Chapter 11
Multi-objective Evolutionary Algorithm

The genetic algorithm (GA) has its roots in theory of evolution. It can be
described as a stochastic search or optimization technique in which the search
mechanisms are based on the Darwinian concept of the survival of the fittest. It
was firstly developed by Holland and his colleagues [3] in order to model the
mechanics of natural selection. The genetic algorithm became widespread after
Goldberg wrote the book [4] which described a concise introduction to a genetic
algorithm. Subsequently the method has been widely used in various areas

including engineering, scientific, business and medical areas.

In a GA, the problem is translated into the GA framework such that a
solution is coded using strings of characters which represent decision variables of
the optimization problem. These strings are usually referred to as chromosomes
and are made up of a set of characters which are technically called genes. The
GA is a parallel search where solutions in one search iteration or generation are
transformed by genetic operators in order to obtain better solutions in the next
generation. Transformations on solutions or individuals within the population in
one generation are done to explore the search space and promote the
propagation of fit or desired characteristics within one generation to the next. Fit
individuals are expected to emerge from the search where the optimal solution

found is represented by the fittest individual obtained.

In this thesis, a genetic algorithm (GA) is used as a multi-objective
optimizer. As previously stated in Chapter I, the genetic algorithm for multi-
objective optimization is called as “multi-objective evolutionary algorithm
(MOEA)”. Many MOEAs, GAs for multi-objective optimization had been
developed in last decade, for example multi-objective genetic algorithm (MOGA)
[40], niched Pareto genetic algorithm (NPGA) [41], non-dominated sorting

11

genetic algorithm (NSGA) [42], strength Pareto evolutionary algorithm (SPEA)
[27], fast elitist non-dominated sorting genetic algorithm (NSGA-Il) [28],
controlled elitist non-dominated sorting genetic algorithm (CNSGA) [29] and
improved strength Pareto evolutionary algorithm (SPEA-II) [30]. In addition, a
number of purposed MOEAs are the results of the integrations of an additional
GA operator into a well-established MOEA. For instance, multi-objective co-
operative co-evolutionary genetic algorithm (MOCCGA) [31] and non-dominated
sorting co-operative co-evolution genetic algorithm (NSCCGA) [32] integrate the
co-operative co-evolution [43] into MOGA [40] and NSGA-II [28] respectively
while the multi-objective diversity control oriented genetic algorithm (MODCGA)
[33] integrated the diversity control [45], [46], into the MOGA [40].

This thesis proposes 3 MOEAs - the co-operative co-evolution multi-
objective algorithm (CCMOA), the improved compressed-objective genetic
algorithm (COGA-Il), and the co-operative co-evolutionary improved
compressed-objective genetic algorithm (CCCOGA-II). The first proposed MOEA,
CCMOA, is suitable for multi-objective optimization problems with a few coupling
among decision variables. The second MOEA, COGA-Il, is presented for
optimization problems with three-or-more objectives. The last MOEA, CCCOGA-
II, is proposed for three-or-more objectives optimization problems with a few
coupling among decision variables. As previously stated in the first chapter, the
effectiveness of purposed MOEAs is evaluated by comparing them with the well-
established MOEAs which are NSGA-II [28], and SPEA-II [30].

There are seven sections in this chapter. The first section will describe
procedures of standard genetic algorithm, which is a single-objective optimizer,
and genetic operators. Multi-objective optimization will be discussed in the
second topic. After that, the next five sections, the third section to the final
section, will describe for five employed MOEAs, NSGA-II, SPEA-II, CCMOA,
COGA-II, and CCCOGA-II respectively.

12

2.1. Standard Genetic Algorithm

The standard genetic algorithm has been extensively explained in [4] and

is discussed here to illustrate the basic components and mechanisms of a genetic

algorithm. The procedure of the standard genetic algorithm (SGA) in Figure 2.1

can be described as follows.

1)

2)

3)

4)

6)

7)

Create an initial population of random chromosomes.

Decode the chromosome of every individual in order to obtain solutions of

the problem.

Based on the solution obtained, calculate the objective value of each

individual in the population.
Calculate the fitness of each individual, using the obtained objective value.

Select a parent population from the current population, using the fitness value

as an indicator on how to select individuals from the current population.

Perform a transformation on the parent population using genetic operators,

crossover and mutation, to obtain the resulting offspring population.

Go back to step 2 until a convergence is observed from the solutions found or
a fixed number of iterations is reached. Note that one loop from steps 2 to 6 is

called one generation of a genetic algorithm run.

By adding the elitism operator, after step 4), then a set of fit individuals

might be kept without crossover and mutation, and merged with the newly

generated individuals from crossover and mutation in step 6) to form the new

population. There are six main genetic operators [4], namely chromosome

coding, fitness evaluation, selection, crossover, mutation, and elitism, which are

described as the following topics.

13

Create initial pop.

.

Decode individuals in pop.

A

Y

Calculate objective values

v

Calculate fitness values 1 cycle =

v 1 generation

Select parent pop.

v

Perform crossover and mutation,
new pop. is obtained.

[Terminated? JN

Figure 2.1. SGA procedures.

2.1.1 Chromosome Coding

As previously stated, a solution of an optimization problem is coded as the
string of characters or chromosome. There are many chromosome codings such
as binary coding, integer coding, and real coding which encode decision variables
into strings of binary numbers, integer numbers, and real numbers respectively in
which only 2 chromosome codings, binary and real coding, are employed in this

thesis.

The binary coding is described as the followings; for example a solution x
is a 3 variables vector [x;, x;, X3, X; € [-1,1], x; € [0,1], x5 € [1,5]. In this coding,
X, X, and x; are coded by a string with the lengths of 4, 5, and 6, respectively.
Therefore the representing chromosome of a solution x is coded as the binary

string with the length of 4+5+6 = 15. For example x is coded as chromosome

14

110001011100101, of which x;, x,, X, are represented by 3 bit partitions in the

chromosome as in the following equation.

x =110001011100101
—— e —

1 Xg X3

(2.1)

Given v, v, and v, are corresponding decoded decimal numbers of binary

string partitions of x;, x,, and x; respectively and are simply evaluated as follows.

v, =(1100), = 1(2%) +1(2%)+0(2") + 0(2°) = 12
and v, =(01011), =...=11 and v, =(100101), =37 (2.2)

Thereafter x; can be simply encoded as the following equation.

Xe= % +u,(x,“ —x,’)/(ZL' ~1) 2.3)

where x', x* and L, are the lower limit, upper limit and length of corresponding
string of x,. By the above equation, x;, x,, and x; are decode as 0.6, 0.3548, and
3.3492, respectively.

On the other hand, in real coding the solution x can be directly coded by
the real-coded chromosome with three bits string of which any bit i directly
represents for x,. For the above example, x is therefore coded by 3-bit

chromosome as follow.

x =0.60.3548 3.3492
e e N

X xg X3

(2.4)

After an individual is encoded into the corresponding solution, its objective

value is then evaluated from this encoded solution.
2.1.2 Fitness Evaluation

After the objective value is obtained, the fitness, which is a maximization
criterion, of each individual is directly evaluated by its objective. The fitness

evaluation of single-objective genetic algorithm is quite easy; it depends on the

15

type of single-objective optimization problem - either maximization or
minimization problems. For the maximization problem, a fitness of an individual
is directly equal to a constant plus its objective. In the other hand, for the
minimization problem, the fitness of an individual is equal to a constant minus its
objective. The chosen values of the additional constant in both types should

guarantee that a fitness value of any individual in a current population is positive.
2.1.3 Selection

The purpose the selection operator is to copy the good solutions and
eliminate the bad solutions in the current population for the mating pool. The size
of the population (N) to be selected is not necessary equal to the size of the
mating pool (P). Only one type of selection, which is a binary selection, is
employed in this thesis. In the binary selection, two solutions are randomly picked
from the population. Then, the two solutions are compared each other. The
better solution with better fitness is selected into the mating pool. The selection is
repeated until the mating pool is fully filled.

