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Chapter 1

Statements of the results

In this work we consider the Gaussian measure g on C¢ defined by
du(z) = —e *'dz,

where |z]* = |z)[*4 - +|z4/*. The Segal-Bargmann space, denoted by HL? (C?, 1),
is the space of all holomorphic functions which are square-integrable with respect
to the Gaussian measure py on C.
For each multi-index 8, we define
4

; : v 50 :
— 2 i i : 2 ol
@gg ={feHL (_(L it | 5.8 e L ((L ,,u,)}

and
Do={feHL (C'p) | 2°FeL*{Cp)}

In Theorem 3.1, we will show that polynomials are dense in HL? (C*, ). Since
D .6 and D,s contain polynomials, it follows that © .5 and 2,s are dense in
8 5.8

HL? (C4, ). We prove the following results :

(1) 9% C D 4 if 3 and v are multi-indices such that 8 < .

8:8

(2) D,y ©2,8 if 8 and ~ are multi-indices such that 5 < .



We use the above results to prove the following theorem, which is the main

result of this work :

Theorem. D 08 = 9,5 for any multi-index 3.
dz

Next, we extend the Gaussian measure p to the measure u,, o > 2, given by

1/
where |2|* = |2 |*+- -+ |2g|® and C :&sz)_l is the normalizing factor.

We call the space of all holem i¢c functiens which are square-integrable with

respect to p, the generalized Segal-Ba \\\\a\ We modify the proof of the

e will obtain the following

D _a-1 for any multi-index 3.

\

o

ECESeP

AONUUINLUSNNS )
ANRINIUIVENAY



Chapter 2

Background and notation

For each 2z = (z,...,24) € C%, let

2 =12 [*+ -+ + |z4/?, and define the Gaussian measure p on C? by

where |z

o
z)

1 4
du(z) = plz)dz = —e” " dz.
i

Denote by HL? (Cd,y,) the space of all holomorphic functions which arve square-
integrable with respect to the Gaussian measure p on C*. That is, HL? (€, )

consists of all holomorphic functions [ on C¢ for which

[ stz < oo

Then HL* (€%, 1) is a Hilbert space, called the Segal-Bargmann space.
A multi-index 8 = (B,,..., 8) is a d-tuple of nonnegative integers. For such a

multi-index 8 and for each 2 = (zy,...,z4) € C?, we write

‘#B‘ = 6] + AR '6)(-{5
Bl =B\l Bal,

L=y



and

a8 a8l

028 0z P .. OzgPe

For any multi-indices 8 and v, we write
B<y if B <~ foralll <j<d.

For each multi-index &, define

. arf
@gg:{fe?ﬂﬂ (T4, ) WE'[’Q (C* )}

and
0L (f AP (O ) | 2 Foe T(C, 1)},

Next, we consider a measure i, e = 2, on C¢ given by
dpg(2) = Cae™ " dz,

where [2[* = [z + -+ + [z and Cq =.( [ f:e*|z|ad;:)7] is the normalizing
factor. Notice that, for each @ > 2, u, looks like the Gaussian measure, but
it decays faster tham/the Gaussian factor g = py near infinity when o > 2. We
define HL? (C?%, 1u,) to'be the space of all holomorphicfunctions which are square-
integrable with respect to the medsure u, on C*~We also have that H.L? (C?, y, )
1s a Hilbert space and we call it a generalized Segal-Bargmann space.

For the sake.of cempleteness-of thiswork, -wewill include the fellowing theorem,

H, p.2].

Theorem 2.1. 1. For all z € C4, there exists a neighborhood V' of z and a

constant ¢, such that

‘}7('“)12 S CZHFH?P(@,;LQ)



JorallveV and all F € HI? (Cd, ua). In particular, for all z € C*, there

ez1sts a constant ¢, such that

JF(Z”J f (:z‘IF]|?,2((ﬂ,pa)

for all F e HL? (C?, ).

2. HIL? (Cd,,ua) is a closed subspace of L*? (Cd,,u.a), and therefore a Hilbert

space.
Proof. (1) Let Py(z) be the “polydisk” of radius s, centered at z, that is
Py(z) = we C |/ ¥k € {1, d}, jwp = 2z <s}.

