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Chapter 1
Introduction

In case € C 47 is a finite prefix code the syvnractic monoid M(C™) has
nontrivial subgroups.  Since the minimal automaton recognizing C* is casily
obtained from (. prefix codes are the natural candidates to explore. It can be
shown that everv group is the syntactic monoid of €™ where C' is a prefix code.
It is important to point out that the finiteness of (7 is a key restriction. M.P.
Schitzenberger in [1] showed that if ¢ € A* is a finite prefix code such that
M{C*) is a group G. then G is a evelic group of order n and C' = A™ A natural
question arises whether any other kinds of groups can appear as subgroups of
M{C*Y. In [5] P. Udomkavanich gave an example of & finite inverse biprefix code
containing Sy as a subgroup. The characterization of finite inverse biprefix codes
was also given. The purpose of this thesis is to investizate more on subgroups of
syntactic monoids of finite inverse biprefix codes.

The thesis is organized as {ollows:

Chapter IT conrains basic definitions on theorems relating to prefix codes and
their synractic manoids.

Chapter III. due to P. Udomkavanich [5]. deals with a characterization of
finite inverse biprefix codes. All results are given with proof. This is indeed done
throughout the thesis so as to make the exposition a sclf-contained as possible.

In the last chapter, we show the existence of finite inverse biprefix codes
whose syvntactic monoids contain two of the most importance groups, namely

the symmetric groups S, and the dihedral groups D,,.



CHAPTER Il

PRELIMINARIES

Let A be a nonempty set called an alphabet. whose elements are called letters.
Define a word on 4 as a nonempty finite sequence ajay. .. a, of elemnents of A.
Thus two words ajay ... a,, and biby ... b, are equal if and onlv if they coincide
as sequences, that is if m = n zmd. a, = by.as = by, . ..a, = b,. The number
of occurrences of a letter « € 4 in a word w is denoted d,(w) and the length
of w, {{w) is defined by H{w) = Y0 0d, (). For each n. let 4™ be the set of all
words on 4 of length n. that is A" — {eae. . a,|ara. oo, € 41 Denote
A7 =0 A and A = A7 U {e} when ¢ denotes the empty sequence. and define

an operation (concatenation) on 4" by

((&-10‘2 e ”,’?J) (blhj = F 1)”) a0 ) R S ﬂmblb“l 4. ,h“
for all ay.ay. . a0 0oL b, € A Then 17 1s a [vee monoid on the set 4. A
subset of A" is called a leaguage. Let uoe o A0 w s called a deft (vesporight)

factor of word w in AT 0 e = we (resp. wo= ).

An A= automaton A = (S, f) is a set 5 1ogether with a mapping

[:85 x 4" — S satisfving
(@) f(s.e)=storallse S
(L) flfisou)oo] = f{s ue)forall s & Sour e A%

The set S is called the set of states of A and f is called the transiizon function

of 2. We usually denote f{s, 1) by su.



Let S be a semigroup. An equivalent relation p on > 1s called a congruence on
Shif for every z,y,z € S, xpy implies zepzy and xzpy:.

If pis a congruence on a semigroup S. then the se
Sip=A{xp|x 5}

with the operation defined by (xp)(yp) = (ry)p for everv 1oy € 5 is a semigroup.

Let 20 =(S. f) be an 4*-autom:

_\_

se S ue A 15 a mone OO moT ~x by 7 when there is no

e mapping - : A* = T.(S) from A*

into the monoid of all transfe fined bv s7o(u) = f(s.u) for all

2d 1o transition monoid of 2

where
KNerr = AL C AT s rall s € S}
We denote A"/ Kermiby . f th f s als c=omorphic to 7(AY).
An A*—automato 1s p genic o there exists sy € S such

~sht congruence on A7 I

o e PRI E‘”’I‘Uﬁﬂ'l"im e

congruence on A, denoting by lhe class of wonnelnlo o poow oﬂne a(p). the

amoﬂmm NIOINRNY ‘c’J']ﬂ d

alp) = (A"/p, [) with (T el =wa forall w,ae A"

A language L C A* is called recognizable if thers exist an A*—automaton
guag g

= (S, f). with S finite, a state sy € S and a subset T of 5 such that

L={we A" | f(so,w) €T



We also say that the finite A*-automaton 2 recognize L. or that L is recognized
by 2. We can show that L is recognizable if and only if L is a union of classes of
a right congruence on A* of finite index.

Given any subset L of A*, there is a largest right congruence P}f) for which L

is a union of classes. It is defined by
P = { (u,v) € A* x A% uw '€ < vw € L for every w € A7}

Thus the A*—automaton a(PJ,-ET)) = A(L)48 a.minimal automaton recognizing
L. Tt is called the minimal automaton of L.

It can be shown that aselation on A~ defined by
Py = { (u,v) € £ xfAS |fruy-ed 'S auy € L for every z,y € A"}

is a congruence on A* I ig called the syntaetic congruence of L. Hence the
monoid A*/ Py, denoted'by M (L), is called the syntactic monoid of L.

In addition, M (L) is isomorphic to the transition monoid of the minimal
automaton af(Pff)) of L. Thus we can consider #\/ (L) as the transition monoid of
the minimal autowaton of L.

Throughout this thesis, we are interested in a special type of language, a prefix

code.

C C A" ig\called a prefiz codel on Hif for all e A% w € C and uwv € C
implies v = e. A suffiz code is defined dually. C' ig-galled a biprefiz£ode if it is a
prefix and a suffixy¢ode.