2.1.4 Crossover

As mentioned earlier, a genetic algorithm explores the search space by
transforming the selected individuals, obtained from the selection process, into
new individuals. These transformation processes which are referred to here are
crossover and mutation operations. In the transformation process, two individuals
from the mating pool are randomly picked out, and referred to as parent
individuals. By crossover, the genes of the individuals are passed onto two
offspring individuals. The crossover is not always done on all individual, the
possibility that a crossover occurs for any selected individual pair is given by the

crossover probability.

The crossover procedure is briefly described as follows. Firstly, two parent

individuals are randomly selected and removed from the mating pool. After that,

16

a number from 0 to 1 is randomly generated and then compared with a crossover
probability. If the random value is less than or equal to the crossover probability,
the parent individuals are performed crossover to obtain two resulting offspring
individuals, otherwise the offspring individuals are identical to the parent
individuals. The crossover process of other parent pair is repeated until the
mating pool is empty. After crossover, the number of offspring individuals is equal

to the number of individuals in the mating pool.

Two crossovers which are uniform crossover and simulated binary
crossover will be presented in this thesis; the first crossover is used for for binary
chromosomes, while the last crossover is used for real-coded chromosomes.

These two crossovers will be described in the following topics.
1) Uniform Crossover

In this crossover technique, each gene or bit along the whole chromosome
of one individual offspring is randomly picked from the corresponding gene
location on the parents’ chromosomes. Usually, the possibility of a gene being
chosen from one parent individual is equal to that of a gene being chosen from
the other parent individual. Once a gene is selected for one offspring individual,
the remaining gene for the same locus will be given to the other offspring
individual. A schematic diagram describing uniform crossover is given by an

example of the crossover in Figure 2.2.
parentl] 11111111 offspringl 10110101
parent2 00000000 offspring2 01001010
Figure 2.2. An example of uniform crossover.

2) Simulated Binary Crossover

Deb [47] developed the simulated binary crossover (SBX) which adapts

the one-point crossover on binary strings for real-coded chromosomes. In this

17

crossover, a probability distribution is used around parent solutions to create two

offspring solutions.

As an example for one-bit real-coded chromosome without lower and
upper bound, offspring individuals y' and)’ are computed from parent
individuals x and x’ where x] < x’. They are created by the use of a
probability distribution around the parent individuals. The absolute difference in
offspring values to that of the parent is a spread factor £ and given by the

following equation.

vi -y
2 1

Xi =X

b= (2.5)

The probability distribution used to created offspring individuals is derived
to have similar search power as that in a single-point crossover in the binary-
coded chromosomes. The probability distribution is given by the equation (2.6)
and its profile is shown in the Figure 2.3.

0.5(n, +1)(8)", if g <1
P(ﬂi)={ (nc+)(ﬂ) ! JB s (2.6)

0.5(n. +1)/(B)***, otherwise

P(B)

-

B,

Figure 2.3. Probability distribution profile.

18

where 7, is the distribution index; which can be any non-negative real number. A
value of 7, has an effect on the distance between parent and offspring individuals
which will be described later. From the equation (2.6), EP(,6’,) =],
‘[:P(B)=0.5,and ['P(5)=0.5.In each crossover, a random number u from 0
to 1 is created, then the parameter g, is found so that the area under curve
P(B) from O to B, is equal to u or Lﬂ”‘ P(p)=u.The B, can be evaluated from
the integral which is given by the following equation.
(2u,)"D, if u <0.5

B, = " 2.7
! (1/ 2(1—u,))”(q‘) otherwise e

After S, is obtained, the offspring individuals y; and y/ can be computed
by the equation (2.8) and (2.9), respectively.

y! =0.5]:(1+ﬁu’)x,1 +(l—-ﬂu|)xf:| 2.8)
y? =0.5[(1—,6’u‘)x,1 +(1+ﬁq)xf] (2.9)
3
S
E
o
2 2
2
2
3
2
£
8
o
(a W
0 L _. ! _. T
0 1 2 3 4
Offspring

Figure 2.4. Probability distribution for creating offspring individuals.

19

From the equations (2.8) and (2.9), it can be noted that
'(y,2 -y /(x? - x])i = B, as in the equation (2.5). Figure 2.4 shows a probability
density distribution with 7, = 2 and 5 for creating offspring individuals from two
parent individuals x' = 1.0 and x* = 3.0. A large value of 7, gives a higher
probability for creating near parent individuals and a small value of 7, allows

distant solutions to be selected as children individuals.

For lower and upper boundaries (x' and x*“) are specified, two parameter
B, and B; are used to calculate y; and y;, respectively; they are evaluated by

equations (2.10) and (2.11).

r(a u)”{q:d} G <l
g7l o 2.10)
(Y/(2- au)) 0D otherwise
(@, uel
g2 =1/ RE 4
2 = 4 (2.11)

(1/ (2- azu))”(q‘”} , otherwise

where the parameters @, and «, are evaluated as the equations (2.12) and

(2.13), respectively.
& =2-B"D, B =1+2(x, —x') [(x, - x;) (2.12)

a,=2- 4", g, =1+2(x" -xz)/(x2 -X,) (2.13)

Thus, the offspring individuals y! and) can be calculated by the
equation (2.14) and (2.15), respectively.

Yy = O.E\{(xj1 +x2)+ B, (xj2 -x)} (2.14)
uf =0.5{(x} +x)+ B2 (x - x!)} (2.15)

The above description is the derivation of the SBX crossover for single-bit

chromosomes. For multiple-bit chromosomes, similar to a uniform crossover in

20

binary-code chromosome, two parent genes x; and x’ at a same location are
crossed by a probability 0.5. If the crossover is permitted, the parents are crossed
to obtain offspring genes y! and y? as single-bit chromosomes, y! and y? are

randomly switched to produce corresponding genes of offspring chromosomes.
2.1.5 Mutation

A mutation is used to transform an offspring individual into a new
individual. It is used to maintain the diversity of individuals in a population
preventing the premature convergence of solution. A crossover operation creates
new individuals which are certain distances away in search space from their
parent individuals. Then, a mutation operation can be thought as a small
perturbation on the chromosome of an individual. In other words, mutation leads
to a search at a neighboring point from the original search point of the offspring

as dictated by the structure of the chromosome.

As in crossover, the mutation of an offspring individual is also governed by
the mutation probability. In the mutation, a corresponding number, whose value
is from O to 1, of a gene in an offspring individual is randomly generated. If the
number is less than or equal to the mutation probability, the gene of the offspring
is mutated, otherwise it remains unchanged. There are two mutations for binary-
coded and real-coded chromosomes in this thesis which are presented in two

following topics.
1) Bit-Flipped Mutation

For a binary chromosome, a mutation can be achieved by reversing the
allele value of a gene. Hence, this kind of mutation is generally referred to as bit-
flipped mutation. A schematic diagram of bit-flipped mutation is illustrated in
Figure 2.5.

21

individual 111 % 1111 mutated individual 111 (%1 1111

mutation site mutation site

Figure 2.5. Bit-flipped mutation.