Given z € C? and s » 0 be arbitrary. Let V = Ps(z). Then V is an open

neighborhood of 2. Let w e V and £ e HL? (C%, o). Claim that

1
ond
(5

Provided we can prove it for the case d = 1, for the general case d > 1, we factor

Fv) = / F(w) dw. (2.1)
Pylv)

the integration as a product of 1-dimensional integration in each variable. Thus

/ F(w) dw = / Fw) dw
Py (v) B{vi,§) % xBlvg,3)

_f f Flwy, .., wq)dw, - -duwg .
B(vr, ) B(ug;5)

We will apply the 1-dimensional result d times, se=we have done‘for all d integra-
tions and get just F{v),
Now we will prove the case d = 1. Since F' is analytic on C¢, we can expand

Fin a Taylor series at w = v, so we have

Flw) = F(v) + Z a, (w—v)"
n=—1



for all w € C%. This series converges uniformly to F on the compact set P,(z) and

| also on P (v) since Ps(v) C P,(z). Then

-/Pi{v) Flw)dw= /

Thus

which gives

{
So now rewrite (2.1) in the form

AT By S rpmeg = e
AT INe |t

where ﬂ> (v) 18 the function which is one on Ps ) and zero elsewhere. Thus by

the Schwarz’s inequality, we have

1F@)]* <

Sﬁ
(me

(s

1

2
4

1

2

4

)Jdc

)

B R Tl

caltne IR



since P (v) C Py(2). Note that P,(z) is a compact subset of C* and 1p,,el*"

Is positive and continuous on Py(2); thus |[1p,,0el*™(|2 is finite. By choosing

C. %12, we have (1).

= ﬂ%'llp( \e
rayaliee
(2) Let (F,) be a sequence in H L2 (C, o), and let F e 2 (C4, 1) be such
that £, — Fin L?(u,). Then (F7) is a Cauchy sequence in I, (tta). Given

z € C, by (1) there exists a neighborhood V' of z and a constant ¢, such that
EW) 3 o,

for all v € V and all F.e %12 ((Cd,,ua). Since #, — F,, € HI? (C?, 11y) for all

n,m € N, we have
(0= B @)= (7 T Ba)(v)] = Ve ||, — Fyl
for all v € V. Therefore

Sup [ Fo(v) — B ()< v/e; | By =B, — 0 as T, M — 0.

vel
This shows that the sequence (F,) converges locally uniformly to some limit func-
tion, which must be . But a standard theorem shows that a locally uniform
limit of holomorphic functions is always holomorphic.-So the limit function £ is
actually in HL? (C?, 1), awhich shows that 772 (C?, 1) is a closed subspace of

L? (Cd)“u)‘ L]

Finally; foreach milticindex B, we define

oy
o e 1 (€ )}

Do ={feHL* (T 1) |
57
and

0.0 = {f € HL (C ) | 5 € 12 (€ 4,)}.



Chapter 3

The Segal-Bargmann space

In this chapter we consider the case of the Gaussian measure p = . Our objective
15 to show the refationship between the domain of differentiation operator ana the
domain of multiplication operator on the Segal-Bargmann space. We obtain the

next theorem from Gross and Malliavin [G-M.

Theorem 3.1. The set {z°} forms an orthogonal basis of HIL? ((C‘I: ,u) Azsuine

ad

that f 1s a holomorphic funciion on ©° and has the pomtwise convergent power
series

f(z) :Za;;zj, (3.1
8
where ag € C for each multi-inder 5. Then
F(2)Pdu(z) =) lag*8! 3.2
[ 1) Pdutz) = 5 s (32
C 3
where the summation 1s taken over all multi-indices 3 = (3,,.... 84). The series

(3.1) is also convergent in the L? (C%, 1) sense if cither side (hence both sides) of

(3.2) is finile, and thus

117 = |asf*BE.

B



Proof. Let D(o) be the polydisc {z eCt | max 2] < a} Consider first the
=7

case d = 1. Let M, (j,k) = fIZI<a Zzbe 17 dz. Putting z = re and using polar

~ coordinates, we have

2
My(j, k) = f / itk e=th0 o= 0 dr

It follows that

() My (G, k) = 0if j # ks A0 RNl = 037 j £ ke

(i) if j = & then

D
v‘\\

-

oLk, E)

A

5

|
‘

-
-

J‘IJJ

r$\ z«f‘)
Nl ~

4‘4’/!'/‘\ ﬂ-k

P

i (29

where I" is the real-val -..:=.......‘
,..u-ﬂ-*y/)\?

