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Abstract

Background: A wide range of stimuli evoke rapid and wransient increases in [Ca2*]_ in plant cells
which are transmitted by protein sensors that conain EF-hand motifs. Here. a group of Oryza satva
L genes encoding calmodulin (CaM) and CaM-like (CML) proteins that do not possess functional
domains other than the Ca?*-binding EF-hand motifs was analyzed.

Results: By functional analyses and BLAST searches of the TIGR rice database. a maximum number
of 243 proteins that possibly have EF-hand meotifs were identified in the rice genome. Using a
neighbor-joining tree based on amine acid sequence similarity, five loci were defined as Cam genes
and thirty two additional CML genes were identified. Extensive analyses of the gene structures, the
chromosome locations. the EF-hand motif organization, expression characteristics including
analysis by RT-PCR and a comparative analysis of Cam and CML genes in rice and Arabidopsis are
presented.

Conclusion: Although many proteins have unknown functions, the complexity of this gene family
indicates the importance of CaZ*-signals in regulating cellular responses to stimuli and this family of

proteins likely plays a critical role as their uansducers.

Background

Cat*is an essential second messenger in all cukanvotic
cells in wiggenng phyvsiological changes in respense (o
extemal stimuli Due o the activities of Ca2e-ATTases and
Caechannels on the cellubr membrane. vapid and tran-
sient changes of 1t cviosolic concentrations are possible.
In plant cells. 2 wide range of stimuli tigger evtosolic
[Ca%e] incrcases of different magnitude and specialized
character [1.2] which are iepically vansmited by prowein
sensors that prefcnably bind Ca®s Cals binding results in
conformation changes that modulate their activine or thei
ability o interact with ather proteins: Fan the majority of
Cadehindimg proweins, the Case-binding sites e come
posed of a characenstic helixsloop-helix monf called an

EI" hand. Each loop, including the end of the second
flanking helix. provides seven ligands for binding Ca-
with a pentagonal bipyramid geometnv Cas-binding lig-
ands are within the region designated as + X7+ 4/ -
N -Zoinwhich = epresents an e ening esidoe Thie
ligands for Ca2s coordinaton are provided by carthony e
oxveens from residucs T {aN] 30V ) and 5 (+2) one hom
acarbonyl oxygen from residue 7 (V) and v trem cag

boxvlate oxygens in residue 12 (-7). which is a highlv con-
senved glutamate (1), The seventh ligand is provided
cither by a carboxvlate side chain trom residue 9 (-X) o
from a water molecule
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In plants. three major groups of Ca?+-binding proteins
that have been characterized include calmodulin {CaMt),
Ca2+-dependent protein kinase (CPK), and calcineurin B-
like protin (UBL) |3-5] Recently. Reddy ASN and col-
leagues have analvzed the complete Arabidopsis genome
sequence. identified 250 genes encading LE-hand-con-
taining proteins and grouped them into 6 classes [6]
CarL a unique Cals sensor that docs not possess fune-
tional  domains other than the Caz+-binding motifs
belongs o group IV along with numeraus Cad-related
proteins. Cad s a small (1438 residues) multifunctional
protein that transduces the signal of increased Ca2s can-
centration by binding to and alwering the activities of a
varicty of target proteins. ‘The activities of these proteins
affect physiological responses to the vast amay of specific
stimuli received by plant cells [7] In plants, one suiking
characteristic is that numerous isoforms of Cax mav
occur within asingle plant species. A Large family of genes
encoding Cast and closelv related proteins tiom several
plants has been identificd. however, with the cxveption of
Arabidopsis. families of genes encoding CaM and related
proteins have notbeen extensively conducted in a whole-
genome scale In addition, a very limited number of stud-
ics o individual rice Cans has been published [5-10)

With the completion of the cenomic PNA sequencing
project in Oryza sanva 1, all sequences belong o a muli-
gene lamily such as Cadand related proteins can beiden-
tlicd. Preliminany scarching of Oryza saria 1 databases
revealed numeious genes encoding CaM-like protems In
Atabidopsis, McCormack and Braam |1 have characier-
ized members of Groups IV and ¥ rom the 250 L -hand
encoding genes identified in the Arabidopsis genome. Six
loci are defined as Cam genes and 50 additonal genes are
Cad-like (€MLY genes. encoding proteins compuosed
mostly of Fl-hand Cas+-binding motiis The high com-
plexite of the Cartand related calcium sensors proteins in
Arabidopsis suggests theicimporant and diverse voles of
Caesignaling. 1t would be interesting to know how this
tamily of proteins exists in the genome of rice which is
considered a model plant for monocot and cercal plants
because of its small genome size and chromosomal co-lin-
canty with other major cereal crops. In this study, we
identificd genes encoding protens that contain L1 -hand
motils and are related o CaM from the rice genome Anal-
vses ol the identined gene and protein sequences includ-
ing aene structures, chromeasomal locations, the Bl -hand
motif organizaton and expression characteristics as well
ascomparison with Arabidopsis Caneand CAML genes were
caried out
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Results and Discussion

Identification and phylogenctic analysis of EF-hand-
containing proteins

lo identify Ll-hand-containing proteins, firstly, we func-
tionally scarched the Oryza sativa 1 genome at The Insti-
e for Cenomic Research (TTGR) [12] for Interpro
Database Matches by five different methods including
HMMPlam, HMMSmart, BlastProDom. ProfileScan and
superfamily as described in the "Methods™ section. See-
ondly, we searched the rice database using the amino acid
sequences of rice CaM 1 [ 10] and CRL3 [ 13] as querics in
the pragrams BLASTp and the protein sequences that were
not lound by the domain searches were added wo the list
In addition, we reviewed literature on reports of FF-hand-
containing proteins in rice that have been identificd by
various methods. All of these prowin sequences were
again analvzed for EF hands and other domains using
InterProscan | 14] InterProScan is a protein domain iden-
titving ool that combines different protein signatuie 1oc-
ognition methods  from the  consortium  membey
databases ol the Interpro |15 As a result demain
searches identificd 245 proteins but six sequences did not
have an 11 hand adentifiable by InterProScan using
detault seutings. so thev were climinated from furthen
analysis. BLAST searches have found four more FE-hand-
containing proteins and literatire review has vielded no
additional proteins Totally, A maximum of 243 putative
LF-hand-containing proteins in rice have been identiticd
[see Additional file ] Nearly hall of these proteins con-
tain no other identifiable domains predicted by InteiPro-
Scan. It should be noted that 24 proteins contain a single
El-hand motif that was identified by onlv one prediction
program and could be false pasitives.