In Figure 2.5, the mutation site is located at the locus 4 on the
chromosome. The gene at this locus changes from 1 to 0. Similar to the crossover
operation, mutation will not occur on every gene on the chromosome as the
possibility of a mutation for one particular gene in the chromosome is governed

by the mutation probability.

Generally, mutation probability is set to a value in the range of 0 to 0.1;
usually, the mutation probability also varies with the length of a coded
chromosome. At this point, it can be clearly seen that with the value of the
crossover probability being close to 1 while the value of the mutation probability
being close to 0, the main driving force behind the exploration of search space in
a genetic algorithm from the crossover operation. It is also important to stress that
crossover and mutation operations are done in the hope that a recombination
(crossover) of fit genes, exhibited in the selected individuals, and an introduction
of new genes to the population (mutation) would lead to the creation of offspring

individuals which are fitter than their parent individuals.
2) Variable-Wise Polynomial Mutation

For real-coded chromosomes, a polynomial probability distribution is used
to create a gene y in a mutated individual the vicinity of a corresponding gene x

in an offspring individual [48].

In the case of no lower and upper boundaries, firstly a random number u
whose value is from O to 1 is generated. The parameter & is calculated as the

following equation:

22

5 (2u) /) 1, if u<0.5,

F (2.16)
1- [2(1 - u)]”(q’" Y , otherwise

where 7, is the distribution index for mutation and takes any non-negative value.

The gene v is evaluated as the following equation:

Y=X+0A, (2.17)

where A ., is the maximum perturbation allowed in the considering gene in the

offspring individual.

For the gene whose lower and upper boundaries (x' and x“) are specified,

the equation of parameter &§ is changed as following equation:

[2u+(1-2u)(1-8)" ™] -1, Jif u<05

T (2.18)

1/(7y+1)

1—]:2(1 ~u)+2(u-0.5)(1 —5)""’“] ,otherwise

where & = min[(x - x'),(x" = x)]/(x* = x') and A, =x"—x'. The defined value of
J guarantees that no mutated genes are outside the range [x, x“]. In the
equations (2.17) and (2.18), the mutated gene y is in the negative and positive
sides of the corresponding gene x for u < 0.5 and u > 0.5, respectively. In
addition, the value of normalized perturbation (y—x)/ (x“ —x’) or & is the same
order as that of 1/7,, [9]. This implies that, for example, in order to get mutation

effect of 5% perturbation in mutated genes, 7,, should be set to 20.

2.1.6 Elitism

Elitism can generally be described as a special way which is incorporated
into a genetic algorithm in order to promote the survival of the best individual
found. The main reason behind the use of elitism is the fact that there is always a
possibility that a crossover or mutation operation might eliminate the best

individual found within each generation, subsequently, the best individual in each

23

generation might be worst than that of the previous generation. In order to
guarantee that the best solution found from each generation is not lost though the
search propagation. The most commonly used elitism is to pass the first n number
of best individuals from the current generation to the next generation without

crossover and mutation.
2.2. Multi-objective Optimization

This section will briefly describe a multi-objective optimization of which the
first and the second subsection will present a general form of a multi-objective
optimization problem and two approaches to multi-objective optimization

respectively. The subsections are as the follows.
2.2.1. Multi-objective Optimization Problem

A multi-objective optimization problem (MOOP) has a number of
objective functions which are to be minimized or maximized. In the following, the
multi-objective optimization problem (MOOP) is stated in its general form [5] as

the following equation.

Minimize/Maximize f,(x), m=1,2,...M
subjectto g;(x)=0, j=12..,J
h(x)> 0, k =12,...K
x,{L) L% x,‘u}, i=12Z:.n (2.19)

A solution x is a vector of n decision variables: x = {x;,x,,..,x,}. There are
M objective functions f = {f,(x), f,(x),...,fy(x)}; each objective function f, (x) can
be either minimized or maximized. For two sets of J equality and K inequality
constraints, g(x) and h,(x) are equality and inequality constraint functions
respectively. Although the inequality function h,(x) which is treated as “greater
than or equal to”, it can represent for constraint function of “less than or equal
to” by multiplying the function with -1. The last set of constraint is variable

bounds, restricting each decision variable x, to take a value within a lower X,(L}

24

and an upper x'” bound. These bounds constitute a decision variable space S.
This thesis will present two approaches used to solve the multi-objective

optimization problem which will be described in the following topic.
2.2.2. Two Approaches to Multi-Objective Optimization

These two approaches, which are used as multi-objective optimizer, are an
aggregating approach or a weighted-sum approach, and a Pareto-based
approach. Their procedures are described in Figure 2.6 and Figure 2.7 (the
figures are obtained from [5]), respectively. In the aggregating approach, the
classical multi-objective optimization approach, all optimization objectives are
weighted and added together in order to form a single objective. Thereafter a
single-objective optimizer is used to solve this newly formed single-objective
problem in the usual way to obtain one optimum solution. Unless a reliable and
accurate preference vector is available, the optimal solution obtained by such
approaches is highly subjective to the particular user. Although only one best
compromised solution is obtainable after this form of search strategy, this
technique has proved to be popular due to its simplicity. Since it is not possible to
obtain a single solution in which all optimization objectives are optimized
simultaneously from a multi-objective optimization problem, the true solutions to
the problem will be non-dominated solutions or true Pareto optimal solutions.
This can be solved by the Pareto-based approach, the second approach, employs
the Pareto domination in the following Definition 2.1 to compare solutions of a
MOOP. In this approach, multiple trade-off solutions are found, then, by higher
level qualitative consideration, one suitable solution is selected for the problem.
This thesis will use the Pareto-based approach to solve a multi-objective
optimization problem in order to obtain multiple trade-off solutions. However, the
solution selection from multiple trade-off solutions as in Figure 2.7 is very

particular, this thesis will not choose one solution for an employed problem.

25

Multi-objective optimization problem
Minimizing/maximizing £ Estimate a relative
Minimizing/maximizing f; __nJ Higher-level importance weight
— V] information :; vector
Minimizing/maximizing fy (wy, w,, ..., Wy)
Subject to constraints iL
One optimum

solution Single-objective optimization problem

<:: Single-objective <::1 Fitness = w, f, +W,f, + ...+ Wy fiy

optimizer or a composite function

Figure 2.6 Aggregating approach.

Multiple trade-off
Multi-objective optimization problem olutions found
Minimizing/maximizing f| Multi-
Minimizing/maximizing f -
::) objective
Minimizing/maximizing fy Optimizer
Subject to constraints
o Choose one
o solution
Higher-level
information

Figure 2.7 Pareto-based approach.
Definition 2.1 Pareto domination

A solution x dominates the other solution y or x <y if the two conditions

are satisfied:
a) For any objective, the solution x is not worse than the solution y.
b) At least one objective, solution x is better than solution y.

Fonseca and Fleming [40] have also incorporated the use of a goal
attainment method for domination. The modified domination scheme can be
described as follows. Assuming a multi-objective optimization problem, consider
two M-dimensional objective vectors, x = {x;, x,, X, ..., Xy} and y = {y;, vy, Vs,
.-, Yu} and the goal vector g = {g;, g, gs,..., gy} The notation x; < g, means x;

meet a goal g, or x; is better than or equal to g, in the contrast, x; 4 g; means x,

26

does meet the goal g,. If k is the number of components that x does not meet the
goal, then, g-k components of x meet the goal, this can be written as the

following equation.