(iii) from (i) and o . we have that
AONUUMELANTT
AN IR

Now we consider the general case. Since the power series in (3.1) converges

uniformly on the product set D(o) and 28Z7e ¥ is itself a product of functions
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of z1,..., 24, we obtain

1 2
2 _ 2,—lz
/D(g) [f(2)Pdu(z) = i |f(2) e dz

_ b BN = oyl

md /D(U)Za:aﬁz Zy:aﬂye “
B %ZZ%% ]D . P2 dz
R ZZ“B“TH (/ “ﬁ“’zﬂ"@“"zfizj)

|z |<o

1

- gzzasﬁvHMa(ﬁj,%)
g =1

1 i\ j
720 lasl” [T M (858,),

i/ =

where in the last sum we have written 5 = (8, .. . B4), and have used (i). Now

let ¢ — 0o and use the monotone convergence theorem on both sides of the last
equality. Then (3.2) follows from (ii). The set {##} is an orthogonal set by (iii)

and the functions 2 \/F are orthonormal since
1 f / :
2= ﬁd/ Pl F
T Jgd
1 ; f
- —df f [P JePaPe B e e,
( / ‘Z -BJ’2 ‘ZJJ dZ)

1
= Lim My (85, 8))
7ra

B

Z

H

—= “ﬁ’:l& Jl

L

5t + 4

1

[
Il

Assume that the right side of (3.2) is finite. Then the sequence of partial

sum fy(2) := > ag2”® converges in the ?(4) sense to some function g. Since a
1Bl<N

subsequence converges a.e. to g, we have f = g a.e. So the series in (3.1) converges

to f in the L*(y) sense. In particular, if f is in HL? (C%, 1) then the series in
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(3.1) converges to f in the L? (1) sense; that is the sequence > asz”, which is
18l<N

in span{z?}, converges to f in L2(y), so span{z#} = HL? (C?, ;). Hence {27} is
an orthogonal basis of HL? (C4, ). O

By applying Theorem 3.1, we obtain Theorem 3.2 and Theorem 3.3.

’ ~ are multi-indices such that 8 < .
ﬁme 1 <i<d. Thus

Theorem 3.2. D sv C D 45 if
Lo

Proof. 1t suffices to ass

for some 1 < i < d. o8 - Let fe HL? (C4 ),

IIAE
4‘4’/.!'/32\

and e

’ﬁ- T —— J#i
Applying Theore .‘;u: :

7| = S e ) -6 T w

aTANTEUINMT
NOSEHTATHIENRY

— 1) .
v —=83:+1 ijﬂ IS.JS'C!
i J#i

vl

Bzf""H

and

9

Let

M = Z Z |a, [*(8:1)? H vl

v =f; v; >0 1<j<d
1#1 J#
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Hence,
2
a.8: | + Z Z Ia"’[ T AY ( ﬂz)( — B — l n vl
9% | vi=Bi+1v; >0 N T ) 1<J<d
J#i 371
foe] y 2
<M+ Y Zlaulz((y,_'ﬁ),) (vi = 8 (s = 8, = D! [ vt
vi=Fi+1v;>0 ! ! 1<j<d
J# FE)
o] 2
=M+ > > af 1)1) ( -0t T v
vi=fi+1v;>0 1<j<d
i J#
Hoi+1
87
Since f € HL* (C?, ,u),)d/
and that
(2aEald !
vi>00 n J<d
#tdn/\ =) \
Therefore EERED
3137, . 158 . .
Thus Bzii T < oo%phes s O, at zsmé%.[ € L? (C*, 1) implies

‘ﬁieLz(cd,#) Thus D gspn D 46,

et RORTUINBUINNT
awwﬁﬁﬂﬁ@%éﬁhwmaa

ﬁ Sle,‘

So 2 578 €9 ,931+1 , and then by the first part WT c 2 a,s,‘ . Thus 5.7 €
1+1 Bz
LQ(Cd,M),andhencefeﬂas.SofDav CD . O
a8 P