Defining the relation <, in A* by u <; v if v is a left factor of u, we see that
<, is a partial ordering of A*. A subset C is a prefix code if and only if for every

ce C,we A*,w <, c and w # ¢ implies w ¢ C. Thus to obtain a prefix code, it



suffices to select a subset C' of A* that will be end points for <;. For example the

falling tree below

gives the prefix code

Let C be a prefix construct Pc(fi}_, we denote

by s the class of Pé A" such that ud* NC™ = 0.
“and z € A" such that u = ¢z

and z is a proper left factor of eventually z = ¢ ). The prefix

4“"-‘

property of C' implies' (u, 2] ; \ proper left factors 21, 25 of
.

; O . R—

words in C' we have™(Z;, Pofe P’ Finally, for every

)
|

¢ € C,(c,e) € P(r}. It follows that the minimal auton]

drawing the tr i %‘ e end points of the
tree with “17 gaﬂ mo ﬂﬂ iﬂjsa ﬁ:l thebave identical
S“"“QqW’]@Q NILNAMINEREY

Example 2.1. Let A = {a,b} and C = {a®, a®b, ab?, aba, ba,b® b*a} be a prefix

aton of C* is obtained by

code. The tree representing C' is shown



The minimal automal a3 four states. denoted by 1.2.3 and 4. The
tr‘ansitioﬁ function [ is d
fllg

f(3.a

The corresponding syntacti

In the tree ':! ntation of €% a node labelled s 'ﬂ called the node associated

with a left factor o of a word in &, if r is a path-joining the top of the tree and

e nodes 5. DMEd I MAN &) m@ld —
"W sl RYigay



CHAPTER III

FINITE INVERSE BIPREFIX CODES

‘We first recall that a semigroup S is called an inverse semigroup if each element

a of S has a unique z in S such that aza = a and zaxr = z. We can see that every

group is an inverse semigroup.

In 1956. M.P. Schiitzenb a prefix code whose syntactic
monoid is a group. Ome generalization of ‘@ group is an inverse semigroup,
a prefix code whose syupat ) id is an inverse semigroup was studied by

P.Udomkavanich [5]. Séeh a code’ was proved to be biprefix, it is then called an

inverse biprefix code.

Example 3.1. Let (@ bjc = {abibaba, babeb. cba, be, cbeb}.

The tree representing Cifis sh

4 ~_5
U

fNUWINgUIN )
ANRINIT NN Y

The%}'ntacti-c monoid M (C*) is generated by

124 58 1 y 12 4
53 1 14 2 315

We obtain that



7(a)7(bab)T(a) = =r7(a) and 7(bab)7(a)r(bab) = = 7(bab).
\5 v 1 1 2 4 /
(5 3 1) 194\
7(b)7(aba)T(b) = =7(b) and 7(aba)7(b)T(aba) = = 7(aba)
\l 4 2) 51 3
(1 2 4\ , 5 3 1\
7(e)7(beb)7(c) = T(c ch)7(c)T = = 7(bcb).
\3 15/ 41 2
This implies that M (C
In this chapter we give & ¢hat zation of inverse biprefix codes studied by
P.Udomkavanich [5]
A few definitions ar ¢haraeterized inyerse, biprefix codes.
Definition 3.2. Let C.C » 1€ A. A sequence

a«f\)
A ={a=ay, a9, ...,0,8 tergﬁ
{ 5 s ASIQA/‘ YI
( 1.1 ) For every u,v € A*, "uaui€ C = ua: av € Ot

77 R

VL/

is called an inverse sequence {0

Examples 3.3. (1) Let b e & prefix code on
A ={a,b,c}. An inmse sequence of a 1s {a, b, a, b} I‘M both b and ¢ have no

inverse sequences.

iy @mummmﬂm R
;j‘fjﬂmmﬁ?mﬁ%'nw R

For b : {b,a,b,a} and {b,¢c,b,c}
Pore: {e,b.e b}



In general, a prefix code on alphabet A need not have an inverse sequence
for every a € A but we shall show that this is a necessary conditions for inverse
biprefix codes.

A transformation a in 7(S) has a unique inverse if « is one-to-one. Thus we
may view the syntactic monoid of an inverse prefix code as a submonoid of Z(S5),

the monoid of all one-to-one partial f: rmations on the set of states S of the

Lemma 3.4. Let
2A(C*) = (S, f). The P ik submor id of Z(S) ifand only if € is bipiefix,

and C satisfies

C' is biprefix. QU

e, B AL UV U F RN T o e
RN IRATINEIRE

where by = ¢, b; € A for all i = {1,2,...,n}. Suppose that u~'C # ¢~1C. Then

there is an index m, 1 < m < n, such that

(u-bgblbz _— bm_l)'ilc -‘/: (’t)bgb;_bz e bm_l)_lC



but

(’u,boblbz _— bm)"lC = ('Uboble v bm)_lc‘

Let s and ¢ be the labels of the nodes associated with wbgbiby...b, ; and
vbob1by . .. b1, Tespectively. Then s # ¢ but s7(by) = ¢7(by). Thus 7(by) is

not one-to-one. This again contradicts the assumption.

of words in C associated with s espectively. Then (ua)'C = (va)~!'C

and v 'C # v1C. 2 =1, then v = € or v = ¢ together with
If s #1 and t # 1, then
u # € and (ua)™1C = implies w5 'C Ny~ 'C NAT #£ ¢. O

Theorem 3.5. Let C' € A* .- code. Then M(C*) is an inverse

semigroup if and only if C sa. wing conditions:

(I.3) Every a

Ao ={a=a1,a,7..,0a,} satisfying:

AT

Proof. Assume that M (C*) is an inyverse semigroup. Then By Lefauha 3.4,

c sati’s%&(%ﬂ@ Alﬂ Thh bleh &bl o/ bl

T(a)7T(agas ... a,)7(a) = 7(a).