F=1,..,qg-1:Vi=1.,kVj=k+1..,q(2 g)Alx<g) (220

which assumes a convenient permutation of the objectives. The objective vector
u is said to be dominating the objective vector v if one of three conditions, each

of the conditions is presented by each of three following equations, is satisfied.

u<v,fork =M, (2.22)

(x<y)v~(x<g),fork = 0. (2.23)

An early attempt to use a genetic algorithm to solve a multi-objective
optimization problem includes the application of a vector evaluated genetic
algorithm (VEGA) [49], which employs the aggregating approach, és suggested
by Schaffer, on benchmark problems. However, the solutions produced by a
VEGA tend to be solutions in which some of the objective values are at their
extreme. Solutions with objective values which are not extreme tend to be left out
especially in the non-convex multi-objective optimization problems [5]. This is a
weak point of the aggregation approach, in the other hand, a multi-objective
evolutionary algorithm (MOEA) based on the Pareto approach does not have
such weak point, then, many MOEAs based on the approach are purposed.
Original Pareto-based MOEAs are non-elitist MOEAs such as multi-objective
genetic algorithm (MOGA) [40], niched Pareto genetic algorithm (NPGA) [41],
non-dominated sorting genetic algorithm (NSGA) [42] while a modern Pareto-
based MOEA is an elitist MOEA such as strength Pareto evolutionary algorithm
(SPEA) [27], non-dominated sorting genetic algorithm II (NSGA-II) [28], Pareto-

27

archive evolution strategqy (PAES) [50], and improved strength Pareto
evolutionary algorithm (SPEA-II) [30].

In this thesis 5 MOEAs are used as multi-objective optimizers, the first two
MOEAs are the well-established elitist MOEAs — the non-dominated sorting
genetic algorithm II (NSGA-II) and the improved strength Pareto evolutionary
algorithm (SPEA-II), the other multi-objective optimizers are the new purposed
MOEAs, the co-operative co-evolutionary multi-objective algorithm (CCMOA),
the improved compressed-objective genetic algorithm (COGA-II), and the co-
operative co-evolutionary improved compressed-objective genetic algorithm

(CCCOGA-II). The employed MOEAs will be discussed in the following sections.
2.3. Non-dominated Sorting Genetic Algorithm II (NSGA-II)

A fas elitist non-dominated sorting genetic algorithm (NSGA-II), which is
purposed by Deb [28], is quit different from the original algorithm, a non-
dominated sorting genetic algorithm (NSGA). Only its ranking is the same as that
of NSGA, in the other hand it does not require a niching parameter (o), which
is a weak point of a multi-objective evolutionary algorithm (MOEA) use this
parameter [51], as in the NSGA. The NSGA-II proposed a crowding distance

assignment to maintain diversity of solutions. Its procedure is as follows.
2.3.1. NSGA-II main algorithm

1) Create random initial population P, of size N and set t = 0.

2) Assign rank for an individual in the population P,.

3) Evaluate a crowding distance of an individual of each rank in P, The

crowding distance of an individual indicates diversity of the individual.

4) Select parent population (A,) from the current population P, by binary
selection which judges with ranks and crowding distances. For each time of

binary selection, two solutions are randomly selected, if the ranks of the

28

solutions are not equal, the solution with higher rank will be chosen,
otherwise, their ranks are equal, for diversity of parent population (4,), the

solution with more crowding distance is chosen.

5) Apply crossover and mutation to A, to form a offspring population Q, of size
N.

6) Merge the current population P, and offspring population Q, to form a merged

population R, of size 2N.

7) Assign rank for an individual and evaluate crowding distance of each

individual in the merged population R,.

8) Obtain a new population P,,; of size N from R, of size 2N by NSGA-II

fruncation.

9) Check a termination condition. If the condition is satisfied, the algorithm is
stop, the non-dominated solutions of final population Pt+1 is the output of

the algorithm, otherwise increase t to t+1 and go back to 2).

Three particular processes, rank assignment, crowding distance evaluation

and NSGA-II truncation, of the NSGA-II will be described in the following topics.

2.3.2. NSGA-II Rank Assignment

As previously stated, a rank assignment of the non-dominated sorting
genetic algorithm II (NSGA-II) is the same as that of the original algorithm, the
non-dominated sorting genetic algorithm (NSGA) [42]. In the original algorithm,
for a solution set P of size N, non-dominated solutions have the highest rank
(rank = 1), they are then removed from the set. Subsequently, the non-
dominated solutions of the remaining set are assigned the next rank or rank 2,
and are removed from the current solution set again. The ranking process is

repeated again until the remaining solution set is empty. The NSGA-II presents

29
the fast non-dominated sorting for its ranking as the following pseudo-code in

Figure 2.8 (which is obtained from [28]).

Fast-non-dominated-sorting (P)
Foreachp e P

S,=¢
Fi=¢
n,=0
Foreachgq e P
If (p < q) then If p dominates g
S,=S, v {q} Add q to the set of solutions dominated by p
Else if (g < p) then p belongs to the first rank
n, = n,+1
If n, = 0 then
rank, = 1
F,=F, u {p}
i=1 Initialize the front counter
while F, # ¢
Q=4 Used to store the members of the next rank

For each p € Fi
For eachq € Sp
n, =n,1
if n, = 0 then q belongs to the next rank
rank, = i+1
Q=Qu {q}
i=i+1
FF=Q

Figure 2.8 Pseudo-code of fast-non-dominated sorting.
2.3.3. Crowding Distance Evaluation

NSGA-II purpose a crowding distance indicates diversity of a solution in a
population. The sharing of the original NSGA is replaced with a crowd
comparison method, which sort the population according to the crowding
distance of objective values. The crowd comparison method does not require any
user-defined parameter such as sharing factor for maintaining diversity among
population members. The crowding distance evaluation requires sorting the
population according to each objective function. After that a crowding distance of

a solution corresponding to each objective function is evaluated as the followings.

30

The corresponding crowding distance of a boundary solution is equal to infinity,
otherwise, that of an interior solution is equal to the absolute normalized
difference in the function values of two adjacent solutions. Figure 2.9 shows the
difference of two adjacent solutions of a non-extreme solution i in objective j
(d’), where f/ and f! are the minimum and maximum values of objective
function j. The corresponding crowding distance of the interior solution i for

objective j (cd’) is given by the equation (2.24).

i

lp—o—o—6o e ¢ —o0—o0—o—of,,
i A
S
Figure 2.9 Corresponding crowding distance to objective j.
d’
(n{mx N -fn-'i:inr)

cd] = (2.24)

After the corresponding crowding distance of an individual to each

objective is obtained, the overall crowding distance of the individual is computed

as the sum of its corresponding crowding distance for each objective function.

The crowding distance of a solution i (cd) for an M-objective optimization
problem is given by the following equation.
M

cd, =JZ=;,cdf’ (2.25)

The crowding distance is used not only in the binary selection but also in

the truncation. The truncation of NSGA-II will be described as the following topic.

2.3.4. NSGA-II Truncation

After the merging of the current population P, and offspring population Q,,
the new population P,,, of size N is picked out from the merged population R, of
size 2N by NSGA-II truncation. At first, members of the merged population R, is
sorted according to their ranks from the highest rank (rank 1) to the lowest rank,

31

afterward, P,,, is formed. If the number of members in rank 1 is less than N, all
members in the rank are put into the P,,,, then, members in a next rank, rank 2,
are considered to be chosen into P,,,, the consideration for the rank is similar to
that for the rank 1. If the number of members of rank 1 and rank 2 is less than N,
all members in the rank are chosen, then, the members in the next rank are
considered. The process is repeated until in the rank i such that the accumulated
number of members of rank 1 to rank i is more than or equal to N. If the number
is equal to N, the process is finished; otherwise if the number is more than N, the
first members with the most crowding distances are fully filled P,,,. The procedure
of NSGA-II truncation is also described in Figure 2.10.

