Chapter III

Finite Volume Method

The two-dimensional continuum multi-objective topology optimization in
heat conduction, elastic, and thermo-elastic are employed as test problems, of
which objectives of a problem are evaluated by finite volume method (FVM), in
this thesis.

The FVM was originally developed for computational fluid dynamics
(CFD). It is easy to understand and emphasize on direct physical interpretation
[54]. In the calculation, the domain is divided into a number of non-overlapping
control volumes which contain a node each. Piecewise profiles expressing the
variation of a parameter ¢ between the nodal points are used to estimate the
integrals in conservative law. So that the differential equation can be integrated
over control volumes in order to obtain the discretized equations of a set of values
of the parameter ¢. The discretized equation satisfies the conservation principle
for ¢ for any divided control volume. The finite volume method (FVM) contribute
solutions that satisfy the integral conservation of quantities — such as mass,
momentum, and energy — over the divided control volumes, and hence
guarantees the conservation over the whole calculation domain, even though the

domain is coarsely divided [54], [55].

Although the FUM was originally developed for CFD, it can be used for
heat transfer [56] and elastic problems [57]. This thesis employs the FVUM for
simple heat conduction, linear-elastic and thermo-elastic test cases. The FVM for
heat conduction problems will be described in the following topic, followed by the

linear-elastic and thermo-elastic problems.
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3.1. Heat Conduction Problems

A mathematical governing equation of energy conservation of a point in a
two-dimensional x-y domain for a steady-state heat conduction problem is given
by the following equation.
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where k is heat conduction coefficient, T is temperature, and S is generated heat

source per unit volume of the point.
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Figure 3.1 A typically control volume P.

The finite volume method (FVM) discretizes the domain into finite control
volumes then the continuous space is replaced by the finite control volumes.
Figure 3.1 shows a typical rectangular control volume P with uniform thickness t.
The control volume P is represented by a node P at the center. The control
volume P is surrounded by control volumes W, E, S, and N, which connect to the
control volume P by faces w, e, s, and n, respectively. In the following equation,
subscripts W, E, S, N, w, e, s, and n indicate the location of the quantity. After
integrating the equation (3.1) over this control volume, the resulting integral is as

follows.



%[k%)dw j%[k %}dw jsarv =0 (3.2)

By substituting dV = tdxdy, assuming the average value of S over the
control volume as S and integrating the above equation, the resulting equation

(3.3) is obtained.
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where the cell surfaces A, = A, = t(dy), A, = A, = t(6x), and cell volume
AV =1(6x)(6y) . The first gradient term, (kéT /dx),, can be simply estimated from

]tdxdy + [Stdxdy =0
nV

two nearest points of the face e in x-direction, P and E, while the other gradient
terms are similarly evaluated. After substituting the approximated gradient terms,

the equation becomes
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The first four terms in the above equation represent Q,, Q,, Q,, and Q, -
heat fluxes directing out of the control volume on faces e, w, n and s -
respectively, while the fifth term, Q,, is generated heat in the control volume. The
heat fluxes can be schematically displayed in Figure 3.2.
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Figure 3.2 Heat fluxes on a control volume P.
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By approximating SAV in linearized form SAV = S, + S,T}, expanding

the equation (3.4), and rearranging terms, the resulting equation is

apTp —ay Ty —agTz —asTs —a,T, =S, (3.5)
k kA, kA, k,

where aw=§2:‘,as=5xe,as=5ys,aN'=5::",

and ap =ay +0g +0ag +ay —Sp (3.6)

In addition, temperatures at faces w, e, s and n (Figure 3.1) are evaluated

by linear interpolation with their neighboring nodes as the following equations.
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, where [wW|+|wP|=éx,

, where |eE|+|eP| = 6x,

sP|Tg

, where |sS|+|sP| = 6x,

, where |nN|+|nP| =dx, (3.7)

where [wW| is the length of line segment between points w and W (Figure 3.1),

|wP| is the length of line segment between points w and P, and so on.

The boundary implementations are described using the east surface of
node P as an example (Figure 3.3). The 3 boundary conditions of problems
employed in this thesis are specified temperature, specified heat flux, and

convective surfaces, which can be described as follows.
1) Specified Temperature

Temperature profile along the boundary surface e in Figure 3.3 is given,
thus the temperature at a point A or T, (= T,) on the surface is known. The heat

flux out of the control volume on this boundary is simply calculated as



56

(T, - T,)
0X,

Qp =—kuA, (3.8)
The heat flux Q, is substituted into the equation (3.4) as the term Q,, and
the discretized equation of the control volume is then evaluated in the same way

as previous process.
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Figure 3.3 Boundary surface of a control volume P.