Nexk sequences of all the proteins identified by the Tnter-
ProScan as containing an El-hand motin were aligned
using Clustal X [16] [see Additional file 2| Tee constiuc-
ton using the neighbor-joining methed and hoostrap
analvsis was performed  Figure | shows the tree outhine
illustrating the numbers of LI hands predicted by Inter-
MroScan for cach protein on the nght without anv gene
idemificrs. As a result. proteins that do not possess fune-
tional domains other the Cas+-binding Ll-hand moils
were found distributed across the tree but most were con-
centrated in the top half, Conversely, most protins in the
bottem hall contain additional demains that give clues to
their functions which include transenption factorn ion
channel, DNA- or XTP/CLP-binding protein. mitochon-
dial carricr protein, protein phosphatase and protcin
kinase Twa known major groups of Fl-hand-containing
proteins: caleincurin B-like (CBL) [13] and Ca2*-depend-
ent protein kinase (CPK) proteins [17] are separateh
grouped as shown in Figure 1. We obsenved that most of
the proteins containing four FI-hand motifs are cither in
the CPK group or located atthe wop of the tee sunound-
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ing the wpical CaM proteins With the excoption of two,
Al proteins indicated by "Cad & CAML" share at least 25%
amino acid identiy with OsCast ] and were selected fon
further analvses This listshould contain rice proteins that
are related o Cantor has functions based on CaZe-binding
mode similar o Cad Ixistence of these genes and their
deduced amino acid sequences were confirmed using,
another annotation database, the Rice Annotation Project
Database (RAP-DB) | 18]

Rice CoM proteins

The full-lenath amino acid sequences of the selected pro-
wins were subjected o phvlogenetic analvsis Tree con-
stiuction  wsing  the  neighbor-joining  method — and
hootstrap analvsis performed with Clustalh [sce Addi-
tional file 3] generated a consensus wee which s depicied
in Ligure 2 This analysis led us to separawe these proteins
into six groups: =60 What defines a "true”™ CaM and dis-
tinguishes it from a Cad-like protein that sepves a distinet
role i eno s <till an open question. Different experimen-
tal approaches including biochemical and genctic analy-
ses have been taken w addiess this guestion | 19]. In this
study by phylogenctic analysis based on amino acid
sequence similari, five proteins in group | ihathave the
highest degiees ol amino acid sequence identity (2 97%)
1o known tvpical CaMs from other plant species were
identified  Because of these high dearees of aming acid
identity, we classificd them as “tue” €ads that prabably
function as vpical CaMs  They were named OsCasi -1
OsCaNI-20 OsCad -3, OsCan? and OsCadM 3 Thei
characteristios ae summarized in Lable |

OsCaml-1 OsCam -2 and OsCam1-3 cncode identical
proteins, whereas OsCam2 and OsCam3encode a protein
ol only tvo anume acd ditferences and their sequences
share 95 7% identity with those of OsCaM T prowins
Multiple sequence alignment of the OsCaM amine acid
sequences with those of tepical Cans friom other species
shown in Figure 3 indicates their high degree of sequence
conscivation 1t should be mentioned that OsCam |
amino acid sequences are identical w those of wpical
CaNs rom bardey (11 valgare) and wheat (1. aestivum)
reflecting the close relatonships among monocot cereal
plants On average, OsCaNt amino acid sequences share
about 990 N and 607 jdentiy with those om
plants, verehiates and veast respectively  Hvdrophobic
residues conuibuting o hvdrophaobic ineraction in the
mechanism of CaM-taget protein complex formation
which are critical to CaM function are highly conserved.
All af the conserved cight methionine (M) and nine phe-
nvlalanine (1) residues among plant Cads are present in
Al OsCaNs Conservation ol these residues is maintained
between plant and vertebrate CaNs, with the exception of
the methionine residoes at position 145= 1460 in plans
tants which are displaced one residue compared with the
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vertebrate proteins. Due o its considerable conforma-
tonal Mexibility [20] and being weakly polarized, methio-
nine residues which are estimated 1o contribute nearly
hall of the accessible surface area of the hvdrophobic
patches of CaM allow it 1o interact with target proteins in
A sequence-independent manner |21 Sequence conser-
vation related o functionality of plant CaMs also includes
Ivsine (K) at position 116 which is assumed o be trimeth-
viated. All OsCam proteins possess a lvsine residue at this
position. Lysine 116 uimethyvlation is believed o be a
postranslational maodification that helps regulae Cadl
activity . Ll-hand motifs will be discussed Laer in the
“number and structuie of B hand” subsection

The presence of multiple CaM isotorms s a defining char-
acteristic of CaMs in plants. Fven though the explanaton
of gene redundaney sill cannot be ruled out accumulat-
ing evidence suggests that each of the Cam genes mav have
distinet and significant functions Previous reponts have
shown that highly conserved Cad isotorms actuallv mod-
ulate target proteins differently |22] Induced cxpression
of same but not all of the multiple CaM isoforms in a
plant tissuc in response o certain stimuli has been
reported [10.23] thus, competition among Cant isoforms
lor target proteins mav be tound. [tis Lascinating that the
CrCamt -1, OsCam -2, and OsCam]-3 genes encode iden-
tical prowins ow these prowin sequences have been
maintained with the natnal selection pressure thiough-
aut evolution has no clear answer vet buticis likely that
cach of these genes has physiological significance

Rice CaM-like (CML) proteins

The remaining proteins lrom the phyvlogenctic analvsis in
Frawre 2 were named Cad-like or CNL according wo the
classification by MeCommack and Boaam [T Like Canl,
these proteins are composed entirely of 11 hands with no
ather identifiable functional domains. A summan o thei
characteristios is showen in Lable 1 They were named
according o their percentages of amino acid identite with
OsCaM 1 which were caleulated by dividing the number of
identical yesidues by the total number of residues that had
been aligned o emphasize the identical amino acids
These proteins are small proteins consisting of 145 106 250
amino acid residues and sharing amino acid identiy
between 30 2% 1o 84 6% with OsCast e A the CNL pro-
ins in group 2 share more than 60" of amime aad
sequence identity with OsCaNtl The CME proteins in
groups 3.4 and 5 have identities with OsCaM 1 that awver-
age 48 2%, 40.9%, and 43 8%, respectively. By the boot-
strapped phylogenctic tree based on aminag acid sequence
similarity of these proteins group 6 CNL proteins were
separated in five subgroups: Ha-6¢ These proteins share
identitics no more than 40 77 with OsC ad 1 that avenge
A 35 0% with the exception of OsCNTTO (45 6% Al
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Figure |