L]

A |

\J

i |Crowding
-~ | distance

Figure 2.10 NSGA-II truncation.

Although the crowding distance, which is employed in both the binary
selection and truncation, is quite quick to evaluated, it may not be the good
diversity indicator of solutions in a three-or-more objectives optimization
problem, therefore NSGA-II may constitute non-diversity solutions to this
problem [37].

2.4. Improved Strength Pareto Evolutionary Algorithm

An improved strength Pareto evolutionary algorithm (SPEA-II) [30] is an
improved version of the original algorithm, a strength Pareto evolutionary

algorithm (SPEA) [27], which incorporates in contrast to its predecessor a fine-

32

grained fitness assignment strategy, a density estimation technique, and an

enhanced archive truncation method. Given N and N are population size and

archive size, unlike the original algorithm SPEA, the number of individuals in

archive of SPEA-II is constant in every generation, the overall algorithm of SPEA-

Il is as the following topic.

2.4.1. SPEA-II Main Algorithm

1)

2)

3)

4)

5)

6)

Create random initial population P, of size N and create the empty archive

(external set) P, sett = 0.

Merge current population P, and current archive P, to form merged

population R, and then calculate fitness values of individuals in R,.

Put all non-dominated solutions in R, to the new archive P,, . If size of P, is

t+1*

more than archive size N then reduce P,, by means of the truncation
operator, if size of P, is equal to N stop and go to the next step, otherwise,

if size of P,,, is less than N then fill P, with the best N -

P

1| dominated

t+1

individuals in R,.

Check a termination condition. If the condition is satisfied, the algorithm is
stop, the non-dominated solutions of final archive P,, is the output of the

algorithm, otherwise go to the next step.

Perform binary selection tournament selection with replacement on the
current archive P, in order to fill the mating pool. In SPEA-II, only fitness

values are consider in the binary selection.

Apply crossover and mutation operators to the mating pool and set P, to the

resulting population. Increase the generation counter by one (t « t + 1), go
back to 2).

The fitness assignment and archive truncation will be described in detail as

follow.

33

2.4.2. SPEA-II Fitness Assignment

At first, an individual i in merged population R, is assigned its strength S, as
the number of solutions in R, that it dominates. S, is described as the following

equation.

S, =[{ilieR. Ai=}] (2.26)

After strengths of all individuals in R, are obtained, a raw fitness value of
an individual i or RF, is equal to the sum of strengths of individuals dominate it.
RF, is evaluated as the following equation.

RF= 2. §, (2.27)
JeR, A j<i

It is important to note that fitness value is to be minimized as the original
algorithm SPEA-II, while a raw fitness of a non-dominated individual is equal to
zero. Although the raw fitness assignment provides a reasonable measurement
based on the concept of Pareto domination, it may be fail when most individuals
do not dominate each other. Therefore, a diversity value of an individual is
incorporated to discriminate individuals with identical raw fitness values. The
diversity value of an individual is evaluated from the density estimation
technique, which is an adaptation of the k-th nearest neighbor method [52],
where the density of a point i is inverse variation of its k-th nearest distance or
df . Therefore , in SPEA-II, the density of an individual i or D, is simply taken to
the inverse of df, where k is equal to square root of the data size [52], then k =
JN+N . An individual with large density means there are many neighboring
point near it. It can be noted that if the individual is selected, it contributes a little
diversity to the mating pool. This implies that a density of an individual i or D, is
to be minimized as the raw fitness RF,, its fitness or F, is then equal to the sum of
its raw fitness RF, and its density D,, hence the fitness F, is also to be minimized. In
addition, the evaluations of D, and F, can be described by the following equations

(2.28) and (2.29), respectively.

1
D =

=Tz (2.28)
F =RF, +D, (2.29)

In the equation (2.28) for D, the denominator is df plus 2, two is added to
ensure that the value of D, is more than zero and less than one, subsequently, it
guarantees that the fitness of individual with smaller (better) raw fitness is also
lower than that of individual with larger (worst) raw fitness. In addition, the fitness
of a non-dominated individual is less than 1, while the fitness of dominated

individual is more than or equal 1.
2.4.3. SPEA-II Archive Truncation

Although [30] stated that the archive truncation of SPEA-II differs from
that of its predecessor SPEA, clustering selection, in the respect that it can prevent
lose of extreme individuals which may happen by the clustering selection in
SPEA. By detailed consideration, it prevents this lose only in a two objectives
optimization problem, in the other hand, an extreme individual may be removed
from the archive for a three-or-more objectives optimization problem. After non-
dominated individuals of size more than the archive size N in merged population
R, are put into the archive P, the archive truncation will iteratively removes

A

t+1

individuals from the archive P, until = N. For each iterative removal, an

individual i is chosen to be removed from P, if forallj € P, i <,j. The
notation i <, j is described by the following equation.

Vkell,
}5“1

B.|-1:d=d* v
~1):[(vIe[Lk-1]:d] =d}) rdf <d] (2.30)

3k, k €[],

where d denotes the k™ nearest distance from i to its neighbor in current P, .
The first condition in the above equation means that the objective vectors of i is
the same as that of j. While the other condition can be described as follows. The

individual which has the minimum distance to another individual is chosen at

35

each stage; if there are several individuals with minimum distance the tie is
broken by considering the second nearest distance and so on. Figure 2.11 and
Figure 2.12 show examples of SPEA-Il archive truncation for optimization
problems with two and three objectives, respectively. In both figures, there are 8
non-dominated solutions on the left graphs, while a size of archive N = 5, then
8-5 = 3 solutions which are displayed by the black points on the right graphs are
iteratively removed, the first, second, third removed solutions are marked by 1, 2,

and 3, respectively.

A A
O

° :

O O

2 2 ®
f O f ’

O O
o [
1

O O
O (@)

h h
Figure 2.11 SPEA-II archive truncation in a two objectives optimization

Y

Y

problem.

fy

hlo
O
3
. -
‘f;// . ‘fl/G/ f

Figure 2.12 SPEA-II archive truncation in a three objectives optimization

problem.

Figure 2.11 shows that all extreme individuals are maintain in the archive,
however Figure 2.12 shows that one extreme solution, the second removed

solution, is removed from the archive. In a two objectives optimization problem,

36

the Pareto front of non-dominated solutions represents by line. Subsequently, if
an extreme solution x is compare with its nearest solution y in the current archive,
by the conditions in (2.30), y <, x, this shows that the extreme solution x is not
removed from the current archive in any iterative removal. However, in a three-
or-more objectives optimization problem, mostly the Pareto front of non-
dominated solutions does not represent by line or curve. It cannot guarantee that
y <, x, therefore the extreme solution x is probably removed from the current

archive in one iterative removal.
2.5. Co-operative Co-evolutionary Multi-Objective Algorithm

A co-operative co-evolutionary multi-objective algorithm (CCMOA)
employs the idea of a co-operative co-evolutionary genetic algorithm (CCGA)
[43] into multi-objective optimization. The CCMOA is quite different from the
integration of CCGA into multi-objective evolutionary algorithms (MOEAs) [31],
[32], [35] and others MOEAs that employ co-operative co-evolution such as
distributed cooperative coevolutionary algorithm (DCCEA) [44]. For MOEAs
employ co-operative co-evolution, a solution is divided into several components
or species, each species has a sub-population that represents for the
corresponding component of solutions. All species or sub-populations are
independently evolved together with the update of an external best solution set.
In the other hand, for the CCMOA, a solution is still divided into several
components or species; however, the CCMOA does not have several sub-
populations, it has only one population as that of traditional MOEAs. The
crossover and mutation of CCMOA is quite different from that of the traditional
MOEAs, they applied on only some components or species. The main procedure,
solution truncation, and crossover and mutation of CCMOA will be described in

the following topics.