10



Let A, = {a = a1,as,...,a,}. Suppose that uav € C. Then 17(uwav) = 1. Hence

I7(uaras . .. agav) = 17(u)7(a))7(azay . . a,)7(a)7(v)

This shows that wa,as ... aav €

To prove the converse, i (1.2) and (1.3). By Lemma 3.4,

satisfying (I.1). Since a ' ) : v. se semigroup is an inverse

semigroup, it is enou W a7 -' , 7la) = 7(a). Let s be in

uch that wav € C'and 17(u) = s.

By (I.1), uaiay...apav € C7= = capav € Coor aia,y ... oa0 €
| 57
' for some . I tac y (nu(‘ (" is biprefix. and
N e ]

\‘ - Hence, by (1.2).
)

Hav. Uads . .. ayav @00

lu
7 NC = (uayay . ad 'CL Similarly. we can show t if a,a,., ...a,av € C for

some 7, then u a3 (. In any ease, we obtain 17(uaya, . ..ay) =

o AU NS
qua«&ﬂﬁmwmwmaa

= 1r(u)r(ajay. . . a,a)
= 17(uayay ... a,)7(a)
= s7(a)

Therefore 7(a)7(asas . .. a,)7(a) = 7(a) as required. O



Given a finite biprefix code. we may show thar each letter a € A.
Ao = {a = a0, . a,} is an inverse seguence in (' by using the next
proposition.

We first give some definitions and remarks in order to help us to prove the

proposition.

iprefix code. @ € A and

/\ in A A word z in C is called

ﬁl il there are two indices
*: satisfving the following

Definition 3.6. Let C'C A" be a

an associated word of w = &
LI < LI < o, SV ‘
conditions:
(I.4) I=1ifand o and enlv if y = ¢
\
(15) if o and y arg (ajap.y...a,)"'C s a

biprefix code.

Examples 3.7. (1) Let € “‘.. b a.be. cheb} be a biprefix code on

ab = aja; is arLagsociated vord of ab (w.a.r 4,

}
)

baba = ayasaya, ;I
]

baba = ayaza,a, is an associated word of cho wot -

o).

baba = a4a ua

baba = (IglﬂijG()(latod \\ogjuubrb (woat A,) since b7'C =
o RWARERT NIV L

(

2) 1%t ¢ = {abedbe, bed, dbea. dbedbe. abea. deab. cabe, ¢db} be a biprefix code
on A = {a,be d}. Let

1 =1{bc,a,b,c,a,b,coa b coal = {by, by ... b1y}

Observe that by = by = by = by = b.

12



beab = bybybsby is an associated word of bed (w.r.t Ay).

beab = bygby1biaby is an associated word of cdb (w.r.t Ay).

cabe = byybiaby by is an associated word of dbedbe, since (ca)™'C = {bc}
= (dbed)~C'. but cabe = byybaby s is not an associated word of dbea
since d~'C J (ca)~'C = {bca. bedbe} U {bc} is not a biprefix code.

abca = biobybobs is an associated waord of dbea since a™*C' = {bedbe. bea}

o kd '
Re‘mark_‘s 3.8. (1) ,/ ord of a word . C with respect to
e detern | \ g'to the appearance of ray
in the code word, as 7
Case 1: = =e. imply search for ¢ ‘ (' of the form ayaq . . . ap
for some ' > 1.

Case 2: y = c. Similar'to Casel. we look for a code word of the form

Q... a0 for so

~

Case 3: Both 7 amnd g ate niot the empty words:—

All words ;a1 .m-anal ... ap for which (a;a,,, ..Eu)_lcu 27 'C is biprefix

are associated words of rag.,

e B DNULANZUTDT. 15 0 sn o
%S"C‘W‘Tﬂfm SHITT ‘mea ¢)

3) Ay word ay or ra in C has at most one associated word with respect to

A, ={a=ay,ay,...,a,} since C is a biprefix code.

Definition 3.9. Let C' C A™ be a finite biprefix code, zay € (ATaA*) N C, and

A, = {a = ajas.....an} be a sequence of letters in A. A word

13



Q41 ... Gp01G3 . .. ap With [ # 1 is called a companion of zay with respect to

Ay i 2370 = {@lip » . 1) 0,

Example 3.10. Let C = {ae, bcfe, cab, dab, dec, fab, fec} be a biprefix code on

A={a.b.c,d e f}. Let

Aa = {a7 b? C, 6: f} {a‘h (g, 03, (g, G'S}

Then fab = aszaya, is a s 1 of lyﬁ/fl since f~1C = {ab, ec}

smce e 1C = {ab} # F*C.

The existence of an asGoéiatedg-word which is also a companion word of zay in

1o Wb b WL 3 e e s
NN NI UNBEINGINY

PropoSition 3.12. Let C C A" be a finite biprefix code. Let @ € A. Assume
that 4, = {a = a1, @y, ..., a,} is a sequence of letters satisfying :

(i) If ajag . . .aj,—1 € C, then there is a (unique) partition

(12 ... ji=11d o4l o=11 . |Gk Ge+1...m)

14



of the cyclic permutation (12 ... n) on {1,2,...,n} such that C contains

{CL1CL2 ¢ TR R P 7P NP ¢ S PIRIPRIPR ¢ 7P ¢ PR R an}.

