a non-linear mapping
function. This thesis employs a quadratic mapping function as introduced in [67],
by using the metric M as that of L,-DTLZ, the mapping function of L,-DTLZ is

given by
Yy x12
Yy x5
Cl=M-|7F (4.21)
Yn L 5

It should note that true Pareto-optimal front of linked DTLZ problems
cannot be represented by any explicit functions and also are varied by a constant
randomized metric M. This thesis will use linked DTLZ2 and DTLZ6 problems of
all three linked types for performance evaluation of any employed MOEAs. Since
the normal DTLZ6 problem has linkage among decision variables while the
normal DTLZ2 problem does not have such linkage, therefore, in the same linked
type, a linked DTLZ6 problem has more linkage among decision variables than

that of a linked DTLZZ2 problem.
4.4. Performance Evaluation Criteria

As previously stated, good non-dominated solutions should be close to the
true Pareto optimal front and diverse along their front. There are many
performance metrics for the evaluation of a multi-objective evolutionary
algorithm (MOEA) [68]. This thesis will employ two performance metrics; the first
metric, M;, which is proposed by Zitzler et al [38], is average distance of non-
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dominated solutions to the true Pareto optimal front, while the second metric is
the clustering index (CI), a diversity metric which is firstly proposed in this thesis,
indicates the distribution of any non-dominated solution set on its front. These

two performance metrics are described as follows.
4.4.1. Average Distance to True Pareto-Optimal Front (M,)

The average distance to true Pareto-optimal solutions (M;) [38] can be
evaluated in solution space or objective space. For this thesis, the metric M; will
be measured by in objective space, a distance of a solution i to true Pareto-
optimal front, d,, which is the Euclidean distance of the solution i to its nearest

solution j on the true Pareto-optimal front, is evaluated by

o) fifeo Y
d/= o e ik == 422
‘ Jg[cmm —(mmij e

where f, and f, are objectives k of solutions i and j, respectively while (f)., and

(f)max @re minimum and maximum value of an objective k of the true Pareto-
optimal solutions. For the true Pareto-optimal front that can be written in explicit
form, the distance d, can be calculated by Lagrange multiplication method [69].
The metric M; of a solution set F is therefore equal to average d, of solutions in
the set F. Since true Pareto-optimal front of a linked DTLZ problem cannot be
represented by explicit form, therefore M, of the problem cannot be solved by the
Lagrange multiplication method [69]. To solve this problem, artificial true Pareto
optimal front which is obtained from the non-dominated individuals of merged
individuals of all runs of any multi-objective evolutionary algorithms (MOEAs) is
used instead of the true Pareto front. Similar to that of the normal DTLZ
problems, the distance d,, of a solution i is the Euclidean distance of the solution i
to its nearest solution j on the artificial true Pareto-optimal front. However, it
should be noted that M, which is obtained from artificial true Pareto-optimal front
is not the exact value for a linked DTLZ problem. It can only be used to compare

closeness to Pareto-optimal front of solutions by the employed MOEAs.
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4.4.2. Clustering Index

A clustering index (CI) is diversity metric which indicates distribution of a
non-dominated solution set on its hyper-surface. The clustering index does not
need grid division of an objective i, which is hard to identify a suitable number of
divided grids of the objective i, as the grid diversity metric presented by Deb and
Jain [68]. For a non-dominated solution set A of size Q, the clustering index, CI,
of the set A is evaluated from a generated non-dominated solution set B of size R,
in which R > Q. The evaluations of the CI of the solutions in set A are as

follows.

1) Copy all solutions in set A to the generated solution set B.
2) Randomize the first parent, p,, from the set A.

3) Randomize the second parent, p,, from the set B.

4) Perform crossover and mutation to these two parents in order to obtained two

children, ¢, and ¢,, and then calculate objectives of the children.

5) Check whether each child individual neither dominates nor is dominated by
any solution in the set A or not. If both children are not satisfied this
condition, go back to step 3). If only one child individual is satisfied, it is put
into the set B, else if both individuals are satisfied the condition, only one

individual is selected at random to put into the set B.

6) Increase the number of members of B by one, if the set B is not yet fulfilled,

go back to step 2), else if the set B is fulfilled, go to the next step.

7) Divide R solutions in set B into Q groups by the clustering method [27], then
find the number of groups, S, that contains the first Q solutions, which are
identical to solutions in set A. The clustering index, CI, of the set A is equal to

the quotient of S and Q.
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In each time of addition of solution into the solution set B, a first parent,
p;, which is randomly selected from the solution set A, is not changed, only a
second parent is randomly re-selected if their children do not satisfy the condition
to put into the set B and only one solution is randomly selected from children,
which are both satisfied the condition. Therefore for each time of addition, any
first randomly selected parent, p,, contributes one solution to put into the set B.
Since the number of generated solution in set B, R, is much more than the
number of solutions in set A, Q, it can conclude that the contribution of solutions
in set A to the generated solutions in set B are close to each other. For a good
generated non-dominated solution set B, if hyper-surface of its non-dominated
solutions is divided into Q equal portions, it should have at least one solution in
any divided portion. Therefore, a defined size of set B, R, should be significantly

large as possible.