37

2.5.1. Main Algorithm

1)

2)

4)

Generate an initial population P, and an empty archive A,. Initialize the

generation counter (t = 0).

Merge the population P, and the archival individuals in A, together to form the
merged population R, Then assign ranks to individuals in R, rank of an
individual i or rank, is equal to one plus number of its dominators which is

given by the following equation.

rank, = 1 + l{) eR, :j-<i}\ (2.31)

Sort individuals in the merged population R, according to a rank, afterward,
select non-dominated individuals from R, and put them into the archive A,, ;.
If the size of A,,; is more than archive size or Q then reduce it with truncation
operator which is called in this thesis as CCMOA truncation. In the other
hand, if the size of A,,, is less than Q, judging in the ranks, the best Q - |A,,,|

individual are considerably filled to A,, ;.

Perform binary tournament selection with replacement on archival individuals
in order to fill the mating pool considered by ranks and summation of
distances of a solution i, SDT,, in archive and all solutions in the current
mating pool. The binary selection of CCMOA will be described as follows. At
beginning of selection, the summation of distances of a solution i in archive
and all solutions in the current mating pool or SDT, is set to 0. In the first
selection, two individuals from archive are randomly picked; the individual
with higher rank will be selected, otherwise if their ranks are equal, one
individual is selected at random. After the selected individual is obtained,
SDT, of any solution i in the archive is updated by adding it with the distance
between the solution i and this selected individual. In the next iteration, if
ranks of two random individuals are not equal, one individual is selected as

that of the first selection. If the ranks of these two individuals are equal, the

6)

38

individual with more SDT, is then selected. Subsequently, SDT; of a solution i
in the archive is updated again. The binary selection is then repeated until the

mating pool is fulfilled

Apply CCMOA crossover and mutation operation, which will be described in
the second following topic, within the mating pool. Then place the offspring in

the population P,,, and increase the generation counter by one (t <t + 1).

Go back to step 2 until the termination condition is satisfied. Report the final

archival individuals as the output solution set.

2.5.2. CCMOA truncation

From N non-dominated solutions, by CCMOA truncation, Q (archive size)

solutions are obtained and placed into the archive A,,;. The CCMOA truncation

is as follows.

1)

2)

Find extreme solutions of the non-dominated solution. The number of
extreme solution is equal to E, which is not exceed 2M, (2 solutions represents
for minimum and maximum value of each objective) as that of COGA-II. For
instance, to find the extreme solution represents for minimum value of an
objective k, if there is only one solution represents for the minimum value of
the objective k, this solution is the extreme solution. Otherwise, if there are
more than one solutions represent for the minimum value of the objective k,

the solution is chosen at random to be the extreme solution.

All E extreme solutions are placed in the archive. Set the numbers of selected
solutions L = E and remaining solutions R = N-E. Then, calculate the
Euclidean distance d™ between the individual i in remaining solution set and
its nearest neighbor in L. The d* for the remaining individual i is updated as
COGA-II including a remaining individual j that have two-or-more individuals

in the current archive with its same objective vector.

39

3) Remove the individual with highest value of d™ from remaining solution set

into the archive.

4) Increase the counter for the number of selected solutions (L « L + 1) and
decrease the counter for the number of remaining solutions (R «R - 1).

Update the d™ for a remaining individual i.

5) Go back to step 3) until the number of selected individuals is equal to the

required archive size.
2.5.3. CCMOA Crossover and Mutation

As previously stated, in the CCMOA a solution composes of several
components or species. The reason for the success of the employment of co-
operative co-evolution [43] as multi-objective optimizer [35] for multi-objective
optimization problems which have weak linkage among decision variables or bits
in a solution can be described as follows. A candidate solution, which may
considerably be put into the archive, is a combined solution of which a part is
obtained from an individual of any species while other parts are copied from a
current archive solution. It can say that the candidate solution is not obtained by
the crossover and mutation on the whole chromosome of parent individuals as

that of normal MOEAs.

Due to the weak linkage of bits in a solution, the crossover and mutation
on only a part of a solution without the change of other parts, which may already
represent for good portions of the solution, can contribute more superior resulting
solutions than that of the crossover and mutation on the whole chromosome as in
normal MOEAs. Therefore the crossover and mutation of CCMOA employ only
on one part of a solution on the corresponding partition of randomly selected
species. For a problem for which a solution composes of S components or species

represent by string of length L, L,,..., Lg, respectively, two parents p, and p, will

40

form their children ¢, and c,. Figure 2.13 shows an example of CCMOA crossover

and mutation of a problem with 4 species.
species 1} species 2 | species 3 | species 4
Parent1 111110000010101{00011
Parent2 0100101011/01110{11011
Species 3 is

randomly &
selected. 10001
n01111

switched.
]] &]
Chid1 111110000001111{00011
Chid2 0100101011{10001{11011
Figure 2.13 An example of CCMOA crossover and mutation of a problem with 4

Unchanged
Unchanged
Unchanged

species.
The crossover and mutation of CCMOA are described as follows.
1) Randomize speciesi € [1,S].

2) Copy corresponding chromosomes of length L; of parents p, and p, onto

temporary parents r; and r,, respectively.

3) Apply crossover and mutation on r, and r, in usual way to obtain two

resulting individuals t, and t,, respectively.

4) Copy corresponding parts of other species of the parents p, and p, onto their
children ¢, and c,, respectively. Finally, t, and t, are randomly put onto the

corresponding parts of species i of the children ¢, and c,.
2.6. Improved Compressed-Objective Genetic Algorithm

Optimization problems usually arise when limited resources are available
for existing demands. If multiple conflicting objectives are required in the problem

formulation, the problem is multi-objective. Various techniques have been

41

proposed for solving these multi-objective problems. Among these, the genetic
algorithm has been established as one of the most widely used method for multi-
objective optimization [27]-[33], [40]. Due to the parallel search nature of the
algorithm, the approximation of multiple optimal solutions — the Pareto optimal
solutions, comprising of non-dominated individuals — can be effectively executed.
The performance of the algorithm always degrades as the search space or
problem size gets bigger. An increase in the number of conlflicting objectives has
also significantly raised the difficulty level [39]. Thus, the non-dominated
solutions may deviate from the true Pareto front; the coverage of the Pareto front

by the solutions generated may be affected.

A number of strategies have been successfully integrated into genetic
algorithms to solve these problems, including a direct modification of selection
pressure [40], [42] and elitism [27], [31]. Although they have been proven to
significantly improve the search performance of genetic algorithms, virtually all
reported results deal with only few objectives. In reality, the possibility that a

candidate solution is not dominated always increases with objective numbers,
leading to an explosion in the total number of non-dominated solutions. This
difficulty stems from the way that a non-dominated solution is defined. By
Definition 2.1, domination definition, a candidate solution x is dominated by
another solution v if and only if (a) all objectives from y are either better than or
equal to the corresponding objectives from x and (b) at least one objective from y
is better than the corresponding objective from x. Hence, if one single objective
from y does not satisfy the conditions, y would not dominate x. In a problem with
a large number of objectives, the chance that two solutions cannot dominate one
another is inevitably high. A genetic algorithm must be able to pick out a well
chosen solution set from a vast number of non-dominated solutions in order to

successfully approximate the Pareto front.

