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Introduction
1.1 Motivation

At present, there are two main optimization approaches, the derivative-
based and derivative-free methods. The derivative-based schemes, such as
Newton’s and conjugate gradient (CG) methods, have long been used in
engineering applications. On the other hand, the derivative-free optimization,
such as genetic algorithm (GA) and simulated annealing (SA), are much less
employed in mechanical engineering applications, mostly confined to the field of
control, machine intelligence and CAD/CAM [1], [2]. Compared to the derivative-
based schemes, the derivative-free methods do not need functional derivative of
a given objective function. They, instead, rely on repeated evaluation of the
objective function and obtain the search direction under nature-inspired heuristic
guidelines. Although the derivative-free schemes are generally slower than
derivative-based methods, they are much more effective for complicated
objective functions and combinatorial problems as the methods do not require

differentiable objective functions.

GA is a derivative-free population-based optimization method of which
search mechanisms are based on the Darwinian concept of survival of the fittest.
Originally, GA is established to solve single-objective optimization problems
(SOOPs) [3], [4]; subsequently it is adapted to solve multi-objective optimization
problems (MOOPs) which have a number of objective functions to be minimized
or maximized. In the thesis, the GA for a multi-objective optimization problem

(MOORP,) is called the multi-objective evolutionary algorithm (MOEA).

Most real-world optimization problems are MOOPs; for example, the
decision to buy a computer by its performance and price is an MOOP with two

objectives — the performance maximization and price minimization. As it is almost



improbable that only one solution is optimum in all objectives for a given MOOP,
the multiple optimum solutions of MOOPs — the Pareto optimal solutions — are
used. It is easy to compare solutions of SOOP, while solutions of MOOPs are
compared by the Pareto domination [5], which is firstly defined by Vilfredo
Pareto and shall be described in Chapter 2. If a given solution dominates other
solutions, it is better than the rest. Thus, for a given solution set, the non-

dominated solutions are the best solutions of the set.

A multi-objective evolutionary algorithm (MOEA) embeds the Pareto
domination concept into a genetic algorithm (GA). In a GA, an objective of a
solution i is directly used to evaluate the fitness of the solution. On the other
hand, an MOEA employs Pareto domination concept to assign fitness or rank of a
solution from objectives of the solution. The purposes of the MOEA are to find
good non-dominated solutions which must possess 2 qualities — they should be

close to the Pareto-optimal front and they are diverse along their front [5].

The structural design optimization may be divided into 3 main categories —
the size, shape and topology design [6], [7]. In sizing optimization, the topology
and shape are held constant while specific dimensions of the structure are
modified. Examples include designs of plate thickness [8] and cross-sectional
areas of truss and frame elements [9]. The shape optimization maintains a
constant topology while the shape is modified and design variables that produce
optimum component shape are determined. The prime example is the shape
optimization by varying shape parameterisation and local curve fitting [10], [11].
It should be noted that the sizing optimization typically occurs as a consequence

of the shape optimization process.

Meanwhile, the topology optimization finds the optimal lay-out of structure
within a specified region and may be divided into 3 main categories - the discrete
truss design [12], unit cell properties, e.g. orientation and porosity in composite

materials [13], and continuum topology optimization. The purpose of the



continuum topology optimization is to allow the creation of new boundaries. The
space that contains the structure is specified and divided into rectangular grids.
By selective filling these grids or leaving the space empty, different configurations
are obtained. Many structural topology optimization problems have been solved
by derivative-based optimizers such as [14]-[24]. These optimizers require an
explicit mathematical formulation of decision variables of a topology optimization
problem, even though it is very difficult to identify the objective formulations of

topology optimization problems [25].

Therefore a genetic algorithm (GA), a derivative-free optimizer, is more
suitable to the topology optimization problems; in this thesis, the GA and
computational mechanics have been combined for continuum topology
optimization. The GA randomly generates a population within the solution space
set which is then evolved repeatedly toward structures that can perform
superlatively. Most of structural topology optimization problems are focused on
single-objective optimization problems. If there is more than one objective to be
designed, they can be considered as single-objective problems by optimizing only
one selected objective and freating other objectives as problem restrictions.
However, it is generally better if all objectives are optimized; hence the multi- -

objective optimization is needed for the problems.

In this thesis, MOEA is chosen to solve the multi-objective continuum
topology optimization problems whilst the finite volume method (FVM) is selected
for the objective calculation. The advantages of this FVUM scheme are direct
representation of conservative laws, straight forward physical interpretation and
simple discretization. Moreover the FVM does not require the connectivity
analysis as in finite element method (FEM) [6] due to its superlative physical
representation as control volumes with only one shared corner vertex are not
physically attached [26].