2) Specified Heat Flux

The heat flux profile along the boundary surface e is known (Figure 3.4),
thus the resulting heat flux along the boundary face Q, can be evaluated by the
equation (3.9).

Qu==Jod5 3.9)

After the heat flux on boundary surface, Q,, is obtained and substituted
into the equation (3.4) as Q,, the temperature at A or T, can be then estimated
by rearranging the equation (3.8).
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Figure 3.4 Heat source surface.
3) Convective Surface

The ambient fluid at temperature T., flows along the boundary surface e
with heat convection coefficient h as shown Figure 3.5. The heat flux Q,,

convection heat flux, is calculated as the following equation.

Q, =Q, =hA,(T, - T,) (3.11)
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Figure 3.5 Convectional heat surface.

Due to the heat conservation, heat conducted from point P to point A

(3.8) and the heat loss from point A to the ambient fluid are equal, the
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temperature at point A or T, (3.11) can be simply estimated by equaling theses

two terms, resulting in the following equation.

_ h(x,)T, +2kT,

A h(6x,)+ 2k (g2

3.2. Linear-Elastic and Thermo-Elastic Problems

Stress components at a point in the linear elastic material is given by
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where x and A are Lame’s coefficients, & is linear thermal expansion coefficient

and AT is temperature change at the node.

In a two-dimensional problem, there are only three non-zero independent
stress components in x and y directions, o,, a;,, and o, which are described as

follows.
o =2us A[@Jr ‘3—”] ~[3Ka(AT)]
ox \ax oy

o, = 2p%+i[&u+%)—[3Ka(Aﬂ]

ou ov
Oy = Ox =#[5+5;} (3.14)
It is noted that the terms in square brackets represent thermal stress
components, if there is no change of temperature in the domain, these terms are

equal to zero.
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The Lame’s coefficients are related to the shear modulus G, the Young’s
modulus E, Poission’s ratio v and the bulk modulus K of a plane strain problem

as follows.

E VE E
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For a plane stress problem, the parameters A and K in above equation are

changed as follows.

(3.16)

In a steady-state two-dimensional problem, equilibrium equations in x,

and y components are written in integral forms as follows.

x direction: I(O'xxnx +0o,n, )dS + J pfdV =0
$ v
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Figure 3.6 Forces acting on a control volume P.

The unit directional vector components [n,,n,] of surfaces w, e, s, and n
(Figure 3.6) are [-1,0], [1,0], [0,-1], and [0,1], respectively. By substituting these

directional components, equation (3.17) becomes
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x direction: [ 0,dS- [ o,dS+ Lo-xde+La,de+ |, phndV =0
= TR TR TR TR

y direction: [ ,,dS- [ 0,dS+ [ 0,dS- [ 0,dS+ | pf,,dV =0

[ Fre [ Fy Fiy

(3.18)

The forces in equation (3.18) can be geometrically explained in Figure
3.6. By substituting stress components in equations (3.14) and areas of faces e,
w, n, and s - A,, A,, A,, and A, - the discretized forms of forces on a control

volume P [58] are obtained as follows.

x direction:

0 ou 0
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In the same way,

Fo~ %(UE ~ETT i“le%:ﬂgl ~[3Ka(AT,)A]  (3.20)
3 ﬂﬁs ~ug)+ 400, -0, 3.21)
£y )+ 2, v, 3.22)
For body force,
Fu= [ phdV
Ry = pf5(AV) 3:23)
v direction:

HA, K
wa = W (UP = UW) g 5 % (unu.- - usw) (324)
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By substituting the discretized forms of the forces acting on the control
volume into the equilibrium equation (3.18) in x and y directions, then the
equilibrium equations are discretized as follows.

x direction:

AA, (v, — Vo) AA, W, —V,,) o HA,

a;uP _a;uw —GEUE _a;us —QEUN + 5!’ 5}’ r_‘i'x (Use i Dsw)
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=——2, gy =——2=,
ox oy oy

ap = ay +0ag +0g +ay

and b* = pf,,»(AV)+[3Ka(AT,)A, - 3Ka(AT,)A, ] (3.32)
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If there are no temperature changes in the domain, that is no thermal
stresses, terms in square brackets are equal to zero. The displacements u and v at
faces w, e, s and n can be estimated by interpolating from their neighboring
points as in the approximation of temperature in a heat conduction problem.
Similar to the estimation of the u and v, displacement differences in the y
direction — v,,-Uy,, Upe-Vs» Use-Us, @nd v,.-v,, of face w, e, s, and n respectively in
above equation (3.29) — can be simply estimated from their neighboring faces as

follows.