In order to properly approximate such Pareto fronts, a number of non-

dominated solutions must be excluded from the search target. One possible

42

technique is to assign different preference levels to non-dominated solutions
under consideration. It is hypothesized that a set containing highly preferred
solutions would reflect a close approximation of the true Pareto front. The
original compressed-objective genetic algorithm (COGA-I) [37] employed two
conflicting criteria in the preference assignment. This can be viewed as a
transformation from an M-objective problem to a two-objective problem during
the survival competition between two non-dominated solutions. This thesis will
present the improved version of compressed-objective genetic algorithm. The
improved compressed objective genetic algorithm (COGA-Il) is quite different
from the original COGA-I in which three-or-more objectives is transformed to
only one preference objective during the survival competition of two non-
dominated solutions. The preference objectives of the COGA-I are winning score
and vicinity index, in the other hand, the COGA-II has only one preference
objective, winning score. Although the COGA-II employs winning score as the
COGA-], its winning score assignment is not the same as that of the original
algorithm. The winning score assignment of both algorithms and the main

procedure of the COGA-II will be described in the following topics.
2.6.1. Winning Score Assignment

When two non-dominated solutions are competing for survival, the
solution with more winning score has a higher chance of being selected. The
winning score assignments of COGA-I, and COGA-II will be described as the

following topic.
1) Winning Score Assignment of COGA-I

In the original algorithm, COGA-I [37], the winning score is calculated
from the numbers of superior and inferior objectives between a pair of two non-
dominated solutions. Let sup, be the number of objectives in the solution i that is

superior to the corresponding objectives in the solution j while inf; be the number

43

of objectives in i that is inferior to j, for a population containing N non-dominated

individuals, the winning score for the ith solution or WS, is given by

WS, = jZleij where w; = sup - inf; (2.32)

Obviously, w, = -w; and w, = 0. With this assignment, non-dominated
solutions with high winning scores should be close to the true Pareto front but
they tend to cluster around the best values of individual objectives instead of
spreading throughout the Pareto front. Therefore, the other preference objective,
vicinity index, which is evaluated from the density of values in each objective, is
infroduced to prevent this problem. The non-dominated solutions are then
assigned different ranks form their two preference objectives. However there may
be strong conflict between these preference objectives for some non-dominated
solutions, then the ranks of the solutions may be inappropriately assigned [37].
The improve compressed-objective genetic algorithm (COGA-II) eliminate this
problem by using only winning score for which its winning score assignment,

which is different from that of COGA-I, will be discussed in the next topic.
2) Winning Score Assignment of COGA-II

The winning score assignment of the original algorithm, COGA-I, which is
described by the equation (2.32), employ the equal weight winning score, which
is equal to 1, for any objective k. However, due to the relation between objectives
of non-dominated solutions, for instance conflict, harmony, and independence
[53], the weight winning scores of all objectives are not necessary equal to each
other. For example, benchmark problems DTLZ5 and DTLZ6 [39] which have
the same true Pareto front, for a set of true Pareto optimal solution of the
problems, the relation of first M-1 objectives are harmony and the relation of
these objective and M™ objective, the last objective, is conflict. Therefore, by the
winning score assignment of the COGA-I, the true Pareto optimal solution with

the best value M™ objective, which also has the worst first M-1 objectives, has

44

the worst winning score which is much less than the winning score of the true
Pareto optimal solution with the worst M objective, which also has the best first
M-1 objectives. Since these solutions are the true Pareto optimal solutions, in a
correct way they should have the same winning scores, then the winning scores of
any non-dominated solutions in COGA-I may not be suitable to assign the level

of the solutions.

To avoid this imperfection, the winning score assignment of COGA-II will
employ the different weight winning score for any objective k which is evaluated
from current non-dominated solution set. The winning score of a non-dominated
solution is then calculated from the obtained weight winning scores. The weight
winning score evaluation will be described as the follows. For N non-dominated
solutions of an M-objective optimization problem, let n,,, n,, and n, be the
number of objectives in a solution i that is superior to the corresponding
objectives in a solution j, the number of objectives in i that is inferior to j, and the
number of objectives in i that is equal to j, respectively. The raw weight winning
scores of objectives that i is superior to j and i is inferior to j are given by p,,, and
Pni» then winning score of solution i to solution j or w; is given by
Wy =Ny Pun — NP - BY consideration of the equality of preference level of
solution i and solution j, it can be thought that w; = w; = 0 which implies that
NpPsp = NiPirs- Let py be the raw weight winning score of solution pairs i and
j of an objective k, by the consideration, the p;, can be given by the following

equation.

0.5(n,,, +n.¢)/n, foran objective k that i is superior to j
Py =1 0.5(n,,, + n,)/n,,,,for an objective k that i is inferiortoj (2.33)
1, for an objective k that i is equal to j

The above equation implies that 3, Py =M for any solutions pair i and
j. Thereafter, the summation of raw weight winning score of an objective k, f,, of

all possible solutions pair is given by

45

N-1 N

fe= Z z P (2.34)
I=1 j=i+l

Subsequently, the weight winning score of an objective k, f, , is defined by

the following equation.

7= ﬁ (2.35)

From the derivation, it can be see that f, is the overall weighted winning
score of a set of non-dominated solution of an objective k, and Y f =1. For a
population containing N non-dominated individuals, after fk of any objective k is

obtained, the winning score for the ith solution or WS, is then given by

WS, = iwy, where w; = Z:l fa (2.36)

The competitive score g, = 1, if objective k of solution i is superior to that

of solution j, gy = -1, if objective k of solution i is inferior to solution j, and g =
0, if their objectives k are equal. In addition, for any solutions pair i and j, w;, = -
wy and w; = 0, -1< w; < 1, and -N < WS, < N. By this winning score
assignment, for a set of true Pareto optimal solution of the DTLZ5 or DTLZ6
problem the weight winning score of the M™ objective is M-1 times that of
another objective, then the winning scores of any true Pareto optimal solutions
are all equal. These examples show that the winning score assignment of COGA-

II is more appropriate than that of the original COGA, COGA-I.

To study correction of the use of winning score to assign different level of
non-dominated solutions, a number of non-dominated solutions are randomly
generated, thereafter winning scores (WS, and distances (d,) from true Pareto
optimal front of the solutions are plotted by graph. The perfection of the use of

winning score to that assignment can be indicated by the relation of WS, and d,, if

46

this relation is illustrated by decreasing function, the winning score is a suitable

indicator.

A minimization problem with M objectives of which an objective i or f;, = x;
where x; € [0, 1] is used as the example. This problem has only one true optimal
point represented by the zero objectives. For the generation of a number of non-
dominated solutions, the first random solution is generated and put into a non-
dominated solution set A, after that another solution is randomly generated, if this
solution neither dominates nor is dominated by any solution in set A, it is
considerably put into set A. The generation is then repeated again until the set A
is fulfilled. The following figure displays relation between winning score of
solution i (WS,), which is represent horizontal axis, and distance from the solution
to the optimal solution, d,, of a set of 200 non-dominated solution of the problem

with 3-6, 8, 10, 15, 20 objectives respectively.

N, <y ' T‘:%l o' Ta,
‘;-'fa. " '.1 -'.._ 1% * ;' % -'. Ded
g B W By
By e ey L »
'.J:- . : . . = .
3 objectives 4 objectives 5 objectives 6 objectives
e [39 A
. - .'i -, .
‘.h% "'-.'{;qg 1'5“' “&
; 5 %,
& {:‘:..:. ‘233 ';. %@; "F_l...
8 objectives 10 objectives 15 objectives 20 objectives

Figure 2.14 Relations between winning score (horizontal axis) and distance from

the true solution (vertical axis).