(11) If AjQj1 - Al .- Aj; ] (= C, then there is a (unique-) partltlon
GJ+1..a=1lh h+1.ofp=1] ...l etl...5-1)

of the cyclic permutation (j j+1...n12...j—1)on {1,2,....n} such that

0 Qi - Gt}

(iii) Every zay in C has a passociated respect to A ) which is also

Proof. Assume that a By(iii)," there I',\1 < [' < n, such that

@1Gg . ..ap iS an as GGy ... 0, € CT 80
(aiay . ..ap)av € CTISE E ¢ then wate. <Gl =
(ua)(azas . .. ai-1)(a

Let uav € C with w. #—e. By (i) there are [,I''1 < [.I' < n

such that aa;; s ay,a i om foway awith respect to 4,, so
R e ——

utC = (@ - 40F)C H dap@ry .+ a,av are in C. Since

Q@yy] - Qp Qg . .. #aJ e C it follows by (i1) that @ir+@r+~2 S

UA1a3y . . . QA0 = (ualag . Q_g‘)(aaayw A ﬂ'nﬁq%. i a,g_L)(aga,;H el &nﬁ-l") € .

neae FEFFIBRWEUINNT
RN TUNAINERE

a1 € C~. Thus

15



CHAPTER IV

SUBGROUPS OF SYNTACTIC MONOIDS OF

FINITE INVERSE BIPREFIX CODES

*

Given any prefix code " C A*, it is known thaf everv group is the svutactic

monoid of a language C* with a prefix code €. M.P.Schiitzenberger has shown

1

the followings in [4].

Proposition 4.1. Let € be a finite prefix code. The group of units of M(C7) is

always a cvelie group.

Proof. Assume that the group of units U of M (C*} is nontrivial. Then there exists
a € A acting as a nontrivial permutation 7(a) on the set S of states of A(C*1.
As a permutation on S, 7(a) is a product of digjoint cycles, say 7{a) = 7172 ... 7

with, for example, so in the cvele 3. In case v;(7 # 1) is the cvele (s, 50,....,8

with 4,75, ..., 4 # 0, then the tree representing C' has an infinite repetition

! (Z (¥ (1
T (TR TR
contradicting the finiteness of C'. Consequently 7(a) = l5p. 5y, . ... &, ). assuming

that the indexation of the states has been done to fit. Let b € A, also acting as
a nontrivial permutation 7(b) on S. Then as above 7(b) is a cyele of length n o1
LTI TP Sn—1. Assume that s, 7(b) = s; with 7 # 0. Then s, 7(a)""""'7(b) =
$p_1T(D) = s; vields an infinite repetition in the tree of (. again contradicting
finiteness of C. Hence s, ;7(b) = so. Inductively, if we suppose that s,_;7(b) =
Sn_ii1 for 1=2.3,...,k, we cannot have §,-p—17(b) =8 withi > n—-kori =0,
since 7(b) is a permutation. We cannot have s, 5 7(h] = & with i < n — &

cither, otherwise s;7(a)* * " 17(b) = s yields an infinite repetition as above.



Thus $,_x_17(b) = s,y for all k,0 < k < n, showing 7(b) = (So,81,---,8n1)-
Since any word w acting on s as a nontrivial permutation is a product of letters a
with the same property, U is the cyclic group of order n, generated by the n-cycle

(S:g_, I ERERT: Sn—l)- O

Corollary 4.2. If C C A* is a finite prefix code such that M (C*) is a group G,

) i i : &L ¢ — A i ‘. | == 1 4
then G is a cyclic group of o r\\\ A / for some integer n

_4 _
Next example, given by P.Udomkava: 7 shows the existence of a
finite inverse biprefix code wiibse sy actic monoid contains a nonabelian group

N

such as' Ss.

Example 4.3. Refe

AONUEINEUINT
awwmmmum'mmaa

The syntactic monoid M(C*) is generated by

12 4 5 3 1 12 4
T{a) = g ) = and 7(¢) = ‘
5 3 1 14 2 3 1 5,

17



We have

(124 | 12 4
7(cbab) = and 7(cbabeb) =
_2 4 1 2 1 4

Thus 7(cbab) and 7(cbabcb) generate S;. Hence M(C*) contains S3 as a

subgroup.

We tried to, based on the above code, construct a finite inverse biprefix code
C whose M(C”) contains Sy for any n 2 .8. ;But this code cannot be used to
generalized even for the case n L, We foutid the code in the next example

Example 4.4. Let 4= {ajbjc} a 1 € = {aba, bab,abeb, cbeb, cbea. bet. The tree

Nﬂ']Uu'J‘VIEJ‘Uﬁﬂ'ﬁ

The syntactic monoid M (C*) is generated b |

QW’]@Q NIUNAINEIRE

1 3 4 1 2 5 _ 1 3 4
7la) = 4, 7b)= and 7(c)=
2 1 5 4 3 1 2 5 1

18



13 4 1 3 4
7(ab) = and (b)
3 41 31 4

generate S3. Therefore M(C™) contains S.

Next, we shall show that given any positive integer n. we can construct an

inverse biprefix code C whose syntactic. monoid VM(C*) contains the symmetric

group S,. Moreover later o e similar result for the dihedral
group D,

Before proving the maill L€orei on kL ..'_‘:‘\C finite inverse biprefix
codes whose syntacti ng ‘ e convenient to prove the

following propositions
»
g 0y Scay

Proposition 4.5. Let/

| AL
Then C' = 01 U Og U C F E-I‘@‘MJK’:{‘{ A y

e

‘.I&‘KQ'J.({“"J‘
C; ={ ;0,11 .. oo = 1,2,. ... n—1}
i { 14 -7-‘_;/‘_{}‘// 3 }

s

oy (- —————=—C Y

s
. -fbn—h@hﬂg sl O, 4303 . an}

Cy={maz...q

is a finite inveﬁ biprefix Code. == o

TULIVIEIUST) T

Proof. First, note that any word in C ogas lengt Q(K L 0T N — Uo be more

preﬂwé}@ﬁﬂimﬂﬁ']’m el 1N E

l(()‘.l@g. L QpQoGg - o0 a,}_l) = 2(?1— 1) = I(Gnagag s QpGads . . .anfl)

lw) =n = (aza203. . Gp_1a;) forall w € C; and

l(w) =n—1=1(aza3...a,) forallweCy

19



We shall prove this proposition in two steps.

Step 1 We shall show that C is a finite biprefix code.