" wW|(v, —v,) +|wP| (v — V)

.. =1

nw 5 5Xw
. leE|(v, —v,)+|eP|(v,e —v,e)
ne se 5xe
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se sw 5ys
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In the same way, displacement differences in the x direction — u,,,-ug,, U,.-
Uy, Ug-Ug, and u,-u,, — are also approximately evaluated from their adjacent

faces as the evaluation of the v differences in above equation (3.33).

Four boundary conditions — Dirichlet, Neumann, mixed, and symmetry
plane boundary conditions [58] — are described in the following topics using the

east surface as an example.
1) Dirichlet Boundary Condition

In the Dirichlet boundary condition, displacements u and v at a point A
are known as shown in Figure 3.7, the forces acting at the point A, F,, and F,,

are computed as the following equation.
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Figure 3.7 Dirichlet boundary condition.
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Similar to the previous evaluation, the forces F,, and F,, in the above
equation will be then substituted into the equilibrium equation (3.18), to obtain

the discretized equilibrium equations in x and y directions of the control volume.
2) Neuman Boundary Condition

In the Neuman boundary conditions, the surface tractions t,, and t,, acting
on the surface e are known (Figure 3.8), the forces F,, and F,, are the follows.
Fpo =taAs

F,, =ts,A, (3.35)

The displacements u and v at a point A, u, and ug, are therefore evaluated

by substituting F,, and F,, into equation (3.34).
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Figure 3.8 Neuman boundary condition.
3) Mixed Boundary Condition

In this boundary condition, the surface boundary consists of Dirichlet and
Neumann boundary conditions in different directions. Figure 3.9 shows the

example of a control volume of which boundary surface e has the mixed

boundary condition.
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Figure 3.9 Mixed boundary condition.
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On the surface, a displacement u,, which represents the Dirichlet
boundary condition, in x direction and traction t,, which represents the
Neumann boundary condition in y direction, are known. For the mixed boundary
condition in Figure 3.9, the discretized equilibrium equation of Dirichlet boundary
direction is derived from equation (3.34) while that of Neumann boundary

direction is obtained from equation (3.35).
4) Symmetry Plane

The symmetry plane boundary condition can be shown by Figure 3.10.

Therefore, displaments in x and y direction are as the following equations.
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Figure 3.10 Symmetry Plane Boundary Condition.

x direction:
Upg = -Uy,, Ug = -Up,

Upe-Us = 0.5(u,, + u,e)-0.5(u, + ug) =0 (3.36)
vy direction:

Ve = U, Ug = Up, U = U, (3.37)
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Due to the equality of vg and vp and u,,.-u,, = O in the above equations,

subsequently by F,, is equal to zero according to the equation (3.25).
3.3. Solution Algorithms

For all employed problems, after assembling discretized equations of
unknown parameters of all control volumes, the system of algebraic equations is
obtained. The system is solved by LU decomposition method [59], thereafter, the
values of parameters of all control volume are obtained. For an employed
problem, after unknown parameters of a solution, a two-dimensional structure,
are obtained by the FVM. The parameters are then used to evaluate the

corresponding objectives of the solution.

This chapter describes the finite volume methods (FVMs) for all employed
continuum topology optimization problems — heat conduction, linear-elastic, and
thermo-elastic problems. For a continuum topology optimization problem, the
FUM is used to evaluate objectives of a solution, while a multi-objective
evolutionary algorithm (MOEA) is used to search optimum solutions of the
problem. The descriptions and simulation results of the employed continuum
topology optimization problems will be drawn in Chapter V. The next chapter will
present evaluation of performance of all 5 employed MOEAs — 2 well-established
MOEAs and 3 proposed MOEAs — for multi-objective benchmark problems.
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