Plfylogeneti( tree showing the overall relatedness of EF-hand-containing proteins in rice. Alignment of full-length
protein sequences and phylogeneuc analysis were performed as described in the "Methiods” section. The numbers of EF hands -
predicted by InterProbcan for each protein are shown as black blocks on the right with their heights propartional ea then
numbers of motif. With the exception of ewo proteins. all proteins indicated by the vercical Iine labelled "CaM & CML" ac che
right share more than 25% amino acid identity with OsCaM| and were selected for further analyses. Positions of CBL and CPK
members are also shown along the tree to emphasize their separation
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Mame Locam! Che:  <DNA length? Ao Acidye EF handy s of Mats Identity to OsCaMI(%F Cys 275 Lys 116" Premylation'? Myristoylation'!  References :
o
DaCamioi LOGC_Dv031g20370 3 450 l4% 1 6 1000 . . [19] a
[ LOC Os07 48780 7 450 14% 4 60 1o - .
Zam i« LOC Os0lglean | 450 14% 4 &0 1000 * .
Cstam?  LOC_ OndSgaI 210 5 450 1% 4 60 %7 . . [19]
(] LOC_Os g1 190 i 450 149 4 60 w87 . .
OsCMLY LOC_Osl 59530 [ 564 187 4 43 E . 3oy
Osime2 LOL Osllgh3wd " §52 183 4 49 703 .
ML LOC_Os12503816 12 552 183 4 49 689 +
[ e B LOC_040)g53200 ] 465 154 4 65 589 + .
QsCMLS LOC Oullesl 110 12 501 165 4 48 622 + +
OscMLe LT Osllgd7850 " 51 170 P 55 539 N
OuCMLT LOC_Os08502420 8 7 143 2 28 477 +
OsML8 LOC_Os10g25010 10 174 191 4 52 47.0
DsMLY LOC_Os05¢41200 § 468 155 | 31 4.1
DsCMLID LOC_O101g72100 | 558 185 4 41 456 +
oML LOC_Os01g12120 I 636 21 4 I 4 44|
OsMLI 2 LOC_ D101 41920 I 75 245 4 18 439
OsCMLII LOC_Os07g4 2660 7 S0 169 4 53 436
OsCML i 4 LOC_Os05¢50180 5 51 171 4 4k 431
OsIMLIS LOC_ 00531620 5 b4 201 4 Al 407
OsiMLI6 LOC_On01g4330 I 546 181 1 % 405
DeCMLIT LOC_Os02g19280 2 5 le4 4 49 77 +
OsCMLI8 LOC _On05g1 3580 § a7 158 4 57 n7? +
QeMLIY LOC_Ou01g72850 | w“l 146 k 7$ 372
CHML20 LOC 0302650080 2 525 174 i 40 353 .
OsCML2{ LOC_OnlSgl4780 H 594 197 ] 45 353
OsCML22 LOHC_Onaga| 540 4 753 % 4 15 152
DsCML23 LOC_Ou0l g7 2540 | 456 151 ] 19 51
CuCML 24 LOC O107g48240 7 594 197 3 30 139
Ds(ML 25 LOC_Oalligdl 190 I 450 149 ] &7 3
DsCML26 LOHC_Oni2g01 400 12 450 149 ] &7 3%
OsCMe. 27 LOC_Os0dg2 1 130 3 573 190 2] 32 13]
OsCML28 LOC Oul2g1 2730 2 519 172 4 48 131 +
OsCML29 LOC_Os0sg47 640 [3 51 170 3 41 33
OsCML30 LOHC_On08g07 560 [ m 236 4 21 ns
OsIMLY! LOC_Oullg72530 I 458 151 ] 53 s
CaCMLIE LOC_ Ov0agluann 8 591 194 ] 26 102

! The Institute of Genomics Research (TIGR) gene identitier Aumb er
2 Chremesome number in which the gene rede

! Length of the coding region in basa pairs
'Mﬂb«al:m:tcidsauhndgxdm»:md uence.

S Number of EF hands based on the

ediction by InterProScan

n the deduced amino

* Percentage of mechionine (M) r
T Number o1 identical residues div
Presence of a cysteine equivalent to Cyadé of eypical plant Cals at residue 7i-1) of the firse EF-ha
% Presence of 4 bysine aquivalenc to Lys |15 of crpical plane CalMs.
FiPresance of 4 putative prenmyliticn site.

1 Presence of a putative nmyriseor lation site

acid saq
ided by the total number of aminc acids chat have bean dligned expressed in percentage
nd

i

-
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N
+
)
-
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OsCaM3
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| OsCMLT %
OsCMLY
OscMLi |
oscMz | 5
OsCML30
LOC_0s12g12730 I m - OsCML28 &
LOC_ 0502939380 - OsCMLIT
| -r: LOC_Os04g41540 [ — . . OsCML22
LOC_0s005g24780 TN OsChL2*
LCC. 0503021380 [ — - 1] OsCML2T 2
_‘—:LOC Ds07g4834) CI 11 OsCML24
LOC_Os08g04850 [ o 1| OsCML3Z
LOC_0s01g721000 CIrrym OsCMLI0
4 1 9 = LOC_Os05g31620 CIIIDm OSCML1S i
LOC_Os01g04330 g OsCML16
—lo. o LOC_Os05913580 D OsCML18
LOC._0s02950060 CIXLY OsChL20 64
LOC_0s06g47640 CIE—m OSCML29
LOC_0s01g72550 (h - OsCML19
LOC_0s01g72540 (1 = — OsCML23
LCC_0s01g72530 (N - — ChLI be
| LOC_0s11g01380 1 o — OsCML25
LOC_0s12901400 1 o — OsCML26

Figure 2
Neighbor-joining tree based on amino acid similarities among OsCaM and OsCML proteins. Tree copstruction
using the neighbor-joining method and bootstrap analysis was performed with ClustalX. The TIGR gene identfier numbers are

shown and the resulting groupings of CaM and CaM-like proteins designated as -6 are indicated on the right, Schemaric dia-
grams of the OsCaM and OsCML open reading frames show their EF hand mouf distributon
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Figure 3

OsCaM protein sequence similarity with CaM from
other species. Comparnison of the deduced amino acd
sequences of OsCaM|. 2, and 3 with those of ocher plants,
Mus Musasius CaM (MmCaM). and Saccharomyces cerevisioe
CaM (CMDIp) The sequences are compared with OsCaM|
as a standard; identical residues in other sequences are indi-
cated by a dash (-). and a gap introduced for alignment pur-
poses 15 indicated by a dot (). Residues serving as Ca?*-
binding ligands are marked wich asterisks (7).
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members of groups 6b and 6¢ contain three Fi-hand
meotifs though with different configurauons

Some imporant Cant funciional features wiere found
extsting onlyin a few Cad-hike proweins The chacacensur
awsteme (C) ac residue T(-Y) of the Tust LF hand. 3 hall-
nark of higher plant Can sequences 1s absentin all tant-
like proteins with the excepuon of three highly consenved
CML proteins, which are OsCML4. OsCMIS and
OsCMLe. Based on muluple  sequence  alignment,
OsCMI4, OsCMLS, OsCMLT  OsCMLID, OsCMLIET,
OsCMLIEB, and OsCML28 are the only CaM-hike proteins
that contan lysine at a positon cquivalent w the Iyl 16
of CaMs. These features may be indicators of proteins that
serve similar i e funcuons wath those of Cadds
OsCMLA and OsCMLS are the only t aM-hike proteins that
possess both of these signature charactenisties However
another imponant determunant of CaM funcuon which s
a high percentage of methionine (M) residucs, has been
found in most of the OsCML proteins The average per-
centage of M residues among OsCALs 1s 4. 60 compared
with 6.0% in OsCams. Considering the usually low per-
centage found in other protems, the Metnich feature
CMLs s likely an mdication of their relatedness to Cadds
and possibly sinular mechanisms of acuun 1o exposure
of hwdrophobic residucs caused by conformanonal
changes upon Ca2* binding Nonctheloss, some newly
atamed charactenisues speaific e CMLs probably allow
them 1o fine-une thewr Cattrepulated actnvaey 1 more
speaialized funcuons

OF these proteins, three OsCMLs contun an extended ¢ -
teeminal basie domam and a CAAX [C s avstomne, A i
aliphatic, and X is a variety of amine acids) maond, a puta
tve prenvianon site (CVIL m OsesLl and C1L
OsCMI2 and 3) OsCMLL also knowiy as O<t ana ] was
wenuficd as a novel CaM-like protein by Naa and vol-
leagues [5] The CML protein was reported o be meme-
brane-assoaated when 1t s prenviated and localized in
the nucleus when it is unprenylated [9]. A similar protein
called CaM53 previously found in the petunia also con-
tans an extended C-terminal basic domain and a C3AX
meouf which are required for cfficient prenvlaton |24
similar subecllular localization of CaM53 depending on
s prenviaton staw was reported 1o locate another pos-
sible modificauon, all protcins were analvzed by dhe vons-
puter program, Mynstovlator [25] As aesult oxe M0
was predicted 10 contun A potenual myvnistovlanon
sequence No other potential myvostovlated gheemes either
terminal or memal were found among the rest of the
OsCML pretemns. In addioon, o dewermine the posable
localizaton of the OsCAL protans, then sequences i
analyvzed by targetl |26 OsC ML3O was predicted o cone
i an endoplasmic renculum sienal scquence and
OsCAML2 L was predicted to be an organcllar prowin 1or
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Ostars and other OsCAMIs, no argetng seguence was
present, thus, they are prabably cvtoselic or nuelear pro-
wins