Theorem 3.3. D, C D5 if 8 and v are multi-indices such that B < .
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Proof. Given f(z) =3 a,2" € HL? (C?%, 1). Then

L) = Z a2z’

and

and

Hence

= 2777

g s LA R S

L? (C%, ). Therefore ®,+ C 5.5+

QWW@Q AILUNIVEIRE

heorem 3.2 and Theorem 3.3, we can prove the following theorem :

Theorem 3.4. ® 08 = D5 for any multi-indez 3.
dz

Proof. To prove this theorem, it suffices to prove the following two statements :
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(1) Li)ag_i:@zi foreach i € {1,...,d}

(i) if © 5 = D5 for some multi-index 8 then D o = = ®,,, where v = 8 + ¢,

5?5

for some ¢ € {1,...,d}.

Let 2 € {1,...,d}. We will show that Do =D,. Let f e HL? (C, 1) and
write f(z) = Ea,,z Then

and

and

Y]
) .

J#i

Hence,

AN
QW’]M@%NW\TA;{IH’]@Q

P—w

=Y et - ] v

vre; 1<j<d

J#
_|es|’
N Bzz
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: 2
Thus HzlfHZ is finite if and only if H%H is finite. That is z;f € L* (C¢, ,u.) if and
only if 27 € L? (€, u). Hence D,, = Do

Now we assume that D ;6 = D,s for some multi-index 5. Let ~ = 8 —+e; for
828

some i € {1,..., d}. We will show that @ ov = D,,. If 8; = 0, then
9z

O (s _,5(9
BZI‘ (/J f)_z (azl)’

so we have that

.
feDy e 12ct, )

02"
0
0z 9:8
s Of 2 (rd e . .
2 e L (C ,,u,) by the assumption
dZ,;
d o5 2

= ’fe®, by pat (i)
— e’ (Ch)

o o 4

Suppose that 5; = 1. First, note that

d v g 0f
aizz(zﬁf) :ﬁi-z f+Z‘6 (a;) f_l)

where v = § — e; and [ € HL? ((Cd,,u,). Letef € @éﬁ_“r_r. We' will show that
% (z-gf) e \L2 ((Cd, ,u) by shewing that both terms on the right-hand-side of (1)

are in L* (Cd, ,u). Since f € ZDB.%, gzi €D 4 . So gg €D,z since D 55 = D s by
777 0z 227 : 55!

a8
assumption. Thus z# (gzi) e I* (Cd,,u). By Theorem 3.2, f € @gl C® ot =
1 N Gz l;
D5 C D,v, so we have that 2*f € L? (C*,u). Hence, ;- (27f) € L*(C, p).

Then 28 f € ’D&_a__. Since ® s =D,, 2°f € ©,,. Hence, 27f € L? (C4, 1), so

o
Oz



Conversely, suppose that f € @,,. Then 2°f € D, s0 2/f € D o since
D, =D 5. Thus 5~ () € L* (C?, ). By Theorem 3.3, f € D, C D5 C D0,
so we have that z"f € L*? (C?, 1), and that §; - 2 f € L? (C¢, 1). It follows from

1) that 28 (2L) ¢ 2 €4, ). Therefore 2L ¢ D,s. By the assumption, we have
Bz a

P
g—i € @aigg. Hence, g% e L? (C?, 1), which means f € 9%. Thus, Do =9y

as desired. O

AONUUINLUSNNS )
ANRINIUIVENAY
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Chapter 4

The generalized Segal-Bargmann

space

In this chapter our measure is the measure g, when o > 2. We will prove

analogous results to those in the previous chapter.

Theorem 4.1. The set {27} forms an orthogonal basis of HL? (T4, p,). Assume
that [ is a holomorphic function on C% and has the pointwise convergent power

Series

f2) =3 e, (4.1)
4

where ag € C for each multi-indexr 3. Then

[ 1) Pdatz) = € ()" S laaP T ALY (4.2)
z talz) = Ch | — ag — . {4.2)
B Hal 2, \ o 8 ; | 0

where 8 = (5,,...,54) is a multi-index and T 1s the Gamma function given by
|+m
I'{z) "-/ e "t Ndt, z € (0, +oc).
0
The series {4.1) is also convergent in the L7 (T, u,) sense of either side (hence

both sides) of (4.2) is finite, and thus
d

, 27\ ¢ ) 2(8; + 1
P =G () Slaal TLrA% 1)
) 2ol .