It is obvious that C is a finite prefix code. We shall show that C is suffix by
considering the length of words in C. Since the maximal length of words in C is

2(n — 1). it suffices to verifv that any word of length n or n — 1 is not a right

Case 1:

i) = 2 .
—

Then w = ajasa; .. L€ to show that w is not a right

factor of ajas...a,

Since a,_g@a; i§ a right facter of u but it is not a right factor of
1Ay . . . ApQods - . . ( ' n o013 o . G 2Q3 . . . Op_1,

we have that w is not a right factor «
=) e‘_‘{/) a’

a ' (1. :_’_.:.,—:"—:'T.‘":'—r-,——_ 2003 - Ap—1-

_—
Case 1.2: wel)

Then w = & . £Gn_1010s ... G;Aer some i € {1,2,...,n — 1}.

s s b abobotb bl b i oo ¢
IV AT I\

Hence w is not a right factor of

A1asg ...0n0203...0,—1 OI AnQ2Q3...0na0203...0,1.

Case 2: l(w)=n-1.

20



Then w = asay...a, or w € Cy. We need only to show that w is not a right

factor of any word in C of length 2(n — 1) or n.
Case 2.1: w=aaz...qa,
Since a,, is a right factor of w but it is not a right factor of any word

in C of length 2(n — 1) or n, w is not a right factor of any word in C' of length

2(n—1) or n. M/
Case 2.2: w e (5.

Then w =

e7€{34 .sn— 1}

Since a;_i is a right £ - of

A1y . . Qataag . . . L ApOypdy .. .0p_107,

it follows that u is not

109 ... AxzA203 . . . Q4 Ap Qa3 ... 0p—107.

Next, we shall show that % ght factor of anv word in Cj.
ZT7 T8

Since a,aqas...a is mot a right factor of

s
)

N ¢
AjQj4 - - Qo1 @102k @G TOT @Il J € {15 255 =T 5 /not a right factor of

1y

From two cases, C is s@ Therefore Cis s ﬁmte biprefix code.

sz we S %&l@@'ﬁ wing

oy alh DIDBIENINERY

Assume that u~'C' Nv IC N A* # 0 with u # e.

any word in (' !ll

Case 1: v 'CNv~'C N A* = {ay}. There are only two words in C ending with
ay, namely

Aodg ... Ay_107102 and Aady . ..0Ap 109,

21



Moreover

(@203 . .. ap_1a1)7'C = {as} = (azas...az1)'C.

Case 2: u~!CNv~'C N A" = {asaz...a,_1}. There are only three words in C

ending with asas...a,—;, namely

A1Q203 . .. 00203 . . . Gpy_1. 2z b 4. U O A1 AN B 101G By

Moreover

(a1C_L2 s Gn)ul

Case 3: v 'CnNuw

Since

In all cases. we can congly hr, }ﬁ

To finish the p ,.’ '.u an inverse sequence for
each a € A.
For each i € {1.2.. o~ 14 1}, let

- e HUANHRA LG o

S Qe e e oy Q1. A1, @5 - .y By I}Q

ammmmum'm 180 d

Note that a;,_; means a,_, in case 1 = 1.
To show that for each 4, is an inverse sequence for a;, we shall apply
Proposition 3.12 as follows:

(i) For bibs...by = @iGi41 - .. Ga_10182 ... @; € C, since

22



{biby ... bn, bus1bpsz - -bon, .. bn-2mt1bn—2ym+2 - e Bin-1y}
= {G.,;H.,‘+1 e Op1@102 .o Gy B 10542 < 0« Q10102 - - Ait1,

ey G 1G4 Op 10102 .. ai—l}
=650,

it follows that

(1 2...n|m+1 n+2...2 fd—2)+1 (n—2)+2 ... (n— 1)n)

is the required partition....
(ii) For each
Apjq - - Ap_10109 ... 4

(j j+1 ... (n=1)n

is a partition of cyclie pesmutation {7 7+ 1 ) 1 2 ... j—1)on
T i

(L2, (n 1)} suclf
{bﬂlbj‘-ﬂ e b(n—l)nbl by...b

e b(3—n)'¢’l+j*la

o bni b b}

lb f—2 - - Op 10103 - .. ak—l}

Fmdﬁ Sk Wr) Wﬁkﬂoﬁﬂ By ooy o i

appeﬁa ce-of a; in the code word:

'Jmmmuma VI AR et

(w.r.t Aai) of za;y.
Case 2: za;y € Cy. Clearly za;y is both an associated word (w.r.t A,) and a

companion of itself.

23



Case 3:  za;y = baj,aj,41 ... 00,05, 41 . . . ax for some b € {e, a,}

Jke{l,2,...,n—1} and j € {1,2}. Then
Tr = ba'j.l Qjy41 -+ -1 and y = Q41042 . - - AUy Qjytn - -« Qs

or

€T = bﬁjla_jl+1 N PLe T P R ¢ ¥ S | and Y=0ai 1049 ...0%

Case 3.1: z= bajla.j1+1 04 ) it10i4 - Ay Ayt - - - Qg

If b=¢, then
inlc = {a;a; 1. 0p-10102 . . 'ajl}

= (ajla'jl

Thus a;,aj,11 ... a,Mads £ jo;, 5 both an a '\ word (w.r.t 4,,) and a

.- n—1ﬂ1} = ‘(alaz . -‘-ai—l)_lg-

companion of xa;y.

If b = a,, then
z7'C = {aiGis18is2 - - -

Thus ajas . ..a, ia 1 4q.) and a companion of

- -

),
xragy. 3 \ ‘

Case 3.2: v = baja;, +1 . . - Gnay, #i-1 and Y = aiy10isa .. G

xamﬂuﬁmﬂu%mﬁ_ﬂg
s B DYV FYT LI AR i

of za;y. 9

Since

It remains to find an inverse for a,. Again, we shall use Proposition 3.12 to

show that

Aaﬂ = {ana A2, A3y v vy Ay Ay A3y - v oy aﬂ.—l} = {bl- b?: e b-2(n—1)}

24



is an inverse sequence for a,.