Number and structure of EF hand

The number of I1 hands i the nee EF-hand-contamming
protems vaned from 1w 4 A summary of the number of
protemns having 1, 2, 3. or 4 EF hands s shown i Figure
13 howamed out that among the 243 prowins denuficd,
almostall protems that contain 4 B hands were included
n our study or are CP'R proteins All five OsCaM proteins
have two pairs of Pl hands with charactenstic residucs
rommoenly found in plant CaMs Consensus sequence of
the Ca*-binding site in the LEF hands of plant CaMs com-
pared with OsCaM 1, OsCad2, OsCaM3, vertebrate CaM,
and CMD 1p from veast is shown in Figure 4b. Cad*-coor-
dinating residues among OsCaMs are mwarable with
those of the plant CaM consensus sequence. Other resi-
ducs in the Cattbmdimg loop are also conserved with
vnlv the exeeption of aspartate (D) ac residue 11 of the
fourth Bl hand i OsCaM3 Aamong the swventy [F-hand
motfls of OsCadls, residues [{+X) and 3(+Y) are olu-
sieelv fAilled wiath aspartate (D) residuey 5[+4] arc aspar-
e (D) and asparawne (N} and eesdues ) 12[-7) e
plutamate (E) which s ivanably found m this positian of
most Cat+binding IF hand motifs. This residue mav
rotate to pive bidentate or monodentate metal won chela-
von. Glutamate provides two coordimation sites, Iavoring
Catrover M conrdimauon |27] Residues T(-Y) are usu-
allvvaned, and residucs 9(-X) are aspartate (D), asparaa-
e NV threonmmme (1), and senne (8] which are all
nomally tound ameng plant Caids

schemate diagrams of cach prowm sequence with the
predicted EE hands represented by closed boxes are shown
in Figure 2. Among all the identified OsCaM and OsCML
protems, about three fourths of the EF hands that exist in
pairs (59 pairs) are interrupted by 24 amino acids. The
rest are posioned at a similar distance relauve o cach
other whirh s hetween 25-29 ammo acids with the
excepuon of two pairs that are less than 24 amimnoe acids
apart. Most Ot ML protems have cither two pairs or at
least one par of wdenufiable B hands except OsCAILY
which has a single I'E hand and OsCMLT which appears
o have two separate LE hands OsCMLT and OsCNMLS are
interestng because of thar high amme aad dentines
with OsCan 1 (47 7o and 46 1%0) but they possess only
2and 1 EL hands and have relauvely low methionine (M)
content {2 8% and 3 2% compared with other OsCMI
protemns, respecuvely Inaddinnon, 10 OsCML proteimns
with one par of /lenuhable FI hands have an extra EF
hand that docs not pair with any other mout Paring of
FE-hand moufs in the Cant malecule helps merease s
affinny for Ca®* ) therefore an unpaired LU hand i these
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proteins may bind Ca* with a lower affiminy, or mav bhe
non-functional

Ligands for Ca2* coordination i the 1T-hand moufs of
OsCML protans are hughly conserved. One hundred and
thirteen Caf*-binding sequences were aligned and the fre-
quency at which aminoe acids were found s tabulaed in
Figure 4¢ Most residues in the Caf+-hinding loops are
conserved among OsCMLE proteins, thus suggesung that
most of them are funcuonal EF hands Similar to OsCaMs,
restdues 1{+X) are exclusively filled with asparnae (D),
and residuces 3(+Y) and 5(+7) arc usually aspantate (D) or
asparagime (N) Even though they are not conrdinaung
residucs, glvame (G ) at pasiton 6 1s absolutely conserved
and hvdrophobie residues {1V, or 1) are alwavs found at
positien S in all 133 EF hands in OsCad and OsCML pro-
teins. Residues 12(-4) are mostly glutamate () with the
excepuons of an EF hand in OsCMLT. OsCMILE, and
OsCMLLY which have aspantate (D) instcad While
OsCALR and OsC MI 13 have two pars of ER-hand mouts,
OsCMLT possess two separate B hands with D at residue
12 in-the El-hand mouf at the carboxvl werminus Cates
and colleagues [27]. previcusty reported that mutatnon of
F12 e D reduced the atfimy of LT hands for Casn par-
valbumin by 100-fold and rased the affimiy for Mg by
10-fold. 10s likely that these EF hands bind Mg *rather
than Ca?+but the physiological significance of Mg-bind-
ing CaM-hke acuvity 1s sull net known

Cam and CML gene structures and chromosomal
distribution

Fhe structures of the OsCam and OsCML penes were
mapped by comparmg their full length cDNAs swith the
corresponding genonie DNA sequences. In cases where
no full length eDNA was avairlable. partial eDNA and kS
sequences were used. Their results were compared and
venified with the annotation at the TICR database. Out of
37 OsCiam and OsOMI genes, 13 genes contan intron(s)
in their coding regions in which none of these is found in
group 5 and 6 members [Ushould be mentoned that by
NCR annotauon CsCam -2 and OsOMED genes were
shown o have an alternawvely sphced mRNA - that
cncodes a shghty different proten wath hule supporming
evidence so they were clmunared from our hst Schemane
diagrames depacting imtron-exom stuctures of the intion-
containing genes are shown in Figure 5 Al OsCam pones
contain a single intron which ineerrupts thenr coding
regions within the codon encoding Glv26, a vpical rear-
rangement of all plant Cam genes

Interesungly, all of the muron-contamng O Al gones
are also mterrupted by an intran av the same Tocaton as
Ostam genes The consenvauon of this mtron position
ndicates thewr close relanonships which 1s consistent with
the tact that these genes encode members of the CMIL pro-
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Residue positions on Ca’*-binding loop
| 2 3 4 5 6_7 8 9 10 1112
G 2 85 113 | 6
A 21 2 1 2 25 18
v 6 10 26 10 2
L 6 15 13 7 4
I 1 74 2
P 8 1
F 18 32
Y 3 7
W
(% | 8 1
M 2 1 [
S 9 7 17 8 42 2 9
s 16 10 27 1 3
K 19 8 2 9
R 2] 3 I8 6 |
H 2 3 4
D113 81 2 ¥ 5 2 23 3
E 5 1 S 8 3 28 (10
N 32 5 2l | 7 3
Q 4 5 6 2 2
+X Y -7 Y -X -7
D x D C D G «x I S X o E
(N] ] v] IT1]
L] D]