For example, a set A with 20 non-dominated solutions of the DTLZ2
problem [39] with 3 objectives (Figure 4.7a), after the generation of a set B with
1000 non-dominated solutions (Figure 4.7b), by clustering method [27], 20
divided solution groups, which are represented by different scatter plots, are
obtained. Thereafter, the clustering index (CI) is equal to the number of groups
containing a solution from the set A, which is equal to 13, divide the total number

of group, which is equal to 20, thus the CI of the set A is equal to 0.65.

(a) Solution set A (b) Generated solution set B
Figure 4.7 An example CI evaluation of non-dominated solutions of the

problem DTLZ2 with 3 objectives.
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However, by restriction of time the number of generated solutions in a set
B is limited, then the generated solutions may not cover their hyper-surface
especially for an optimization problem with the large number of objectives. In
addition, the clustering index (CI) needs many generated solutions; therefore, by
limit of time it is suitable for optimization problems which can be written in
explicit forms. In this thesis, the number of generated solutions in CI evaluation

for any problems is equal to 4000.
4.5. Simulation Results and Discussions

The average distance to true Pareto-optimal front (M;) and clustering
index (CI) of all employed multi-objective evolutionary algorithms (MOEAs) for

any benchmark problems, will be described in the following topics.
4.5.1.ZDT1-6

The problems ZDT1-6 are two-objective optimization problems, therefore
only 3 MOEAs, which are NSGA-Il, SPEA-II, and CCMOA are used for these

problems.

In addition, mutation probability varies with characteristics of problems;
for a multimodality problem, ZDT4, and a deceptive problem, ZDT5, the
mutation probabilities for such problems should be more than the other
problems. For CCMOA, only one part (species) in chromosome is performed
mutation, then chromosome length of an individual to be performed mutation of
CCMOA are much less than that of NSGA-II and SPEA-Il. The mutation
probabilities of CCMOA should be more than those of NSGA-II, SPEA-II.

The parameter setting for the MOEAs in all problems is shown in Table
4.2. Thereafter, the obtained results of M; and CI of all MOEAs of the problems
ZDT1-6 are displayed in Table 4.3 and Table 4.4, respectively.



Table 4.2 Parameter setting of MOEAs for ZDT problems.

Parameter

Setting and Value

Chromosome Coding

Binary chromosome with chromosome length of a 900

(ZDT1-3); 300 (ZDT4; ZDT6); 80 (ZDT5)

Species Specification

An species represents of a decision variable
(chromosome length = 30 for species of ZDT1-4,6, first
species of ZDT5, 5 for other species of ZDT5)

Crossover method

Uniform crossover with probability = 1.0

Mutation method

Bit-flip mutation

Mutation probability

For NSGA-II and SPEA-II, mutation probability = 0.01
(ZDT1-3,6), 0.04 (ZDT4-5)

For CCMOA, mutation probability = 0.033 (ZDT1-3,6,
first species of ZDT5), 0.133 (ZDT4), 0.2 (other species

of ZDT5).
Population size 100
Archive size (for
100
SPEA-II, CCMOA)
No. of generations 600
No. of repeated runs 30

Table 4.3 Comparisons of average (Avg) and standard deviation (SD) values of

M, of ZDT1-6.
M, NSGA-II SPEA-II CCMOA
Avg SD Avg SD Avg SD
ZDT1 0.0048 | 0.0011 | 0.0052 | 0.0009 | 0.0008 | 0.0002
ZDT2 0.0039 | 0.0011 | 0.0041 | 0.0008 | 0.0016 | 0.0004
ZDT3 0.0028 | 0.0004 | 0.0032 | 0.0006 | 0.0004 | 0.0002
ZDT4 14.119 | 3.9287 | 13.857 | 4.5690 | 0.0033 | 0.0096
ZDT5 0.0701 | 0.0074 | 0.0835 | 0.0092 | 0.0063 | 0.0076
ZDT6 0.0248 | 0.0163 | 0.0383 | 0.0133 | 0.0000 | 0.0000
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Table 4.4 Comparisons of average (Avg) and standard deviation (SD) values of

ClI of ZDT1-6.
o NSGA-II SPEA-II CCMOA
Avg SD Avg SD Avg SD
ZDT1 0.8250 | 0.0281 | 0.8880 | 0.0211 | 0.8553 | 0.0196
ZDT2 0.8703 | 0.0366 | 0.9140 | 0.0225 | 0.8630 | 0.0256
ZDT3 0.8143 | 0.0292 | 0.8680 | 0.0339 | 0.8147 | 0.0416
ZDT4 0.7723 | 0.0898 | 0.7817 | 0.2204 | 0.8320 | 0.0552
ZDT5 0.9989 | 0.0059 | 1.0000 | 0.0000 | 0.9613 | 0.0230
ZDT6 0.7842 | 0.0481 | 0.7572 | 0.0993 | 0.8660 | 0.0148

From values of M,, which is a minimization criterion, in Table 4.3,
CCMOA outperforms NSGA-II and SPEA-II for any ZDT problems. It can also
obtain solutions which close to true Pareto-optimal fronts in which the most
average value of M, for CCMOA is only 0.0063 which is very close to 0. In the
other hand, for CI, a maximum criterion, in Table 4.4, all MOEAs give good
results for this criterion. SPEA-II gives the best average values of CI for 4
problems — ZDT1-3, and ZDT5, while CCMOA gives the best average values of
CI for other problems — ZDT4, and ZDT6. The CI values of SPEA-Il and CCMOA
are better than those of NSGA-II. In overall, by this criterion, SPEA-II gives the
best results; however it is marginally better than NSGA-II and CCMOA.