(i) For = byby...byn-1y = Gnasas...anasa3...ap—1 € C, (1 2 ...2(n—1))
is a partition of cyclic permutation (1 2... 2(n—1)) on {1,2,...,2(n—1)} such
that

{bl'bg 8 s bg.(n_l)} = {anagﬂa v s Qpaly . . . an_l} C G,

(ii) We shall find the required patti: bibisi . ban_1ybrba... by, € C, in

three cases as follows: \ //
! _ @ have that

2 ‘\\Q B, )
'\

.n—=1)

is a partition of cyclic An—1) 12 ... n-1)

5
A
such that N

{bﬁbn_+1bﬂ+2 e bz(n..l).blbzb'. . % bn..j} = {anaga_g Lo pasag . .. CI_nH1} (_: €

AOUUINYUITNNS

Case 3: For bn+kglbn+k S bg(nﬁl)bl.hf’. s bn+k72 ="~ N3 [N N (L’n.az&}.. M C
e ol N T 3G 1IVIEIT N
q .
m+k—1n+k...2(n—-1) 12 ... k=1|k k+1... n+k-2)
is a partition of cyclic permutation

m+k—1n+k..2n-1) 12 ... n+k—2)

-~

25



such that
{Bnk—1bnsk - - - bannybiba .. g1, bbrsr - - bnk2}
= {ar@pi1 .. Qo203 ... ax_1} € Cy C C.
(ii1) We shgﬂl find an associated word (w.r.t 4,,) and a companion word for

any za,y in C' as follows :

Case 1: zayy = 4203 ... Gy OF TapY € (5 OF TanY = Ap0203 . .- G203 - - . Gn—1

By Remarks 3.8 , za,y is word (w.r.t -,,) and a companion

of itself.

0203 . o . Gn_1) *C. Thus
Q203 . . . QpQads . . . O w.r.t 4, ) and a companion
of zany.
Therefore C' is a
..u’ﬁ'j/"‘ v
Proposition 4.6. The s a M(C*) of the code C defined in
Proposition 1.5 %‘1,
Y A
Proof. Note that ' e e 1y arve labelled with the same

name since a; 'C = a‘lC It suffices to label only the nodes associated with a;w

e {ﬁﬂ'TU :Vlg.]j_ﬁﬂ'ﬁ

We label the tree representatlo s follows
Thﬂ%'}@*ﬂpﬂﬁ@%%ﬂ ATY) 2] ) ﬂ d
For each i € {1.2 -1}

the node associated with a; is labelled

(n+1)+(@-2)(n-1),
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the node associated with a;a,,; is labelled
(n+1)+(G—2)(n—1)+1,

the node associated with e,q;1a;12 is labelled

(n+1)+(@E—-2)(n—-1)+2,

the node associated with a;e

the node associated

- 1 . o :
Since each of the ) aining unlab nodes has the same subtree as one of

the above labelled nodes. they must have the same name. Hence P has been
Pt apg c

et 0 1 TUUAVIEIUINT

9

The corresponding svutactic mon@id M (C*) is@enerated by w
o0 AT N LL 3D LATAE) 1R E)
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[ 1 n 2n-2 3n—-4 -+ (n—1)n-2(n-2) \
2 1 2n—-1 3n—3 -+ (n—l)n—2(n—2)+1)

1 2 2n-1 3n-3 .- ('n—l)n.—?(n—?)-ﬁ-l\

o+ 1 3 1 3In—2 .- ("n——l)n—2(n—2)+2}

bes A
£
I |
E T i i T
—

3 m+l -2 - (n—l)n—2(n—2)+2)

m+1)+(n—-1) 4% oo (m=1Ln-2n-2)+3

- 1n— 20— 2) )

1 fl
_(2 (n+1)+’-3, I e "‘d n-2(n=2)=(rn-3)

v AU I e

17'a =(n+1)+(

]@ﬁﬂiﬂiﬂ‘ﬁ']’)‘l/l R

forea.chke{23 ..... i—1
(n+1)+(k—2)(n—- 1)+(z—k—1))r(ai)=(n+1) +(k-2)(n—-1)+i—k

and
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for each k € {1, +1,...,n— 1}

, : 1 if k=i
(kn—2(k—1)+(—1))7(a;) =
kn—2(k—1)+i¢ if ke{i+1,i+2,...,n—1}

Then we obtain that

and

(n—1)n—2(n—2)
n 1 2?1,—2’ = —1n—2(n-2)

Then 7(ajas 4. @ 1 ate™S,. Therefore S, 1s a

T

2
subgroup of the synt X O

Tl @
Theorem 4.7. For each n, there is a finite inverse biprefix code €' whose syntactic

o G AT US NS

Proof. If n = 1 or n = 2, S, must be cyclic group. By Corollapt4.2,C = A"

I %W’Ll@tﬁ [ibonel: it abechi/ ) PE@bE 45 and

Proposition 4.6. O

Before showing the existence of finite inverse biprefix codes whose syntactic

monoids containing D, it will be convenient to prove the following propositions.
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Proposition 4.8. Let A = {a;,as,...,a,},n > 3 be an alphabet.