Characteristics of EF hands in rice proteins. (a) Number of EF-hand-containing proteins containing |, 2, 3 or 4 EF hands.
{b) Residues in the EF hands #1-4 of OsCaMs compared with those of typical plant CaMs. vertebrate CaM (CaMv) and Soccha-
romyces cerensiae CaM (CMD 1 p) using a consensus sequence of plant CaMs as a standard: identical residues in other sequences
are indicaced by a dash (-). and a gap introduced for alignment purpases is indicated by a dot (). {¢) Residues in Cat*-binding
loops in 32 OsCML proteins shown as the frequency at which an amino acid (shown ac the left) is found in each posiuen
{shown at the top). The amino acids most frequendy found are indicated by bold letters and shown below as a consensus
sequence along with the positions of residues serving as Ca?*-binding ligands indicated in Cartesian coordinates. Brackeced res-
idues are alternative residues frequendy found in each positon and "x” is a variety of amino acids. Residues serving as Ca?*-

binding ligands are marked with asterisks (%),

s groeups -4 closclvaclated CaM-hike prowins o
OsCads OOAMLT OsOML2 . anad OsCAMLS genes contan
an additonal nuon that resides acthe codon correspond-
mg e the last residuc of genes eneeding conventional
CaMs These proteins have an extended Coterminal basie
doman and a putauve prenvlation site The posiuon of
these nwrons  reflects the scparation of  funcuonal
domams within these protems and  suggests that the
sequences encoding their carboxyl extensions arose later
i the evelution by the Tusion of existing Cam genes W the

addioonal exons Silarly, OsCAMES and OsCMLLS

which encade group 3 proteins have the same gene strue-
wire which 1s the same muron number (6} and locauon
The gene duplication event that led 1o the existence of
OsCAMLS and OsCMLI3 is also supported by the high
degree of amino acid idenuty (60%0) between OsUNILS
and OsCMLI3. In these proteins, one of the six introns
locates within the sequence encoding the third LE-hand
mouf, alocation comparable to Clv2e of the first EF-handd
mouf This itron is probably the renanant of a duplhica-
ten event that engmally gave vse o two El-hand pans in
these proteins: Interestngly, OsCMLS and OsCMELE3 e
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twor out of oy three OsCMLs that contain aspartate (D)
At residues 1271 These observauons suggest that the
mutation of L1210 D m OsCMLE and OsCMLL3 probably
vccurred before the duplicavon event that led w thair
exIstence

The chromosomal lecation of cach gene was determined
from the annetavuon at the TTGR database. Ostan and
O AL genes were feund distnbuted across 11 chromo-
soomes ol nee as shown n Figure 6 with chromosome |
having the miost numbers (10) of genes OsCam -1 was
mapped in chromosame 3, Os¢am -2 m chromosome 7,
OsCam -3 and OscCaned an chromosome 1 and (sCam2
mn chremesome 5 Thar nucdeoude sequences share
between 86=90 “u identines which are lower than thar
amine aad identties (98- 100% ) Muluple OsCarn genes
encoding nearle idenucal proteins have been mamtamed
through natural selection suggesung the funcuonal sigmif-
wwanee of cach gene Ostam -2 and OsCand -2 which
cneode dentical protwins were mapped o the duphcated
regtons of chreomaosome 3 and 7, respecuvely. OsCam!-1
and OsCamn2 were also located wathan duplicated genome
segments of their respective chromosomes: These ohserva-
tons sugeest that these pawrs of genes are denved from
scgmental duphication In addinen, there are many pairs/
groups of OsCML penes which encode protens thatshare
a high degree of amine acid iWdenue {2 60040) QsCMILS
Ost L3 (s e denucal) and OsCMLZS/OsCME 26
{10t Wdenucal) are the most eloselv pelated  pairs
Ot M2 and O AR eneede potential Caftbinding
protems i group 2 with an abselute conservauon of the
C-termimal sequences that contin 3 prenvlauoen sie
(O Ososl2 and OseML25 and OsCMLE and
O AME26 were mapped 1o the reeently duplicated regrons
of chromesomies 11oand 12 respectvely. Therefore,
EUAH2 Os L and OsCMIE2E0SCMIZ26 may have
ansen through the seemenaal duphication event. Other
parsgroups of closely related Cast-hke genes that are
likeh 1o be denvad from gene duplicavon events are
ChC AL Ot i )= CRCMLIOsCNLES OsCME2S
Ot AT, and OO OsCNE2 3 08O All memy-
bers m cach pair or group have the same number and
positions of El-hand mouts The positions of prediced
segmental duphication according o the analvses by TIGR
are tlustrated along with the chromosomal locations of
the affected genes i Digure o Conversely, OsCMETY,
Ot ArE2 3 and OsOME3 ! are aranged in tindem onenta-
ton on chromosome 1 suggesting that they were denved
from tandem duphicatuen Interestingls, OsC8ML2T 15 adia-
cont b st -8 on chromesome 3 and s duphicated
pene, CCAMLY resides in tandem with Ostan -2
{Oostami-1 and OsCaM -2 are 1000 denueal). There-
fore, alocal duplicavon followad by xsepmental duphea-
tsn possiblv cwcureed
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Comparative analysis of rice and Arabidopsis Cam and
CML genes

The full-length amine acd sequences of nee CaMs and
CMLs and Arabidopsis Cams and CMLs were subjected o
phylogencue analyvsis Tree constructuon using the neigh-
borgoming method and bootsttap analysis was per-
formed  with ClustalX Jsce Addiuonal fle 4] In
Arahidopsis by the naghbor poming tree based on anuno
aod similanties, MeCormack and Braam [11] dinaded
Cams and CMLs into 2 groups. We found that several nice
Cants and CALs shared high levels of similanity with Ara-
bidopsis CaMs and Cals and displaved relanenships
among the family members similar o those previously
reported 1in Arabidopsis as shown in Bigure 7 All of
OsCaM proteins in Arabidopsis and nice are highly con-
served  (shanng 96.6%-99 30 denuy]  Interesungly
both Arabidopsis and rice have three Ostiim genes that
encode wdenucal proteans (ACaM2, 3, 5 and OsCane -1 -
2.0-3) Rice CMLs groups 2, 3, 4, and 5 protens were
clusely related w Arabidopsis CMLs group 205, 3. and d
respecuvely, The more divergent rice CMLs groups 6a to
Ge are also distnbuted among members of Arabidopsis
CML groups 6, 7, 8, 6, and 9, respecuvely: Apparently,
groups | fram both species are embedded in groups 2
These resulted from the arbitran separaton of groups |
(Cans) even though group 2 members share ver high
degrees of wdentiy (at least 30%03 with group | protans
Because what defines a "true” CaM oand disunguishes it
from a CaM-hike proten that serves a disunct role o e
is stll unknown, therefore at the moment. only members
that share extremely high degrees ohidenuty (>97% ) were
grouped weether o emphasize that they were considered
and are possible "uue” Cans

Based on amino acid sequence alignmentes {dat not
shown ), many of OsCMEs have putauve homologues
Anabidopsis In group 2, OsCMLY which shares a high
level of idenuty with AtC MILS and AtCMETL has the same
number {33 and lncauons of introns except that AtCMLL
lacks the fiest inwron Sinulardv, ACAILTO and ACA 20
which share ahigh level of Wdenue wath thar homelogucs
{OsOAES and OsCALT3 i group 3) have a simular gene
structure which is the conservatuon of five out of the six
introns present in their nee counterparts. Interesungly,
AMUMLLI2:20 and OsCMES/ 13 protemns have aspartate
(D) at residues 12(-72) v one of ther ET hands. though
not on the same hand AwCsLES and Aatcmlid, which
were thought o have a common progenitor, have very
high level of idenure (74 320 and To099a) wich proup d
s ML and all have the mutaten of E12 w 1 man BF
hand corresponding v the third EF hand posiion Tow
cver, OsUCMLT has lost an B hand corresponding to the
second posioon while a second E12 o D mutatien was
found i AWMLY and AtCa LT Therefore, similar o
ACMLLY and AtCAMLLY, OsCMLET has only one FI hand
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Figure 5

Schematic representation of the OsCom and OsCML
genes. Boxes represent exons and lines represent introns.