4.5.2.DTLZ1-7

The parameter setting for all employed MOEAs in all problems is shown in
Table 4.5. The results of M; and CI of the DTLZ1-7 problems are displayed in
Table 4.6-Table 4.13. Table 4.6-Table 4.9 display values of M, for the problems
with 3-6 objectives respectively, while Table 4.10-Table 4.13 display values of CI
for the problems with 3-6 objectives respectively. Figure 4.8 shows distribution of
obtained non-dominated solutions of the three-objective DTLZ4 problem, of
which Pareto optimal solutions are non-uniformly distributed along the Pareto

front, of all employed MOEAs from one selected run.
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Table 4.5 Parameter setting of MOEAs for DTLZ problems.

Parameter Setting and Value

Chromosome Coding Real-value representation

An species represents of a decision variable
Species Specification '
(chromosome length for a species = 1)

Crossover method SBX recombination with probability = 1 [11]

Mutation method Variable-wise polynomial mutation
1/number of decision variables for NSGA-II, SPEA-II
and COGA-II, 0.5 for CCMOA, and CCCOGA-II

Mutation probability

Population size 100
Archive size' 7 100
No. of generations 800
No. of repeated runs 30

for SPEA-II, CCMOA, COGA-II, and CCCOGA-II

Table 4.6 Comparisons of average (Avg) and standard deviation (SD) values of

M, of DTLZ1-7 with 3 objectives.

Problems NSGA-II | SPEA-Il | CCMOA | COGA-II | CCCOGA-II
DTLZ1 Avg | 0.0184 0.0197 0.0012 0.0099 0.0009
SD | 0.04%4 0.0392 0.0012 0.0300 0.0002
DTLZ2 Avg | 0.0090 0.0089 0.0000 0.0033 0.0000
SD | 0.0018 0.0014 0.0000 0.0006 0.0000
DTLZ3 Avg | 0.0102 0.0324 0.0025 0.0079 0.0018
SD | 0.0133 0.0521 0.0024 0.0115 0.0022
DTLZ4 Avg | 0.0088 0.0094 0.0000 0.0026 0.0000
SD | 0.0015 0.0018 0.0000 0.0008 0.0000
DTLZ5 Avg | 0.0012 0.0010 0.0000 0.0004 0.0000
SD | 0.0003 0.0003 0.0000 0.0001 0.0000
DTLZ6 Avg | 0.0641 0.1269 0.0126 0.0369 0.0082
SD | 0.0168 0.0331 0.0071 0.0097 0.0049
DTLZ7 Avg | 0.0163 0.0162 0.0062 0.0069 0.0038
SD | 0.0034 0.0026 0.0019 0.0014 0.0016
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Table 4.7 Comparisons of average (Avg) and standard deviation (SD) values of
M, of DTLZ1-7 with 4 objectives.

Problems NSGA-II | SPEA-l | CCMOA | COGA-II | CCCOGA-II
DTLZ1 Avg | 22841 343.97 1.0701 3.3139 0.0046
SD | 10549 56.344 0.7916 4.8817 0.0074
DTLZ2 Avg | 0.0395 0.0687 0.0000 0.0054 0.0000
SD | 0.0120 0.0201 0.0000 0.0015 0.0000
DTLZ3 Avg | 351.18 316.23 0.6721 15.454 0.0059
SD | 59.885 49.012 0.6096 10.236 0.0259
DTLZ4 Avg | 0.0416 0.1200 0.0000 0.0043 0.0000
SD | 0.0204 0.0276 0.0000 0.0018 0.0000
DTLZ5 Avg | 1.5054 1.5696 1.7562 1.4583 1.4608
SD | 0.0643 0.0627 0.0709 0.0751 0.0994
DTLZ6 Avg | 10.166 7.2514 Nde29 4.6022 2.9480
SD | 0.6209 0.4098 0.5276 0.4689 0.2493
DTLZ7 Avg | 0.1076 0.1082 0.0426 0.0306 0.0242
SD | 0.0093 0.0136 0.0062 0.0047 0.0057

Table 4.8 Comparisons of average (Avg) and standard deviation (SD) values of

M, of DTLZ1-7 with 5 objectives.

Problems NSGA-II | SPEA-I | CCMOA | COGA-II | CCCOGA-I
DTLZ1 Avg | 836.17 956.50 16.645 28.118 0.2602
SD | 89.932 68.417 5.9984 24.311 0.1715
DTLZ2 Avg | 0.4600 1.3523 0.0001 0.0108 0.0001
SD | 0.0987 0.1092 0.0004 0.0034 0.0000
DTLZ3 Avg | 843.19 1024.7 20.545 254.63 0.3680
SD | 96.118 88.152 6.6199 68.619 0.4140
DTLZ4 Avg | 1.2253 1.5949 0.0003 0.0054 0.0000
SD | 0.2204 0.0742 0.0014 0.0017 0.0002
DTLZ5 Avg | 2.2099 2.3259 2.5867 2.1381 2.0071
SD | 0.0863 0.1088 0.1207 0.0593 0.0289
DTLZ6 Avg | 14.370 15.287 10.9600 | 6.5050 6.0440
SD | 0.2809 0.1743 0.3813 0.3127 0.2904
DTLZ7 Avg | 0.2236 0.3917 0.0866 0.0652 0.0497
SD | 0.0328 0.0590 0.0096 0.0078 0.0079




92

Table 4.9 Comparisons of average (Avg) and standard deviation (SD) values of

M, of DTLZ1-7 with 6 objectives.