Then C' = C; UCyUC3, where
C'l:{aiai+1...an,1a1a;g...a,i|i:1,2,...,n—1}

02:{aiai+1---ana2a3---an—i'| i:2=37"'#n_2}

W)ﬂs e Qp1, On@203 . . . G101, Gy _10n}
EEEELa-

has leng! ,2(n—1). or 2‘(n—zl) for all
f at
A \

Cs = {@103 .. . UrQ203 . . . Q1
is a finite inverse biprefi

Proof. First, note

i€{2,3,...,n—"

laai41 - B =2 for all i € {2,3,...,n— 2}.
We shall prow
Step 1 We shal nl:?i ode’

It is clear that"C is a finite prefix code. We slall show that C' is suffix by
considering _the ﬁcii ﬂﬁjw nain C. Sincéthe maximal length of words in
C is 2(n —9} :Di lle Mﬂvugffll;ljn or 2(n — i) for all

o P—N QW
AN T IR
Let w € C. There are three cases to be considered.

Case 1: [(w) = 2.
Then w = a,_1a,. It is easy to see that a,_ja, is not a right factor of any

word in C.
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Case 2: l(w) =

Then w = a,as0s . . . Gn_161 or w € Cy. It suffices to show that w is not a right
factor of aijas . .. GpA2a3 . .. Gp_1 O UpQQ3 ... 00243 . . . Uy 1.

Case 2.1: w = a,0903...0p_107.

Then a,_1a; is a right factor of w but it is not a right factor of

103 . .. Ap0 ' ' e Op0203 . . Oy
Thus w is not a right facto

cellp_g.

for some i€ {1.2,...,n—1}.

Thus ajas . ..a; is a right factor ¢ 1}@: t it is not a right factor of

a1dy . L QpQeag .. -

H_e‘nce w is not.a right factorot 7
/ N
mn . ‘
.alu,-:. Q203 - - Q1 OF 0pU203 . . EpQady . - (p—1.

o EMUUAVIERIINT

Then w = a;a;y; - . - G203 . . - @n—q- We needonly to show thatw is not a right
Sttantherti R lITR R

Smce 40203 - - . Gn_; 18 a right factor of w but 1t is not a right fa,ctor of any
word in C of length n or 2(n — 1), we have w is not a right factor of any word in
C of length n or 2(n — 1).

Thus C is suffix. Therefore C' is a finite biprefix code.
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Step 2 We shall show that M (C*) is an inverse semigroup by using Theorem 3.5.
We shall first show that C satisfies (1.2).

Assume that v 'CNv~!CN AT # (. with u # ¢

Case 1: v”'CNv~ICN AT = {ay}.

There are only two words in C' ending with a,, namely

Moreover

3...0,-1, Namely

ajaa@y ... Ayadsas . 1 and Ar—101Q9 .« s Bp—1s

Moreover _
e, T
. J?‘ ?ﬁ

((110-2 cea Q) .".‘C_—... 10/ R .,.._;___, 7.0 Ly ) C = (an_lal)'lC.

,
f g

L ' T
Case 3: u‘IC‘ﬂt‘f NAT =" (a0 1or some wiEl A*.

acﬂ'ly L Unay aE'l an:L (a") ‘e
amamaamm'm (RY

Case 4. “l@ny e N AY = {8, .. a2}

Since

There are only two words in C' ending with asas . . . @, -2, namely

An—9Qy-1QyQ1Q3 . . . Gy—2 and @pa3...a,0005 . .. An_2.
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Moreover
(an_gan_lal)_lc’ = {.0,2(13 s aﬂ_g} = (aza;; Tr a.n)_lC’.

In all cases, we obtain that u™'C = v~!C.
To finish the proof of the proposition, we need to find an inverse sequence for

each a € A.

For each i € {1,2,...,n
Ay = {ai,ﬂ«i+1,---; -5 Up—1- ﬂl,az,-- -1

ey @, Qg

= {b1, bg, .
Note that a;_;
We shall show ipplving Proposition 3.12
as follows:

(l) For blbz i

{bibs . .. bus bsibnsa . .. bie

o il € C  since

o ~1)n-}

= {ai@iy1 . - Qn-101Q2 . . .8 el « vy

"’! \‘ B QL0 o B-1 )
=y C 0, ;u HJ
it follows chat (1 2.. n|n+l n+2 8] . (n 2)+1 (n=2)+2... (n—1)n)

(ii) For each 3, such that

AR R INIE R

GY¥+1...n-1)n12...2-nn-—j—-1|@2-—n)n+j

gt [ g:u? L12en

(2-n)n+j+1 ... 3-n)n+j-1]| ... | —-n—j —n+j+1 ... j—1)is a partition
of cyclic permutation (j j+1 ... (n—=1)n 1 2 ... j—=1)on{1,2,....(n—1)n}

such that {bjbj+1 SR b(n_l)ﬂb]_bg i« b(g_n)n.g_j_}. b( 2—n)n+jb(2—n)n+j+1 s b(3—n)n+j-—1:
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ol mpiBaiyen s - Byg )
= {0kQhy1 - 0n 101Gy . . O, Qi1 Gjesn . . Gy 1Q10g . . - Gy,
cey Qp—10k—2...0p_ 10107 . . .a,k;l}
=Ly 1ET
(iii) Finding an associated word (w.r.t A, ) of xa;y depends strongly on the

appearance of a; in the code wor

Case 1: z=c¢.

By Remarks 3.8, aa;. ociated word (w.r.t A,,) of
zay.
Case 2:_ i ra;y €

By remarks 3.8. 2 | (w.r.t Ag,) and a companion
of itself.
Case 3: zay = e b€ {¢,a,} and
Jji.k€{1,2,....n

Then

Gy

T =YWty and =g d

Z d ,:‘ XJ
or ) U

& = 0aj,a5 4. GGGy 41 --- Gt aPA Y = 05110412 -

cues LRV LSRN EQ']EW
TR ﬂ’iﬂ,LﬁJ‘lf‘i']’J‘Vl ‘r’_l']ﬂ ‘r’_l

{a'iaH-l An gy Qgot1 oo Qg Ay« o Q10102 . aJl}

= (a;,a5,41 .. a;-1)"'C.
Thus aj,@j,41...0n-10105...a; is both an associated word (w.r.t A,,) and a

companion of za;y.