Although, the figure shows that for any two solutions i and j, winning score
of the solution i, WS,, is more than that of the solution j, WS,, it is not guarantee

that the solution i is closer to the true solution than solution j, the overall relation

47

between winning score and distance from the true solution can be described by
the decreasing function. This shows that the winning score can used to
approximate the quality of a solution in a non-dominated solution set. The figure
also shows that if number of objectives is increased, the relation between the
winning score and the distance is more similar to decreasing relation especially

for the problems with 6, 8, 10, 15, and 20 objectives.

The employment of different weight winning score of any objective can
prevent the bias of non-dominated solutions to cluster around the best values of
individual objectives instead of spreading throughout the Pareto front. The
prevention can be described as the following. If there are several solutions around
the best objective for an objective k, the weight winning score f, of the objective
is less than that of the other objectives, and then an overall winning score of the
solutions may be less than that of other solutions. Only a few solutions of this set
are selected into mating pool, then, only some individuals of this set will be
members of the archive for the next generation. As a result, this employment can
prevent the bias of non-dominated solutions and obtain the solutions spread

throughout the Pareto front.
3) Rank Assignment of Non-dominated Solutions

With the winning score, a maximization objective, a rank can be assigned

to each non-dominated solution based upon the preference level as follows.
1) Evaluate a winning score of any solution of non-dominated solution set.

2) Find extreme solutions of the non-dominated solution. The number of
extreme solution is equal to E, which is not exceed 2M, (2 solutions represents
for minimum and maximum value of each objective). For instance, to find the
extreme solution represents for minimum value of an objective k, if there is
only one solution represents for the minimum value of the objective k, this

solution is the extreme solution. Otherwise, if there are more than one

48

solutions represent for the minimum value of the objective k, the solution

having the maximum winning score is chosen to be the extreme solution.

3) Sort E extreme non-dominated solutions in descending order of winning
score, the first sorted solution is assigned with the rank of 1, second sorted
solution is assigned with the rank of 2, and so on, therefore the lowest rank of
extreme solutions is E. In the same way, N-E non-extreme non-dominated
solutions are sorted in descending order of winning score, the first sorted
solution is assigned with the next rank, E+1, and the second sorted solution is
assigned with the rank of E+2 and so on. This rank assignment guarantees
that a rank of an extreme solution is higher than that of any non-extreme

solution.
- 2.6.2. COGA-II Main Procedure

The improved compressed-objective genetic algorithm (COGA-II)
maintains the number of solutions in its archive to be constant which is different
~from the original algorithm, COGA-I. The reason of this improvement will be
described as follows. In the COGA-I, the archive contains only non-dominated
solutions which has the weak point in a problem for which a few non-dominated
solutions in an early stage of a run. Then, there are only a few solutions in the
archive, subsequently, after a selection (binary selection), many copies of a
solution are put into the mating pool. This can cause premature convergence; to
avoid this imperfection, the COGA-II will keep the number of solutions in archive
constant. For the problem with a few non-dominated solutions in an early stage
of a run, dominated solutions are filled into the archive until the number of
solutions in the archive is equal to the defined size, after selection, only a few
copies of a solution will be selected, therefore the mating pool will be then
diversified. The procedure of the COGA-II, for which the archive size is equal to

Q, is as follows.

1)

2)

3)

4)

6)

49

Generate an initial population P, and an empty archive A,. Initialize the

generation counter (t = 0).

Merge the population P, and the archival A, together to form a merged
population R, After V non-dominated individuals and W dominated
individuals of the merged population R, are obtained, all V non-dominated
individuals are put into the archive A,,;. If V > Q, truncate the individual set
using the operator described in the following topic. If V = Q, go to the next
step, else if V, < Q, the Q-V dominated individuals having the least number of

their dominators are therefore fulfilled the current archive A, ;.

Evaluate the rank of each individual of non-dominated solutions in A,,; by the
rank assignment of non-dominated solutions as previously described, while
the rank of each dominated individual in A,,, is equal to V, plus number of its
dominators in R, The addend V, ensures a rank of a non-dominated

individual is higher than that of a dominated individual.

Perform binary tournament selection with replacement on archival individuals
in order to fill the mating pool. The binary selection of COGA-II will be
described as follows. For each selection, two individuals from archive are
randomly picked; the individual with higher rank will be selected. The binary
selection is then repeated until the mating pool is fulfilled.

Apply crossover and mutation operation within the mating pool. Then place
the offspring in the population P,,; and increase the generation counter by

one (t«t+1).

Go back to step 2 until the termination condition is satisfied. Report the non-

dominated solution set of the final archive as the output solution set.

A truncation operator for maintaining individuals in the archive is

introduced next.

50

2.6.3. Truncation Operator for the Archive

For a set of N non-dominated solutions, the truncation for the archive with

size Q is based upon the preference level, which is indicated by winning score,

and the spread of solutions in the objective space. It can be described as follows.

1)

2)

3)

Calculate winning scores of all N non-dominated individuals.

Find extreme solutions by the determination of an extreme solution in the
rank assignment of non-dominated solutions, which is earlier described in the
previous topic. Thereafter, all E extreme solutions are placed in the archive.
Set the numbers of selected solutions L = E and remaining solutions R = N-E
and then calculate the Euclidean distance d® between an individual i in

remaining solution set and the nearest neighbor in the archive.

Select (Q - L) solutions with highest values of d* from the remaining solution
set. From these selected solutions, the candidate with the most winning score
is moved to the archive. If there are more than one solutions having the most

winning score, the suitability is decided by the high value of df-.

Increase the counter for the number of selected solutions (L < L + 1) and
decrease the counter for the number of remaining solutions (R <R - 1). The
df* for the remaining individual i is updated in the usual way. In the other
hand, for an individual j in the remaining individual set that have two-or-more
individuals in the current archive with the same objective vector as the

individual j, the d* of the individual j is set by the following equation.
di* =-(C,-1WM (2.37)
where C, is the number of individuals in the current archive that have the

same objective vector as the individual j. This setting guarantee that for any

two individuals i and j in which C; is less than C,, the distance d*" is certainly

51

more than df", then it can prevent the occurrence of several individuals

having a same objective vector in the archive.

5) Go back to step 3 until the number of selected individuals is equal to the

required archive size.

Note that after the archive is obtained, solutions in archive will be assigned
ranks; their winning scores are also calculated in the rank assignment, therefore
the winning score of a solution i, WS,, evaluated in the truncation is not equal to
WS,, evaluated in the rank assignment because they are calculated from the

different sets of solution.

2.7. Co-operative Co-evolutionary Improved Compressed-Objective
Algorithm

A co-operative co-evolutionary improved compressed-objective genetic
algorithm (CCCOGA-Il) is the resulting algorithm of the integration of an
improved compressed-objective genetic algorithm (COGA-II) and a co-operative
co-evolutionary multi-objective algorithm (CCMOA). The main procedure of
CCCOGA-II is the same as that of COGA-II, only crossover and mutation of
CCCOGA-II is different from COGA-II; it is the same as that of CCMOA.

	Chapter 2 Multi-Objective Evolutionary Algorithm
	2.1 Standard Genetic Algorithm
	2.2 Multi-Objective Optimization
	2.3 Non-Dominated Sorting Genetic Algorithm II (Nsga-II)
	2.4 Improved Strength Pareto Evolutionary Algorithm
	2.5 Co-Operative Co-Evolutionary Multi-Objective Algorithm
	2.6 Improved Compressed-Objective Genetic Algorithm
	2.7 Co-Operative Co-Evolutionary Improved Compressed-Objective Algorithm