Problems NSGA-II | SPEA-II | CCMOA | COGA-Il | CCCOGA-II
DTLZ1 Avg | 1114.0 1230.98 | 33.202 161.84 2.0919
SD | 62.783 23.460 7.3610 78.768 2.9743
DTLZ2 Avg | 1.6093 2.2346 0.0169 0.0237 0.0001
SD | 0.1630 0.0308 0.0195 0.0079 0.0000
DTLZ3 Avg | 1223.3 16744 41.537 482.55 2.1483
SD | 74.211 64.004 15.012 57.373 2.0233
DTLZ4 Avg | 1.9653 2.2703 0.0458 0.0088 0.0000
SD | 0.0834 0.0268 0.0300 0.0045 0.0000
DTLZS Avg | 3.2738 4.5426 3.9159 2.5996 2.5490
SD | 0.2849 0.1072 0.1183 0.0794 0.0721
DTLZ6 Avg | 19.451 20.362 18.273 10.495 9.6950
SD | 0.3376 0.2201 0.3880 0.4016 1.0441
DTLZ7 Avg | 0.4441 0.9042 0.1492 0.0836 0.0703
SD | 0.0664 0.1348 0.0124 0.0127 0.0139

Table 4.10 Comparisons of average (Avg) and standard deviation (SD) values of
CI of DTLZ1-7 with 3 objectives.

Problems NSGA-II | SPEA-II | CCMOA | COGA-II | CCCOGA-I
DTLZ1 Avg | 0.5467 0.8420 | 0.8633 0.8080 0.8297
SD | 0.0411 0.0816 0.0195 0.0551 0.0283
DTLZ2 Avg | 0.5880 0.8967 0.8713 0.8440 0.8400
SD | 0.0322 0.0234 0.0234 0.0304 0.0232
DTLZ3 Avg | 0.5573 0.7673 0.7773 0.7900 0.8037
SD | 0.0264 0.0571 0.0675 0.0574 0.0367
DTLZ4 Avg | 0.6153 0.8847 0.8620 0.8473 0.8360
SD | 0.0229 0.0249 0.0743 0.0277 0.0356
DTLZ5 Avg | 0.7940 0.9200 0.8420 0.8900 0.8797
SD | 0.0267 0.0174 0.0278 0.0217 0.0154
DTLZ6 Avg | 0.6533 0.7833 0.8353 0.8360 0.8700
SD | 0.0416 0.1088 0.0243 |- 0.0251 0.0373
DTLZ7 Avg | 0.5633 0.8340 0.8287 0.8180 0.8173
SD | 0.0282 0.0243 0.0299 0.0307 0.0198
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Table 4.11 Comparisons of average (Avg) and standard deviation (SD) values of
CI of DTLZ1-7 with 4 objectives.

Problems NSGA-II | SPEA-II | CCMOA | COGA-II | CCCOGA-I
DTLZ1 Avg | 0.4053 0.7253 0.7473 0.7847 0.7767
SD | 0.0588 0.0226 0.0825 0.0646 0.0511
DTLZ2 Avg | 0.5213 0.8253 0.8327 0.8220 0.8073
SD | 0.0352 0.0326 0.0215 0.0250 0.0250
DTLZ3 Avg | 0.4720 0.7427 0.7580 0.7800 0.8053
SD | 0.0509 0.0314 0.0722 0.0638 0.0581
DTLZ4 Avg | 0.5513 0.7973 0.8360 0.8067 0.7960
SD | 0.0415 0.0289 0.0157 0.0192 0.0265
DTLZ5 Avg | 0.5007 0.7693 | 0.7640 0.7913 0.7933
SD | 0.0284 0.0291 | 0.0237 0.0252 0.0292
DTLZE Avg | 0.4980 0.7880 0.7553 0.7587 0.7447
SD | 0.0300 0.0307 0.0756 0.0249 0.0478
DTLZ7 Avg | 0.5400 0.8187 0.7960 0.7747 0.7580
SD | 0.0270 0.0270 0.0270 0.0344 0.0451

Table 4.12 Comparisons of average (Avg) and standard deviation (SD) values of

CI of DTLZ1-7 with 5 objectives.

Problems NSGA-II | SPEA-II | CCMOA | COGA-II | CCCOGA-II
DTLZ1 Avg | 0.4700 0.7400 0.7087 0.7353 0.7207
SD | 0.0358 0.0507 0.0739 0.0557 0.0684
DTLZ2 Avg | 0.4367 0.7780 0.8287 0.8327 0.7900
SD | 0.0358 0.0351 0.0287 0.0272 0.0330
DTLZ3 Avg | 0.4527 0.6813 0.6747 0.7033 0.7033
SD | 0.0427 0.0310 0.0243 0.0976 0.0765
DTLZ4 Avg | 0.4827 0.7867 0.7460 0.8153 0.7100
SD | 0.0282 0.0270 0.1040 0.0219 0.0708
DTLZ5 Avg | 0.4740 0.7620 0.7253 0.7613 0.7093
SD | 0.0321 0.0313 0.0410 0.0292 0.0245
DTLZ6 Avg | 0.5053 0.8880 0.7440 0.7607 0.7373
SD | 0.0323 0.0175 0.0447 0.0227 0.0539
DTLZ7 Avg | 0.5033 0.7793 0.7780 0.7413 0.7293
SD | 0.0209 0.0347 0.0313 0.0373 0.0355
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Table 4.13 Comparisons of average (Avg) and standard deviation (SD) values of

CI of DTLZ1-7 with 6 objectives.