EF-hand mouf g1 #2, #3. and #4 are represented by green,
yellow. blue and red stripes at their positions, respectively.

Groupings of the genes are shown onthe right.

with cancnwal ammo aads which mav result - an
impaired Al o hind Ca* In OsCML group 5
OsCMELL s closely simnbar o AlCMETT and AtCAMLLS
and, interesungly all have a relatively fose percentage of
methiemme (M) compared with other CML protains that
share similar levels of identiey wath Cass. OsCyLEt has
only 14 methwonine content which suggests that s
mode of acuon upon Ca2t binding 1s probably difierent
from the hydrophobic surface exposure upon conforma-
vonal changes of Cam

Previous reports idenufied 250 EF-hand-contuning pro-
tans from the Arabidopsis genome [6] Seven locr were
defined as o genes and 50 addinonal genes were CAL
genes [ 28] Here, we denufied 243 TF-hand-contining
protwmns. five o gones and 32 CAML genes. Fewer mem-
bers of nee €N s swere denufied and several Arabidopais
CMls did not fall e any group of the nes protems prob-
ably becavse nce OsCAL protans we icluded o thoese
analvses bad acleast 25% denuy with wprcal Cadts com-
pared o 1w Aabadopsis by St onmack & Braam
(20033 W nouced that all of the Arabidepsis proweins
that did nestfalbinte any group of the nce proteins shared
onlv 1e=30 % denune with tpacal Camis. Therefore both
plants appoar te have more or less samalar numbers of F1-
hand-contammg and Cad-hike proteins Both alsa e
sivnlar numibers of PR 4 m Arabidapsicand 29 monee;
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and CBL genes (10 in both Arabidopsis and niee) [13.29]
Hivwever, one sinkingly different characiensue that we
vhserved 15 the three OsCML protems {(OsCML
OsCAL2, and OsCaL3) that have the carhoxyl-termimnal
CAAN moul for prenviauon but none was found m Ml s
from Arabidopsis [11] [t would be interesting o know:
what funcuons these nice protemns possess and how the
prenvlanon state affects their acuvny

Cam and CML expression

Beeause the presence of ¢DNA or EST clones indicates
expression of the corresponding genes, we performed
scarches against the ¢cDNA/IST nee databases. The
scarches revealed that maronty of the OsCam and OsCAY
genes have corresponding ¢DNA or IST clones We have
idenafied all the EST clones for cach of the Ost o and
OsCAIL genes. Characterisuies of their expression can be
nlerred according to which hbranes the EST clones were
derived from A summany of the numbaers of EST clones
found in differentorgans s presented in Fable 2 Based on
the avalabihiy of thewr FST clones, muost OsCane and
OsCME genes are exprossed  Some OsCML genes are
highly expressed i specific organs compared with othe
genes such as Oscad) 3 and Ose Mg in floral nssues
No ¢DNA or EST cone s availlable for (sCAlLG
OsCAMLEY, OsCAL23, and O:CAL25 However 1t 1s not
conclusive that these genes doonot cxpress relving solely
an the absence of thar FST clones Nonotheless, the aval-
abihwv of EST clones for the restof the OsCam and O3CAL
genes indicate that they are expressed and indeed are fune-
tenal genes

Because five OsCam genes encede only three different pro-
teins, whether or not they have different phyvsiological
functions 1s an nteresting question Tlere, we expenimen-
tallv determmned whether the expression of cach of the
Os<Cam genes s restncted to specific organs. Total RNA
was isolawed from the leaves roots, flowers, immature
seeds and calli of nee plants and used o perform reverse
ranscription and PCR amphification reactions Pnmers
sclected by computer analvsis of the ¢cDNA and EST
scquences corresponding to these genes are given in Table
boA control RT-PCR reacuon without adding reverse tran-
scnptase was done i panallel wath cach expenmental
reactuon oo ensure that the poeduct obtuned could b
atcibuted o the proaduct of the everse ansenplase reacs
ton Frgure 3 shows that bands o the expocted sizes based
on cach of the gene sequences (698 526, 551, 201 and
5200 base paws fan OsCuame!-2, O -3
CrsCam2, and Oscam3, respecivelv) were detected i all
organs or tissucs examined including the leaves and rooes
of 2aweck obd secdlings. mature leaves flowers, immature
sceds and calli Nocband was detected in the conuol R1-
PCR reacuons Tt should be noted that the RE-PCR conds-
tens used in this stedv did noc allow quantitatuve decer-
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Figure 6

Chromosomal distribution of the OsCam and OsCML genes in the rice genome. The chromosome numbers are
shown at the bottom: horizontal lings represent the respective genes:and the centromeric regions appear canstricted. Regions
of the predicted segmental duplications are indicated by grey sections in the chromosomes and lines connecting the affected

lo<i,

mimaten, therefore companson of the expression levels
among different argans or different genes can not be
made Nevertheless, it ean be concluded thatall of Os€Cam
genes were exprossed moall organs that we cxamined

The expression of claselv related Cam genes in a single
prgan was not surprsimg Several similar occurrences in
other plant species have heen reported. B wobaceo, all 13
Cam closely related genes were expressed in almost all
organs  examined  with exceptions, notably
NiCami 3 which was exclusively expressed in the root
123] However. NiCami 8 encodes 3 proten of less than
S50% dentny 1o tvpacal plant Casts Simalarly, ACam!-
4CamS genes which encode nearly idenuical proteins were
all expressed i the leaves and siliques of Arabidopsis
[30.31] While Cane expression s ubiquitous among Jif-

fow

ferent cells, protein concentrations may vary in spevific
cell wpes Immunolocalizatuon studies have shown that
root cap cells and menstemane zones have increased Casl
accumulanon [ 32] In addion. levels of steadv state trn-
senpts of Caon genes have been veponted o be modulaed
atdifferent developmental stages | 3334] andin response
o external stmuoh such as salimiee wind. cold, wounding
and pathogen awack [ 23,3537 Ostam -1 wan shown o
be rapidly and strongly inercased in leaves under osmote
stress [10,38] Modulation of expression i specific crgans
of a Cadsoform possihlv serves its roles ina tmely fash.
10on

Conclusion
We denufied 243 prowins that possibly have El-hand
meotfs and 37 Cants and v boed potenual calerum sensor
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Figure 7

Phylogenetic relationships among rice and Arabidopsis CaM and CML proteins. Tree constructon using the neigh-
bor-joining method and bootstrap analysis was performed with ClustalX based on the amino acid similarices among the pro-
ceins. Rice protein names are highlighted with colours representing each group as used in Figure 2 for darity and groupings of
0sCaM and OsCML proteins are indicated accordingly. OsCaM (group 1) and AtCaM poruon of the tree was expanded and

shown in the botom right corner.

protems m the nee genome  The functions of most pro-
wins encoded by these genes are sull unknown Nonethe-
less. the complexiy of Cant protem fanuly hkely reflects
the importanee of Caf qenals an regulaung ccllula
responecs tovanous cellular sumule and thas fanuly of

proteins potenually plavs a cnucal role The proesem
results 2an lead to further studies cn cach membo < ths
fanuly which will b mvaluable i undorstanding
mochamsmes of Cadeagcaulaed signal wansducton pathe
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Table 2: ESTs showing OsCam and OsCML expression in different tssues