1
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1<j<d

Proof. Let D(o) be the polydisc {z € C* | max |z < a}. Consider first the

case d = 1. Let M,(j, k) = flzl<a Zizke 1% dz. Putting z = re and using polar

coordinates, we have

It follows that

(j) Mo’(.?ak) =0 lfj ~i(] ,'!-nﬁaﬂ . :/é k ;

(ii) if j = k then

(ii1) from (i) and (ii), we have tha

Now e c@mummmmﬁ 0 o
formly i w rociﬁcfﬁeh %) and 297 ﬂﬁ’]’; ﬁ ?j ’Q]h ?quncuons of

2)2dpe(2) = Cy 2)|%e” 17" dz
[, e =co [ 156

D{a)

/ Zagzﬁz e 1Fdz
D

(o) Ji]
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= Cy ZZaga,y/ AL

j=1

= C, Z Z s H Ms(8;,7;)
8 v j=1
d
— Oa Z ‘(Ig|2 H Ma(ﬁ.’i! Bj):
3 j=1

where in the last sum we have written 5 = (8. .. 8;) and have used (i). Now
let o — oc and use the monotaone convergence theorem on both sides of the last

equality. Then (4.2) follows frem (ii). The set {2”} is an orthogonal set by (iii).

12811 = Ca [ FEf

(/ iR 1P dz)

i'_rgQ M, (8;, 8;)
( ) HF 6+1
8

z .
R’_} forms an orthonormal set, where
8

Since

\I
’,'_‘]a :1\

Ca

<,
Il

we see that {

ND R

Assume that the right side of (4.2) is finite. Then the sequence of partial sum
fn(z) = 3 agz® converges in the L?(j,) sense to some function g. Then there
|B|<N

exists a subsequence of fy which converges a.e. to g. This implies that f = g

a.e. So the series in (4.1) converges to f in the L?(y,) sense. In particular, if
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fisin HL? (C? u,), then the series in (4.1) converges to f in the L?(j,) sense.

That is the sequence of partial sums 3. agz®, which is in span{z®}, converges
|8l<N

to fin L*(ia), so span{zf} = HL? (C?, 14,). Hence {2”} is an orthogonal basis
of HL? (€2, 14). 0

By applying Theorem 4.1, we can prove Theorem 4.2 and Theorem 4.3.

Theorem 4.2. © 2 C D s lti-indices such that 8 < .

Proof. 1t suffices to assu 7+ @1 < i< d. Thus

for some 1 < i <

S ayz e HL? (C

and
; '- -1 Uj
S ARV ARS8 VOO A— Ve . ¥ i H %
1<j<d
J#
Let

amﬁfﬁ%ﬂmmi

Note that P’ depends on v. Applying Theorem 4A we have

J#i
and
§oitLf ’ ;! ? 2(v; — Bi)
azf.-H - ( ) V;ﬂg]au[? ((M 8 — 1)!) I'( o )P.

J#i
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Note that I' is increasing on [-32~, oc). Let k; be the smallest positive integer such

thatk,-zﬁﬁ—landg(k%&")—l—ﬁzg. Let

d ki—1
Mmoo (T N S e (Y =8 20,
\a)/ o

ihoze o N B

J#i

Since [ € HL? (CY, 11a)

A2 ufﬁtﬁﬂﬂﬂm'ﬁk .,
WGWWWFI 3;”(1']'3 &N ﬂ d

(E Z |a,,|2I‘( L+ )P < 00.

vi=0
#w

QW A

Then for each 8; < 1v; < k; — 1,

( ),;)la (y—ﬁl))gr(%}—i;@+%)P<m.

i
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Therefore
or\ ¢ fil v;! (vi — Bs)
M := Ca — y2 ! U
(5) X X () s Byp <o
vi=p; Vi2 .
J#i

88 2 B4 ?
e i
%4
L* (€% o). Hence, D gt €D g
8; -o;ﬂ-
Next, if f € 930‘7’ then

Thus

) . ’ . . 8

Plit+l [ pB-Biei f .
o (¢ i

88 B8
So 3—5—’;},{ € D gp+1 , and then %—‘;fé{ € D 5 since D gs,01 C Dy . Thus
8:PiFT g p:Pit1 P

ﬂ r
g;éEB(Cd,ua),é,ndhencef.E@%f SOQ%QCD%. O

Theorem 4.3. D, C D,5 if B and vy are multi-indices such that B < 7.
Proof. Tt suffices to assume that v = B + e; for some 1 < ¢ < d. Thus