Problems NSGA-II | SPEA-II | CCMOA | COGA-II | CCCOGA-II
DTLZ1 Avg | 0.4740 0.8353 0.7260 0.7627 0.7547
SD | 0.0478 0.0358 0.0492 0.0432 0.0389
DTLZ2 Avg | 0.4653 0.8653 0.8060 0.8320 0.8047
SD | 0.0426 0.0213 0.0317 0.0316 0.0350
DTLZ3 Avg | 0.4413 0.8047 0.7387 0.7420 0.7407
SD | 0.0240 0.0371 0.0352 0.0448 0.0372
DTLZ4 Avg | 0.5077 0.8120 0.7993 0.8147 0.7987
SD | 0.0233 0.0263 0.0248 0.0273 0.0254
DTLZ5 Avg | 0.4340 0.8420 0.7493 0.8113 0.7407
SD | 0.0228 0.0167 0.0351 0.0326 0.0715
DTLZ6 Avg | 0.4973 0.8653 0.7580 0.7593 0.7493
SD | 0.0221 0.0265 0.0404 0.0353 0.0744
DTLZ7 Avg | 0.5157 0.7620 0.7273
SD | 0.0327 0.0291 0.0253
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Figure 4.8 An examples of solutions from one run of DTLZ4 with 3 objective of (a)
NSGA-II, (b) SPEA-II, (c) CCMOA, (d) COGA-II, and (e) CCCOGA-IL
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From values of M, in Table 4.6-Table 4.9, the purposed MOEAs -
CCOMA, COGA-II, and CCCOGA-II outperform the well-established MOEAs -
NSGA-II and SPEA-II in which CCCOGA-II, which employs both co-operative
co-evolution and rank assignment by winning score, give the best results of this
criterion. Due to the use of co-operative co-evolution, CCMOA is superior to
NSGA-II, and SPEA-II, and CCCOGA-II is also superior to COGA-II. By the use
of winning score in rank assignment, COGA-II outperforms NSGA-II, and SPEA-
I, and CCCOGA-II outperforms CCMOA. For DTLZ1-4 problems, which have
no linkage among decision variables, CCMOA outperforms COGA-II. This shows
that the use of co-operative co-evolution is more successful than the rank
assignment by winning score in COGA-II for these problems. In the other hand,
for problems having linkage among decision variables, DTLZ5-6 problems with 4-
6 objectives, due to the linkage among decision variables, which diminishes
performance of the co-operative co-evolution, rank assignment by winning score
has more impact for these problems, COGA-II is therefore superior to CCMOA.
Performance of NSGA-II and SPEA-Il are comparable when the number of
considering objectives is less than five. Once the number of objectives exceeds

four, the performance of NSGA-II is noticeably better than that of SPEA-IL

From values of CI in Table 4.10-Table 4.13, in overall SPEA-II gives the
best results of this criterion; however, it is marginally better than CCMOA, COGA-
II, and CCCOGA-II, while NSGA-II give the worst results. Since NSGA-II uses
crowding distance in selection and truncation, the crowding distance tries to
uniformly spread solutions in each objective; it is suitable for problems of which
Pareto-optimal front represents by a line such as two-objective problems which
can be described by the good obtained results in Table 4.4. However, in
problems of which Pareto-optimal front represents by a hyper-surface, in each
objective j density of solutions is high near its best value, and low near its worst
value. Although true Pareto-optimal fronts of DTLZ5 and DTLZ6 problems

represent by a line, other optimal fronts far away from the true Pareto-optimal
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fronts of the problems represent by hyper-surfaces. CI of NSGA-II is very good for
the three-objective DTLZ5 problem (Table 4.10) because NSGA-II can obtain
solutions that close to true Pareto-optimal front (Table 4.6). However, for other
DTLZ problems, NSGA-II gives the worst results. In the same way, for distribution
of solutions of three-objective DTLZ4 problem in Figure 4.8, NSGA-II contributes
the worst distribution; in the other hand, SPEA-I, CCMOA, COGA-II, and
CCCOGA-II give good distributions of solutions.

4.5.3. Linked Problems - Linked DTLZ2 and Linked DTLZ6

There are six linked DTLZ problems, L,-DTLZ2, L,-DTLZ2, L,-DTLZ2, L,-
DTLZ6, L,-DTLZ6, and L,-DTLZ6. The parameter setting for all employed
MOEA:s in the linked problems is the same as that of the normal DTLZ problems
(Table 4.5). The results of M; and CI of all MOEAs of the problems are shown in
Table 4.14-Table 4.17 and Table 4.18-Table 4.21, respectively.

Table 4.14 Comparisons of average (Avg) and standard deviation (SD) values of
M, of linked DTLZ2 and linked DTLZ6 with 3 objectives.