34



if b = a,, then
= — ; e 1
i = {a@@i+1ai+g e L PSS R ) (6 20 77T R a,n_la-l} = (alag $4s (Lj__l) o

We have aasy . . .an_1a; is both an associated word (w.r.t A,.) and a companion
of zay.

Case 3.2: & = bas 0541 - - oG and Yy = Gi410i42 - - - Ok

Then g~ 0= {.az-a,iH - o

Thus QrQpir - - - Gn_10102 0 is bott & word (w.r.t A,,;) and a com-

panion of za;y.

10102 . .- Giél)—lc.

It remains to

Proposition 3.12

Aan = {aﬂ-? a; ‘\ {15 bay - - bQ(n—l)}'

J‘IJJ
'$\ a((.(‘)
) 4\4’/!'/‘ 2

(1) For bibs... ., € C', since

¢} CC,

it follows that (1 2 |u- E rmuta,tlon (12. n—1))
|

on {1,2,...,2(n — 1)}

il S*ﬁ mvuﬂwﬁﬁmﬁm

three cases as follows:

e RGN AT RR ViR -

{anﬁlc&, Ao, . . . AnG203 - - - Gn—2} © C. Thus
2(n—1)1]2 3 ... 2(n—1)—1)

is a required partition.
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Case 2: For byyp_1bpsk .. bom—1)biba ... by = apapy: ... ana2a;3. .. an_y for some

ke {2,3,...,(n—2)}. Thus
(n+k-=1n+k...2(0—-1) 12 ... k|k+1k+2...n+k—2)

is a partition of cyclic permutation

= {akak% s s @0 s
EG .
Case 3: For b,y ... lp Qa3 . .. Gy—y € C, then
(n n+1...2n<1L B ';;',’;' is a partition of cyclic permutation
(n n+1...2(n-1) Cbanenybiby by} =

{anasas . .. ana0a;s.

(iii) We shall i‘la. a companion word for

any za,y in C as fello
l“

Case 1: 70,y = @p21ay, O 20,y € Cy Or TARY = ana.gam. G203 . .. Gy 1.

By Remar ﬁ 3.8, zayyis it§both an asso€idted word (wrt A, ) and a

companion o) & ko u’m HTRN TS 5
flitiabe = ingl g

@nG20a3 . . .G,0203 . . . Gy~ 15 both an associated word (w.r.t A,,) and a companion

of za,y.

Therefore C' is an inverse biprefix code. O

36



Proposition 4.9. The syntactic monoid M(C*) of the code C' defined in

Proposition 4.8. contains the dihedral group D,,.

Proof. Note that the nodes associated with a; and a,, are labelled with the same
name since a; 'C = a,;'C. It suffices to label only the nodes associated with a;u

where 1 € {1,2,...,n— 1}, w € A*.

For each i € {1,2

the node associated

the node associated with @@+

T -

m

s HUIVEBEN T
ReTRYATIENAY

the node associated with ;a4 ... a,—1a; is labelled

m+1)+@GE-2)n—-1)+(n—1 ,
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and the node associated with a;a,., ... a,_jayas...a; ((ayay...a, ja; in case i = 1)
is labelled

m4+1)+(—-2n—-1)+n-2) .

Since each of the remaining unlabelled nodes has the same subtree as one of

the above labelled nodes, they must have the same name. Hence P((,.’;) has been

constructed.
The corresponding synt s generated by
{r(a;) |1 =1.2,....n} ollows :
(n—"1)n—=2(n-2)
m(a,) =
n—=1n-2n-2)+1
( (n—1)n—=2n-2)+1
7(az) =
(n—1n-2n-—2)+2
(n—"1n—2(n—2)+2
T{fl_’{) = .
(n+ 1)+ (n — Ladn o n=1m—=2(n-2)+3

AUUINAUINT

n=3"3n=5 - nn—(n-—2)
'!_(an,l) = U

3 AREATAITINEIRE

T(an)

1 n 2n -2 =1 —2(n-2)
- 2 n+)4+m-3Nn-1)+1 (n-1)n-2n-2)+1 - 1

To be precised for each i € {2,3,....n— 1}.7(a;) is defined as follows:

Ir(a) = (n+ 1)+ (1 —2)(n—-1)
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ir(es) =1+ 1
for each k € {2,3,..., i—1}.
(n+1)+k-2)n-D+(i-k-1))r(a)=m+1)+(k-2)(n-1)+i-k

and
for each k € {i,i+1,..., n—1}.

o if k=1
(kn—2(k—1)+(i—1)) 7 (e

P ke {i+1,i+2,...n—1}.

Then we :obta.in th

(arag...an_1) rdl
1 . re y 3) n—1)n—2(n-2)
N AR (ONE
n 2n-2 3@— A7 (n; .. 1
and
7(GnGs . .. Gyey)

1 n Qs 2 aln—1)n-2(n-— 2))

A TUUINEUINT:
‘@W“Tmﬂimumawmaﬂ

T(a18y- . - Ap-1)7(an0203 - . . Qn-1)

B e n 2n -2 v (n—1n—-2(n-2)
1 m=1)n-2n-2) (n—-2n—-2(n-3) --- 2n—2
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Thus 7(a16z.. . 6q-1) and 7(a1ay ... ;10,07 . .. @, 1) generate D,. Therefore

D, is a subgroup of syntactic monoid M(C). 0

Theorem 4.10. For each n > 3, there is a finite inverse biprefix code C' whose

syntactic monoid of C* contains D, as a subgroup.

Proof. 1t follows from Prope: 5 aud Propes

AONUUINLUSNNS )
ANRINIUIVENAY
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