= (ﬂlv"',ﬂi—l,ﬂi'l' 17ﬂi+11-' '7ﬂd)

for some 1 <7 < d. Let f € HL?*(C% o). Then f(2) = Y a,2", s0

and

By applying Theorem 4.1, we have

211 =00 (2) S inprt B 2) 1 rts) 2526,

o a
1<j<d
J#



23

and

11 = 0o (%) Dlapr 2 4 7] 228, 2)

1<j<d a
Fi

Let k; be the smallest positive integer such that k; > 8; + 1 and 2—('“—'}@ +2>3

Let
d ki— , ,
wi=C(2) S X @), 2) ] p@uth) 2
o v;=0 v;>0 ¥ 1Zi<d a o
1=0 v 2> <J
A J#L
Then
2w vi + Bi) 2(v; +,B
1F|* = M + G (E) ZZ|"|2F (z B) )HF 20 +55) a)
vi=k; v; >0 1<j<d
J#i J#i
S (_ﬂ-) ZZl u|2l-\ Vt+/32 S0 WNL T, ) H 1-\ V]+,B] )
% ks v 20 1<j<d
J#i J?’-‘l
2
(B st o, 1 e 2
1<j<d o o
J#
=M +||27f|*.

If ||27f||%s finite, we have that for each 0 < v; < k; — 1,

C, (27!‘) ZI u|2F 2(Vt+ﬁz = ) H P VJ+IBJ) )<Oo.v

v;j 20 1<j<d &
J#i J#

Then if ||27 f ||2is finite, we have that for each 0 5 vi <ki—1,

C. (2%) ZI BT (1/,+,3, H B uj+ﬁj) )<oo.

a
5 £y
Therefore |
d ki—
9 Vz+ﬂz VJ +,8:1)
M= c()zzmr 2t B 1 2) 1 né +2) <o
v;=0v; >0 1<5<d
J#i FEz

if ||27f||* is finite. Thus if ||27f||%s finite then ||zﬂf||2 is finite. So 27f €

L? (€%, po) implies 22 f € L? (C", Ya). Hence Dpv C D 6. 0
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The next result is the main topic of this work. It is slightly different from
Theorem 3.4 and we prove it by using similar idea. We obtain it by using the
results from Theorem 4.2. In this theorem, we have to assume that « is an integer
because of the technically in defining and proving results that involve the term 27,

where z is a complex number and v is an arbitrary real number.

Theorem 4.4. If a > 2 is an integer, then D o8 = D -8 for any multi-index
8z

B.
Proof. To prove this theorem it suffices to show that the following two statements
are true :

(i) Do =D,a-sfor cach i€ {1,...,d}

(i) if © o = D ,(a-1s for some multi-index S then D o= D (a-1)y, Where
[:27 .

v =B +e; forsome i € {1,...,d}.
Let ¢ € {1,...,d}. We will show that that Do = D1 Let f €

HIL? (C?, ) and write f(z) =Y a,2”. Then

5 f(2) =) o SRR,
v

and

z) Z Z Viay, 2774,

v=1v;>0
JF#

By applying Theorem 4.1, we have

d
||zia—1f”2=ca (gg) ElaVIQF 21/, +2) H r( 21/, 2)
. ) 14

1<j<d o
Fi
and
af 2.2 21/, 21/] 2
A o (Z) S D mmird I] v+ )

v;=1p; >0 1<j<d
J# -G
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Let

L=C ( ) > wPr(%y) T r%+ 2,

1<5<d
J#

Because I'(2) = I'(1) = 1 and I'(z + 1) = 2T'(z), it follows that

Y IR
T a7 =L
d
=50 (5) Shrrcy+o T e +2
v 1<J<d
a2 K 2u; 2v;
- 2. (2) Slarrn 1 ré
c : 1<_7<d
i 2y; 2v; 2
- (1) % o [(E&H) __1] (21) r(%y I % + 2
« u>e; - « 1<j<d o o
J#
2 2 9 21/z 2v;
= = Z|a,,|u[‘ )Hr +—)
v>e; 1<_7<d
J#e
of ||
= 0z;
Since

d
ch’a (2'"-) Zlay|21—\ 21/1,+1) II F 2’/.7 + )

o
1<5<d
A

2\ ¢ 2 2; 2u, 2
<C, ('o’[) Zu:la.ul + 1)I(— +1) H r(

1<j<d
J#

2r\¢ . 21/, 2u, 2
=ca(—a-) zy:|a,,|1" +2) H r(=1+2)