Many MOEAs had been developed in last decade; most of these MOEAs
[27]-[33] are tested only on well-established benchmark problems and focus on
two-objective optimization problems. It has not been studied whether these
developed MOEAs are suitable for multi-objective topology optimization, which
are real-word problems and may not have only two optimized objectives [34].
This thesis presents improved MOEAs for multi-objective continuum topology
optimization, in which the improved MOEAs are tested not only on well-
established benchmark problems but also on continuum topology optimization
problems. Hopefully, it shall be helpful for researches in structural design

optimization.

There are two main parts in thesis — the improvement of multi-objective
evolutionary algorithms (MOEAs) and implementations of MOEAs for multi-
objective continuum topology optimization problems. Three purposed MOEAs
are introduced in the first part. The co-operative co-evolution multi-objective
algorithm (CCMOA) is the first presented MOEA. It introduces the co-operative
co-evolution strategy, which is originally developed for single-objective
optimization problems, into a multi-objective optimization problem (MOOP). The
co-operative co-evolution is successfully employed for multi-objective continuum
topology optimization problems [35], [36]. The second purposed MOEA, the
compressed-objective genetic algorithm (COGA-I) [37] and, more importantly, its
improved version, the improved compressed-objective genetic algorithm (COGA-
1), is proposed for optimization problems with three-or-more objectives. The third
proposed MOEA is the co-operative co-evolutionary improved compressed-
objective genetic algorithm (CCCOGA-II) which results from the integration of co-
operative co-evolution into improved compressed-objective genetic algorithm
(COGA-II). It is also proposed for an optimization problem with three-or-more
objectives as COGA-IL.

The effectivenesses of purposed MOEAs are evaluated by comparing them

with well-established advanced MOEAs - fast elitist non-dominated sorting



genetic algorithm (NSGA-II) [28], and improved strength Pareto evolutionary
algorithm (SPEA-II) [30]. All MOEAs under consideration — CCMOA, COGA-II,
CCCOGA-II, NSGA-II, and SPEA-II, are tested on well-known unconstrained
benchmark problems ZDT1-6 [38] and DZTL1-7 [39] for optimization problems
with two objectives and three-or-more objectives respectively. In the second part,
these MOEAs are used to solve multi-objective continuum topology optimization
problems, which are the heat conduction, linear-elastic and multi-displinary

thermo-elastic problems.
1.2 Research Objectives

This thesis is roughly divided into two parts — the improvement of multi-
objective evolutionary algorithms (MOEAs) and implementations of MOEAs to
multi-objective continuum topology optimization problems. The objectives of this

thesis are as follows:

1.2.1 To study the well-established multi-objective evolutionary algorithms
(MOEAs).

1.2.2 To introduce the co-operative co-evolution for multi-objective optimization
problem (MOOP), resulting in the so-called co-operative co-evolutionary

multi-objective algorithm (CCMOA).

1.2.3 To introduce the new multi-objective evolutionary algorithm (MOEA),
improved compressed-objective genetic algorithm (COGA-II), for MOOPs

with three-or-more objectives.

1.2.4 To integrate the co-operative co-evolution into the compressed-objective
genetic algorithm (COGA-II). The resulting algorithm is the co-operative
co-evolutionary compressed-objective genetic algorithm (CCCOGA-II).

1.2.5 To study the performance improvement due to the purposed multi-
objective evolutionary algorithms - CCMOA, COGA-II, and CCCOGA-II.



1.2.6 To study the finite volume method (FVM) for heat conduction, elastic

solids and thermo-elastic solid simulations.

1.2.7 To implement MOEAs and FVM for multi-objective continuum topology

optimization problems.

1.2.8 To study the effectiveness of multi-objective evolutionary algorithms
(MOEAs) — CCMOA, COGA-II, and CCCOGA-II - for solving the multi-

objective continuum topology optimization problems.
1.3 Research Scopes

~ This thesis studies the improvement of MOEA and implementation of
MOEAs to optimize multi-objective continuum topology problems. The scopes of

this thesis are as follows:

1.3.1 The co-operative co-evolutionary multi-objective algorithm (CCMOA),
which employs the co-operative co-evolution for multi-objective
optimization problems (MOOPs), is presented and tested on selected

optimization problems with 2-6 objectives.

1.3.2 The improved compressed-objective genetic algorithm (COGA-II) for an
optimization problem with three-or-more objectives is purposed and tested

on selected optimization problems with 3-6 objectives.