Problems NSGA-II | SPEA-II | CCMOA | COGA-II | CCCOGA-Il
Avg | 0.0972 | 0.1409 | 0.0515 | 0.0938 0.0493
SD | 0.0994 | 0.0984 | 0.0377 | 0.0921 0.0249
Avg | 0.1534 | 0.0868 | 0.0944 | 0.0850 0.0770
SD | 0.0454 | 0.0167 | 0.0191 | 0.0249 0.0227
Avg | 02136 | 0.1422 | 0.1154 | 0.1168 0.1165
SD | 0.0616 | 0.0348 | 0.0321 | 0.0427 0.0636
Avg | 2.3566 | 2.2415 | 3.8050 | 2.1992 3.7519
SD | 05447 | 0.6758 | 0.2394 | 0.9213 0.1367
Avg | 0.2355 | 0.1505 | 0.1406 | 0.1341 0.1376
SD | 0.0330 | 0.0235 | 0.0295 | 0.0206 0.0306
Avg | 0.2676 | 0.1662 | 0.1615 | 0.1473 0.1460
SD | 0.0237 | 0.0185 | 0.0262 | 0.0140 0.0294

L,-DTLZ2

L,-DTLZ2

L,-DTLZ2

L,-DTLZ6

L,-DTLZ6

L,-DTLZ6
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Table 4.15 Comparisons of average (Avg) and standard deviation (SD) values of

M, of linked DTLZ2 and linked DTLZ6 with 4 objectives.

Problems | NSGA-Il | SPEA-Il | CCMOA | COGA-Il | CCCOGA-II

Avg | 0.1158 | 0.0727 | 0.0435 | 0.0597 | 0.0367
L,-DTLZ2

SD | 0.1000 | 0.0641 | 0.0295 | 0.0850 | 0.0579

Avg | 06567 | 03758 | 0.3977 | 0.2706 | 0.3102
L,-DTLZ2

SD | 00646 | 0.0432 | 00461 | 0.0449 | 0.0472

Avg | 06198 | 03531 | 03272 | 0.2587 | 0.2566
L,-DTLZ2

SD | 00509 | 0.0444 | 0.0429 | 00269 | 0.0424

Avg | 0.7333 | 04089 | 0.6999 | 0.3778 | 0.6136
L,-DTLZ6

sD | 0.1478 | 02081 | 01092 | 0.1555 | 0.0992

Avg | 02136 | 01521 | 01775 | 0.1096 | 0.1049
L,-DTLZ6

SD | 00212 | 00132 | 0.0148 | 0.0094 | 0.0163

Avg | 02352 | 0.1649 | 0.1820 | 0.1136 | 0.1117
L,-DTLZ6

SD | 00252 | 00154 | 0.0174 | 0.0133 | 0.0095

Table 4.16 Comparisons of average (Avg) and standard deviation (SD) values of
M, of linked DTLZ2 and linked DTLZ6 with 5 objectives.

Problems NSGA-Il | SPEA-II | CCMOA | COGA-Il | CCCOGA-II

Avg | 05512 | 01977 | 0.1772 | 0.0691 | 0.0455
L,-DTLZ2

SD | 0.1683 | 0.0737 | 00624 | 0.0625 | 0.0309

Avg | 06494 | 04955 | 0.4824 | 0.3028 | 0.3072
L,-DTLZ2

SD | 0.0363 | 00463 | 00433 | 0.0269 | 0.0300

Avg | 0.6024 | 04974 | 04781 | 02931 | 0.2920
L,-DTLZ2

SD | 0.0605 | 0.0543 | 0.0409 | 0.0292 | 0.0262

Avg | 0.2781 | 01573 | 0.1561 | 0.0778 | 0.0640
L,-DTLZ6

SD | 0.0299 | 00351 | 00146 | 0.0224 | 0.0145

Avg | 0.2068 | 0.1883 | 0.1825 | 0.0835 | 0.0850
L,-DTLZ6

SD | 0.0126 | 0.0230 | 0.0111 | 0.0094 | 0.0058

Avg | 02232 | 0.1879 | 0.1967 | 0.0970 | 0.0901
L,-DTLZ6

SD | 0.0167 | 0.0273 | 0.0140 | 0.0077 | 0.0070
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Table 4.17 Comparisons of average (Avg) and standard deviation (SD) values of
M, of linked DTLZ2 and linked DTLZ6 with 6 objectives.

Problems | NSGA-Il | SPEA-l | CCMOA | COGA-Il | CCCOGA-II

Avg | 08975 | 0.8326 | 03077 | 0.1464 | 0.1039
L,-DTLZ2

SD | 0.0701 | 0.0552 | 0.0394 | 0.0584 | 0.0314

Avg | 05365 | 05291 | 04355 | 0.2739 | 0.2543
L,-DTLZ2

sD | 0.0395 | 0.0523 | 0.0273 | 0.0265 | 0.0225

Avg | 05723 | 06159 | 0.4969 | 0.3022 | 0.3118
L,-DTLZ2

sD | 00418 | 0.0474 | 0.0377 | 0.0212 | 0.0232

Avg | 0.2855 | 0.2878 | 02188 | 0.1116 | 0.0830
L,-DTLZ6

sD | 0.0157 | 00102 | 00215 | 0.0157 | 0.0147

Avg | 0.1358 | 01212 | 0.1048 | 0.0459 | 0.0394
L,-DTLZ6

sD | 0.0091 | 0.0063 | 0.0091 | 0.0068 | 0.0049

Avg | 0.1584 | 0.1559 | 0.1347 | 0.0620 | 0.0575
L,-DTLZ6

sD | 0.0165 | 0.0079 | 0.0076 | 0.0063 | 0.0058

Table 4.18 Comparisons of average (Avg) and standard deviation (SD) values of
CI of linked DTLZ2 and linked DTLZ6 with 3 objectives.