ComCML name Number of ESTs identified Com/CML name Humber of ESTs identified
leal root paniche  seed callts  others  Total leaf root panicle seed  callus  ochers  Total
OsCani-l 106 17 49 & 14 89 3l DuCMLLS H I 8 - 1 w 54
sCami-2 )4 13 17 7 " 38 120 [Tl B 0 3 12 2 | 42 =Y
OsCamid 2 5 9 - 9 15 50 OsCMLI7 I - 1 . . & 17
xCam2 15 7 25 ] 17 38 125 OsMLIB " 2 88 - I 7 1153
xCami 57 L n 1] pi 9 150 O 9 - - - . " . 9
oMLt W - 4 I 2 s 4 OHML20 .. 7 . . ) 9
oM - : . . I I OsCM2 s . : ) 2
oMLY 6l 3 5 1 n 121 OyML22 4 - 3 - 2 @ 5
QeMLs 20 5 2 1 2 T 38 OsCML23 - - . - - . 1]
DeCMLS - . . - I 2 3 OsCML24 n 4 I - . 1% 3l
DeCMLA - - - - - - 1] OsCML2S - B - - - B (1]
DsCMLT 18 - [ 4 H n 4 OsCML26 I - | - } ]
DsCMLE 13 | 4 - | 4 1 OgCML2T 21 2 7 ] § 30 58
deCMLY - - - . 3 4 QsCML28 . - | . 2 1
DMLY e 7 19 - I 30 Lk ] OsCML2Y (] 2 | - “+ 13
oMl 7 . | - 2 . 1] OuCML30 [ 13 7 b 1 ] 55
OsCMLI2 ] I 1 - = I L} OsiML 31 1" 5 5 I 5 19 46
OsCMLID 13 4 1% - 4 12 142 OsCMLI2 - - ] - 2 4
DML - - . . 2 1o 12
Methods

Database searches and analyses of gene structures and
chromesemal distribution

searches of the nee genome at The Insuiute of Cenomie
Rescarch {TTGR) 139] for Interpro Database saeches by
five different methods including HIMMPfam, FINIMSmart,
BlastProDom. ProfileScan. and superfamily were carnied
out Proteins shown w contan an EE-hand maouf or in the
family of CaZr-bmding proteins which included domams
PIOGG3G, SMOGUSE, PDAmIOLL, PS50222. and protemn
family 85P4747 3 respectvely by cach method were col-
lected Inaddion, BLAST scarches {blastp) [40] using the
protem sequences of nice Cantl [GenBank: NP_912914]
and CBLY [CenBank NI 643248 as querny sequences
against the rnice genome were conducted. Nucleoude and
anuno acid sequenees as well as mformauon regarding
cach gene of mierest were obtamed. Gene annotauons at
the Rice Annotation Project Database (RAP-DEY [41] were
also used w confirm the existence and sequences of these

Table 3: Qligonucleotide primers used in this research

Name Sequence
O8CaMI-IF SLGAAGCCAGGCTAAGCTCAGE-3
OsCaM1-IR SLGCAAGLCTTAACAGATTCAC.Y
OsCaM1-2F SLCTTCGTTGATCCACTCACCC.Y
OsCaMl-2R SLACACAATCTCCTCTGCCTTA-Y
OsCaM|1-3F SLCCCCTOGLOGCCTCGCCACC.3
OsCaMI-3R S CCATAACCARATGCTGTC A2
OsCaM2-F S GAGGAGGGTTCCCATTAAAT.Y
OsCaMi-R SLCGCAAGCTAAGCATCACAAT-3
OsCaM%F SCCTTCCTCTCTCTCTCGCTL-
OsCaMi-R SCCCCOCTGTGTTGATCCARAT-Y

genes. Gene structure and locations were Jeternuned by a
companisen of ¢DNA and genomic DNA seguences
obtamed from GenBank and scarches of the denunied
loct at TIGR. Informauon from EST scquences was used
when any discrepaney was found Cene dupheanon was
dewrmined according w the analvsis of chromosamal
scgmental duplication of the rice genome by T1CR

Alignments and tree construction

I necessary. predictions of codmg regnons were venficd
wsing avatlable EST and cDNA sequences Deduced
sequences of prowemns Wdenuficd by InterProSean as con-
taning an EF hand were subjected w phvlogenctic analy-
sis. Alignmients were performed by the muluple sequenee
ahgnment program ClustalX [16] using default seiuings
Alignments were carnied out and protemn trees were con-
structed using the neighbor-pomimg method [42] with
bootstrap analysis by Clustal X {default sctuings) A come-
parison of OsCaM prowms with those from other species
by muluple sequence alignment was performed by Clus-
talW GenBank aceession numbers for the sequences used
in the alignment are as follows  ACanm2 |GenBank
VMAI2TA3] HvCaM [CenBank AAAS293R] T-CaM|
[CenBank AACH9578], Zmid aM [CenBlank LAAS2602]
sCaMl JGenBank  AANIUL] PCXMG [Genlank
WAASSI55] MmCam [GenBank NP 0359200 ¢ M I p
JCenBank: AAA3L504]

Amino acid identity and motif analyses of proteins

Deduced amino aaid sequences Casand Casi-hike proo-
teins were aligned with one another by Algn [43] and the
percentage of amine acd wWdenuty was calculated be divd-
ing the number of identuical anuno acids by the waal
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immature seed

mature leaf

Expression pattern of the OsCom genes. The total RNA isolated from organs indicated was used in RT-PCR assays either
without (-RT) or with {(+RT) the addinon of M-MLV reverse transcriptase. The cDNAs were amplified by PCR using gene-spe-
cific primers as shown in Table 3. The products derived from 250 ng of total RNA were separated in agarose gels and visual-
ized by ethidium bromide staining. The sizes of DNA markers in base pairs are shown on the righc.

number of anumo acd resdues of the aligned sequences
All of the proten sequences were analvzed tor LF hands
and other domams using InterProSean |44 Positons of
the 1T hands were located using mformauon from the
predicuon by InterProScan and by companng the com-
plete sequences of all protens with the plant El-hand
consensus sequence All idenufied B hand sequences
""" ahizned with ClustalX and a consensus sequence was
generated o Jocate sequences for protan modificanon
and tirgeung, computer programs. Myristovlator [45] and
I.II"{:i.'lp I-ll‘l were used

Expressed Sequence Tags

Enls corresponding to Cain and CALL genes were identi-
fied by performing BLAST searches of the Onzr sarora EST
database and by scarching LiniCene entries conrespending
to all genes atCenBank [47) Expression charactensucs of

all genes were determined based an the tpes of Librane
tfrom which ESTs were denved and from hierature reviews

Analysis by Reverse Transcription Polymerase Chain
Reaction (RT-PCR)

Onza sanva tussues were ground o hgqud  nitrogen
using chilled mortars and postles. Total RNA was sedated
according w 48] and uwsed in reverse transcopuen
Reverse ranscuption was pomed by oligo{dT) . primers
and PCR was camied out using forvard and reverse ohigo-
nucleotide primers (Operon. Germanyy as given i Table
3 The numbers of aveles desired before reachimg the pla-
teau phase of amphficauon were determined for each
gene. PCR amphficanon by Tag polvmerase was con-
ducted using a program of 93°C for 2 minutes, 55°¢
I minute, and 7270 For 2 munute For OsCam -

»

2 OsCam2y and OsCam3 and a program of 94 °¢ for 2

Tor

L Ohst ) -
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mmutes, 587¢C for 1 mmute, and 72°C for 2 minute for
Ostaml-3 PCR products were separated by agarose gel
clecuophoresis and visualized by ethidium  bromide
stammng and UV fluorescencing. All enzymes and chemi-
cals for RT-PCR were purchased from Promega (Madison,
w, LISA)
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APPENDIX B

Restriction map of pGEM"’g-T Vector
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Calibration curve or native molecular weight
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APPENDIX D

Chemical solution

1. Southern blotting
Denaturation Solution:
NaCl
NaOH
ddH,0

Adjust the volume to 250 ml with distilled water.