1.3.3 The co-operative co-evolutionary improved compressed-objective genetic
algorithm (CCCOGA-II), the resulting algorithm from the integration of co-
operative co-evolution into improved compressed-objective genetic
algorithm (COGA-II), is introduced and tested on selected optimization
problems with 3-6 objectives.

13.4 The introduced MOEAs - co-operative co-evolutionary multi-objective
algorithm (CCMOA), improved compressed-objective genetic algorithm

(COGA-Il), and co-operative co-evolutionary improved compressed-



objective genetic algorithm (CCCOGA-II) — are compared with two well-
established MOEAs - fast elitist non-dominated sorting genetic algorithm
(NSGA-II), and improved strength Pareto evolutionary algorithm (SPEA-
).

1.3.5 All five MOEAs - co-operative co-evolutionary multi-objective algorithm
(CCMOA), compressed-objective genetic algorithm (COGA-II), co-
operative co-evolutionary improved compressed-objective genetic
algorithm (CCCOGA-II), fast elitist non-dominated sorting genetic
algorithm  (NSGA-Il), and improved strength Pareto evolutionary
algorithm (SPEA-II) — are tested by the benchmark problems ZDT1-6 for
two-objective optimization problems and DTLZ1-7 for optimization
problems with 3-6 objectives.

1.3.6 There are two disciplines of computational mechanics in this thesis — heat
conduction and linear elastic solids problems, which are combined into a

thermo-elastic solids problem, representing a multidisciplinary scenario.

1.3.7 All five employed MOEAs - co-operative co-evolutionary multi-objective
algorithm (CCMOA), improved compressed-objective genetic algorithm
(COGA-II), co-operative co-evolutionary compressed-objective genetic
algorithm (CCCOGA), fast elitist non-dominated sorting genetic algorithm
(NSGA-II), and improved strength Pareto evolutionary algorithm (SPEA-II)
- are used to solve simple multi-objective continuum topology
optimization problems. The introduced MOEAs are only tested with simple
test cases to ensure that the MOEAs are suitable for this type of problems.

No complex real-life problems are considered.
1.3.8 C programs are developed for all previous topics — 1.3.1 to 1.3.7.

1.4 Research Benefits

The benefits from this research are as follows.



1.4.1 The introduction of MOEAs - improved compressed-objective genetic
algorithm (COGA-Il), co-operative co-evolutionary multi-objective
algorithm (CCMOA), and co-operative co-evolutionary improved
compressed-objective genetic algorithm (CCCOGA-II) — are empirically
shown to be superior to the well-established multi-objective evolutionary
algorithms (MOEAs) — fast elitist non-dominated sorting genetic algorithm
(NSGA-II) and improved strength Pareto evolutionary algorithm (SPEA-II)
in multi-objective optimization problems (MOOPs), regardless of number
of objectives. This study is particularly useful in theoretical MOEA
researche, especially in that concerning multi-objective optimization

problems (MOOPs) with three-or-more objectives.

14.2 The multi-objective continuum topology optimization problems can be
efficiently solved by MOEAs. Subsequently, researchers in mechanical
engineering applications may be motivated to employ more MOEAs for
mechanical engineering optimization problems. The purposed MOEAs in
this thesis may be used in the future to solve the more complicated multi-
objective continuum topology optimization problems as the basis for
components designs, which is the first stage of the design process before

the shape and sizing optimization.
1.5 Research Methodologies
The research proceeds by following these steps.

15.1 To study the well-established multi-objective evolutionary algorithms
(MOEAs).

1.5.2 To study the co-operative co-evolution for evolutionary computation and

present the co-operative co-evolutionary multi-objective algorithm
(CCMOA).
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1.5.5

1.5.6

1.5.7
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1.5.9

To formulate and present the improved compressed-objective genetic

algorithm (COGA-II) for MOOPs with three-or-more objectives.

To integrate the co-operative co-evolution into the improved compressed-
objective genetic algorithm (COGA-II), the resulting algorithm is referred
to as the co-operative co-evolutionary improved compressed-objective

genetic algorithm (CCCOGA-II).

To study the well-known unconstrained benchmark problems — ZDT1-6
for optimization problems with two-objective and DZTL1-6 for

optimization problems with three-or-more objectives.
To study the unstructured, cell-centered finite volume method.

To study the MOEA performances for solving multi-objective continuum

topology optimization problems.

To develop the computer program in C language for all previously stated
MOEAs, benchmark problems and purposed topology optimization

problems.

To write papers for publications in international conferences and journals.

1.5.10 To analyze and conclude the results, and write the complete thesis.
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