Problems | NSGA-I | SPEAl | CCMOA | COGA-Il | CCCOGA-II

Avg | 0.4897 | 0.8833 | 0.8607 | 0.8287 | 0.8047
L, DTLZ2

SD | 00329 | 00251 | 0.0345 | 0.0216 | 0.0854

Avg | 05440 | 0.7873 | 0.7273 | 0.7867 | 0.7627
L,-DTLZ2

SD | 0.0328 | 00279 | 00424 | 0.0331 | 0.0404

Avg | 0.5463 | 0.7647 | 0.7360 | 0.7987 | 0.7740
L,-DTLZ2

SD | 0.0334 | 00505 | 0.0287 | 00517 | 0.0508

Avg | 0.4723 | 0.7587 | 0.8007 | 0.7493 | 0.7420
L,-DTLZ6

SD | 0.0412 | 00582 | 0.0286 | 0.0488 | 0.0525

Avg | 0.5863 | 0.7907 | 0.7393 | 0.7620 | 0.7313
L,-DTLZ6

SD | 0.0253 | 0.0253 | 0.0239 | 0.0529 | 0.0262

Avg | 05647 | 0.7760 | 0.7227 | 0.7460 | 0.7320
L,-DTLZ6

SD | 0.0344 | 00306 | 0.0349 | 0.0514 | 0.0427
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Table 4.19 Comparisons of average (Avg) and standard deviation (SD) values of
ClI of linked DTLZ2 and linked DTLZ6 with 4 objectives.

Problems NSGA-Il | SPEA-Il | CCMOA | COGA-II | CCCOGA-II
Avg | 0.4680 | 0.8407 | 0.7290 | 0.8147 0.7573
SD | 0.0276 | 0.0248 | 0.0487 | 0.0328 0.0555
Avg | 04767 | 0.7107 | 0.7260 | 0.7300 0.7047
SD | 0.0359 | 0.0357 | 0.0356 | 0.0497 0.0459
Avg | 04833 | 0.7280 | 0.7020 | 0.7347 0.7113
SD | 0.0314 | 0.0313 | 0.0268 | 0.0393 0.0304
Avg | 0.4900 | 0.8093 | 0.7433 | 0.7700 0.7273
SD | 0.0326 | 0.0339 | 0.0314 | 0.0182 0.0261
Avg | 0.5380 | 0.7887 | 0.7300 | 0.7427 0.7247
SD | 0.0402 | 0.0196 | 0.0354 | 0.0286 0.0229
Avg | 0.5347 | 0.7747 | 0.7240 | 0.7687 0.7240
SD | 0.0369 | 0.0181 | 0.0251 | 0.0174 0.029%4

L,-DTLZ2

L,-DTLZ2

L,-DTLZ2

L,-DTLZ6

L,-DTLZ6

L,-DTLZ6

Table 4.20 Comparisons of average (Avg) and standard deviation (SD) values of
ClI of linked DTLZ2 and linked DTLZ6 with 5 objectives.

Problems NSGA-Il | SPEA-Il | CCMOA | COGA-II | CCCOGA-II

Avg | 0.4493 | 0.7333 | 0.7230 | 0.7787 | 0.7280
L,-DTLZ2 ;

SD | 00357 | 0.0287 | 0.0445 | 0.0285 | ~ 0.0432

Avg | 05003 | 0.7347 | 0.7287 | 0.7087 | 0.7073
L,-DTLZ2

SD | 0.0410 | 0.0388 | 0.0206 | 0.0287 | 0.0406

Avg | 0.4920 | 0.7407 | 07153 | 0.7213 | 0.7227
L,-DTLZ2

SD | 0.0316 | 00294 | 0.0315 | 0.0344 | 00221

Avg | 04660 | 0.7860 | 0.7367 | 0.7573 | 0.7053
L,-DTLZ6

SD | 0.0306 | 0.0304 | 0.0317 | 0.0316 | 0.0308

Avg | 05327 | 0.7853 | 0.7660 | 0.7193 | 0.7160
L,-DTLZ6

SD | 0.0279 | 0.0280 | 0.0287 | 0.0331 | 0.0257

Avg | 05340 | 0.7767 | 0.7653 | 0.7287 | 0.7107
L,-DTLZ6

SD | 0.0352 | 0.0336 | 0.0226 | 0.0344 | 0.0215
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Table 4.21 Comparisons of average (Avg) and standard deviation (SD) values of
ClI of linked DTLZ2 and linked DTLZ6 with 6 objectives.