Neutralization Solution:
Trizma base
NaCl

ddH,O

21.9¢ (1.5M)
5 g (0.5N)

200 ml

30.3 g (0.5M)
87.6 g (3M)

400 ml

Adjust pH to 7.2 (£0.3) with HCI and adjust the volume to 500 ml with

distilled water.

20X SSPE:
NaCl
NaH,PO4-H,O
Na,EDTA-2H,0
NaOH

ddH,O

Adjust pH to 7.4 with NaOH and adjust the volume to 2 litres with distilled

water.

350.4 g (3M)
55.2 g (0.2M)
14.8 g (20mM)
20¢g

1.5 litres
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2. Southern hybridization, Northern blot hybridization

1 M Tris/HCI1 pHS:
Tris base (Trizma) 60.5 g
H,O 400 ml
Stir the solution to dissolve Tris completely, adjust pH to 8.0 with 6 N HCI
and adjust the volume to 500 ml with distilled water. Filter through a sterile, 0.22 um

nitrocellulose filter and autoclave for 20 minutes at 121° C

100X Denhardt’s Solution:
Prepare and store in a sterilized container
Bovine serum albumin (BSA) 2g
(Sigma# A6003-fatty acid free)
Polyvinyl pyrrolidone (PVP) 2g
(Sigma# PVP40, avg.mol.wt. 40,000)
Ficoll(type 400, Sigma# F4375) 2g
Sterile ddH,0 80 ml
Dissolve with rapid stirring and adjust the volume to 100 ml with sterile

distilled water. Filter through a sterile, 0.22 pum nitrocellulose filter and store at 4 %

Denatured DNA stock (Smg/ml):
DNA (*calf thymus- Sigma# D1501) 500mg
TE buffer pH 8 75ml
Dissolve by vortexing, shaking, and then by sonicating. Sonicate 5 to 10 times

in 30 second bursts at a power setting that gibes cavitations, but no foaming. Chill the
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DNA solution in an ice H;O bath between each sonication. Shake the DNA at

moderate speed on a shaker at room temperature until the DNA is completely in
solution. Dialyze 4 times for 4 hours each at 4 °C against 20 volumes of TE pH 8.
Take 10 pl and dilute to 1 ml for Azeg (Aze0 = SOpg/ml).  Dilute to 5 mg/ml with

TE pH 8. Store at 4 °C.

20% (w/v) SDS:
Sodium dodecylsulfate 20g
Sterile ddH,O 100 g

Stir rapidly to dissolve completely and filter through a sterile, 0.22 pum

nitrocellulose filter.

Prehybridization Solution:

Formamide 50 ml (50% v/v)
20X SSPE 25 ml (0.75 M Na")
100X Denhardt’s 5 ml (5X)
Denatured DNA stock 2 ml (100 pg/ml)
H,O 17 ml

20% (w/v) SDS 1 ml (0.2% w/v)

Add components, in the order given, and mix well. Filter through a 5 um

Teflon filter.

Hybridization Solution:

Formamide 50 ml (50% v/v)

20X SSPE 25 ml (0.75 M Na")



164

100X Denhardt’s 1 ml (1X)
H,O 23 ml
20% (w/v) SDS 1 ml (0.2% w/v)

3. Oligolabeling DNA fragment

10X buffer:

500 mM Tris-HCI pH 6.9 0.5 ml of 1 M stock
1000 mM MgSOq 100 pl of 1 M stock
1 mM Dithiothreitol 1 pl of 1 M stock

600 uM each of dGTP, dATP, and dTTP 6 pl of 100 mM stock

Adjust the volume to 1 ml with sterile distilled water

Scintillation Fluid (500mi):

PPO 2g
POPOP 0.025¢g
Toluene 333.5ml
Triton 166.5 ml

4. Formaldehyde gels for fractionating RNA and northern blotting

Gel Buffer 40X:
Triethanolamine 23.6 g (1.6M)
NaEDTA-2H,0 29.8 g (80 mM)
ddH,O 500 ml

Adjust pH to 7.5 with 85% H3POy, bring the volume to 1 liter with distilled

water and autoclave.
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Sample Buffer 1.25X:
Gel Buffer 40X 25 pl
Formaldehyde (37% w/v) 165 pl
Formamide 500 pl
50% (v/v) glycelrol 110 ul

Bromiphenol blue a few crystals to give

Xylene cyanal a strong blue color

Adjust the volume to 1 ml with sterile distilled water

Diethylpyrocarbonate Solution:

In a 250 ml flask with a stir bar, in the hood.

ddH,0 100 ml
20% (w/v) SDS 5ml
Diethyl pyrocarbonate 100 pl

Stir rapidly until diethyl pyrocarbonate has dissolved. Use within 10 minutes

to clean gel box, casting stand, glass plates, slot-forming combs.

Reservoir Buffer:
Gel Buffer 40X 12.5 ml
Formaldehyde 42 ul

Bring the volume to 500 ml with distilled water.
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0.2 M Phosphate Buffer Stock:

A. Na,HPO4-7H,0 268 ¢
Dissolve in a final volume of 500 ml ddH,O
B. NaHPO4-H,0 13.8¢
Dissolve in a final volume of 500 ml ddH,O
Place solution A in a 1000 ml beaker with a stir bar on a magnetic stirrer. Add

solution B with stirring until the pH reaches 7.0.

Ethidium Bromide Stock:
Ethidium Bromide lg
H,O 100 ml

Stir several hours with a magnetic stirrer and store in a dark bottle at 4 20

DEPC-treated H,O:
H,O 100 ml
DEPC 0.5 ml

Shake vigorously and leave open under a hood overnight and autoclave.

5. WP No.2 Solution (Vajrabhaya and Vajrabhaya, 1991)

Macroelements:
KNO; 580 mg
CaSO4 500 mg
MgS04-7H,0 450 mg
Triple super phosphate 250 mg

(NH4)2804 100 mg
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Microelements:

Na,EDTA * 160 mg
FeSO47H,0*® 120 mg
MnSO4-H,O 15 mg
H3BO; 5mg
ZnS0O47H,0 1.5mg
Kl 1 mg
Na;Mo04-2H,;0 0.1 mg
CuS04-:5H,0 0.05 mg
CoCly-6H,0 0.05 mg
H,O 800 ml

Stir with a magnetic stirrer, add 2 ml of 30 g/l EDTA-IRON and adjust the

volume to 1L with water.

Preparation of 30 g/l EDTA-IRON
C|0H12FCN2N805 40.38 g
H,O 800 ml

Stir with a magnetic stirrer and adjust the volume to 1L with water.

6. 1 mM Abscisic acid (ABA)

Abscisic acid _ 5.27 mg
Ethanol 500 pl
Triton X-100 100 pl

Dissolve in a final volume of 20 ml H,O
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