Problems NSGA-II | SPEA-II | CCMOA | COGA-Il | CCCOGA-II

Avg | 04417 | 0.7727 | 0.7227 | 0.7253 0.6933
LI'DTLzz

SD | 0.0320 | 0.0333 | 0.0440 | 0.0285 0.0833

Avg | 0.4803 | 0.7520 | 0.7013 | 0.7373 0.7293
L,:DTL.Z2

SD | 0.0378 | 0.0268 | 0.0243 | 0.0218 0.0381

Avg | 0.4557 | 0.7507 | 0.7067 | 0.7313 0.7153
L,-DTLZ2

SD | 0.0339 | 0.0272 | 0.0385 | 0.0185 0.0246

Avg | 04723 | 0.8487 | 0.7647 | 0.7713 0.7313
L,-DTLZ6

SD | 0.0339 | 0.0166 | 0.0360 | 0.0360 0.0453

Avg | 0.5183 | 0.7753 | 0.7727 | 0.7553 0.7237
L,-DTLZ6

SD | 0.0431 | 0.0334 | 0.0191 | 0.0373 0.0297

Avg | 04943 | 0.7747 | 0.7737 | 0.7347 0.7160
L,-DTLZ6

SD | 0.0370 | 0.0229 | 0.0300 | 0.0362 0.0270

The results of CI of the linked DTLZ problems in Table 4.18-Table 4.21
are similar to those of the normal DTLZ problems. In overall, SPEA-II gives the
best results of CI; it marginally better than the proposed MOEAs, CCMOA,
COGA-II, and CCCOGA-II, while NSGA-II give the worst results for this criterion.

On the other hand, the results of M; in Table 4.14-Table 4.17, are quite
different from those of the normal DTLZ problems. Unlike in the normal DTLZ
problems, performance of SPEA-Il is better than that of NSGA-II, only the
problems L,-DTLZ2 and L,-DTLZ6 with 6 objectives that average values of M; of
NSGA-II are better than those of SPEA-II. By the use of winning score in rank
assignment, COGA-II outperforms NSGA-II and SPEA-II for all problems.
Similarly, mostly the results of M; of CCCOGA-II are better than those of
CCMOA, only for L,-DTLZ2 problem with three objectives, CCMOA gives result
which is marginally better than that of CCCOGA-II. Therefore, these show that
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the use of winning score enhance performance of MOEAs not only for the normal

DTLZ problems in the previous topic but also for the linked DTLZ problems.

For L,-DTLZ2, the employed linked problem with lowest linkage among
decision variables, MOEAs employing co-operative co-evolution, CCMOA and
CCCOGA-II outperform NSGA-II and SPEA-Il for any number of objectives.
CCCOGA-II is better than COGA-Il for the problem with any number of
objectives, while CCMOA outperforms COGA-II only for the problem with three
and four objectives. However, due to the effect of use of winning score, COGA-II
outperforms CCMOA for the problem with larger numbers of objectives (5-6). For
the problems with 5-6 objectives, mostly, CCMOA, and CCCOGA-II are superior
to NSGA-II, and SPEA-II, only for L,-DTLZ6 with 5 objectives that SPEA-II is
slightly better than CCMOA. In addition, unlike the use of co-operative co-
evolution of CCGA [43] for single-objective optimization problems, CCGA has
only one best solution, any candidate solution, which may be new best solution,
is the resulting solutions of combination of the solution with an individual any
species in corresponding location of the species in objective calculation of the
individual. For single-objective problems with linkage among decision variables,
premature convergence may probably occurs due to that combination. Although
CCGA-II [43] was proposed to solve this trouble by adding a candidate solution
which is the resulting solution after combination of the individual with other
randomly selected individuals from other species, it is impossible to obtain good
candidate solution by this combination for problem with a solution is divided into
a large number of species. In the other hand, the use of co-operative co-evolution
for multi-objective optimization in this thesis is quite different from that of CCGA;
a number of best solutions in archive are used to form candidate solutions. It,
therefore, can be efficiently used in multi-objective optimization problems with
linkage among decision variables which can be described by good obtained
results for DTLZ5 with 6 objectives, and DTLZ6 and L,-DTLZ2 with any number
of objectives, and the other linked problems with 5-6 objectives.
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This chapter presented the evaluation of performances of all employed
multi-objective evolutionary algorithms (MOEAs), which are fast elitist non-
dominated sorting genetic algorithm (NSGA-II) [28], improved strength Pareto
evolutionary algorithm (SPEA-I) [30], co-operative co-evolutionary multi-
objective algorithm (CCMOA), improved compressed-objective genetic algorithm
(COGA-Il, and co-operative co-evolutionary improved compressed-objective
genetic algorithm (CCCOGA-II) in benchmark problems which are two-objective
ZDT1-6 problems, DTLZ1-7 problems with 3-6 objectives and linked DTLZZ,
linked DTLZ6 problems with 3-6 objectives. The proposed MOEAs — CCMOA,
COGA-II, and CCCOGA-II, perform well on such test problems. The co-operative
co-evolution which employed in CCMOA, and CCCOGA-II can successfully
improve the performance of MOEAs not only in problems without linkage among
decision variables but also in some problems with linkage among decision
variables especially in such problems with large number of objectives. The rank
assignment by winning score in COGA-Il and CCCOGA-II, which is proposed for
optimization problem with three-or-more objectives, can improve the

performance of MOEAs for any problems with three-or-more objectives.

The next chapter will use MOEAs for multi-objective continuum topology
optimization problems. It will show that the employed MOEAs can also improve

the performance of MOEAs for such problems.
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