1<j<d
#

= |z 1P -

we have that if ||z 1f|* is finite then L is finite. Thus if ||z%~1f|| is finite

ar ||?

then |3 o

is finite. So 2,*~'f € L? (C?%, po) implies 3 —L € L% (C% pgo). Hence

Dzi“f‘l g Db%_.
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On the other hand, let

27 2
6o (2)' S S ot T r
v;=0v;>0 1<5<d

J# THE

we have that

d
L=C, (%E) Z\au]2r(2u, +1) H r 2:; n 2)

1<]<d
2
'—M'I"C (ﬂ') ZZ' |2(2V,) 21/, HF2VJ
vi=1y; 20 : 1<]<d
J#i RE
2 2 2
<M iq (”) 55 eir 1 v
@ vi=1v; 20 1<i<d
J#i T
(87 32’,‘

Since f € HL? (C%, o),

i1 =e. ()’ L P TTe + %) < o,

- So

j=1
6, (%) S5 mbr) T o2
V,-Ouj>0 1<]<d
J#i -
2 2v;
wimcn(Z) L3 T r+
vi=0v; >0 1<j<d
J# K

2 2
Thus if HQLH is finite, then L is finite. Thus H%H is finite implies ||2,*~1 f|)* is
finite.  So ;,-zf: e L2 (C? pa) implies %7 f € L*(C?,pa). Hence D 2 C Dya-t.
Therefore D o = D,a-1.
b,_'.
" Now we assume that D 2 = D ,(-1s for some multi-index 8. Fixi € {1,...,d}
-5

and let v = B + e;. We will show that 93@_17 =D (a-1y. If §; =0, then

63 (z(‘”' ﬂf) Sa-1)8 (3f)
% :

2
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so we have that

fez)%«:gjieﬁ(cd,ua)

2
of
:%5;69%

0
&= -6{—, € D,-1s by the assumption

e () e (e )

g ]

il (AP ) € L* (C?, o)
62,‘

=V feDs

<= 2% f €D by part(i)

= gl f e [? (Cd,ua)

= f & Dz(a-—l)fy.

Now, assume that §; > 1. We have that

of
f € D%Y‘V : % € 93255'
= g% € D -1 by the assumption
=08 () e 12 (¢ ). (1)

-Let v = (o — 1)8 — ¢;. By Theorem 4.2 and the assumption, we have that
Doy C 53_%% =D -18 C Dyv.
Thus
fe® g, = fED,
¥ 2fel? (Cd,ua)
= (a—1)8;-2f € L* (C?, pa) - (2)

So by (1) and (2), we have

feDg = (a=1)fi2f+27P (g-g-) € L2 (C% pa) -

i



Since : _
5% (z(a—l)ﬂf) = (a=1); 2" f + 2o VP (gj_ﬁ
we have
feDgy = ;% (2*YF f) € L* (C%, pa)
= Dby ¢ 593%

= e Vf ¢ D,a-1 by part(i)

= 2 f e L2 (C?, ug)

= [ €D, -1

Conyerse]y,

f € @z(a—l)'y = z(a-l)ﬂf e Dz‘g—l

== s ¢ Do by part(i)
!

).

= o2 (&) € 12 (' ).

Let v = (. — 1) — e;. By Theorem 4.3 and the assumption,
Dz(o—l)'y g z)z(a—l)ﬂ g @zv.
Thus

f € Qz(a—l)'y = f (S Dzv

=2 € I* (C, i)

= (a=1)8;-2"f € I* (C, pa) -

Therefore by (3) and (4), we have that

f € Dytamin = 5o (5 1) ~ (@ = V- 1 € I (C, )

]

Since

6z,-

az,;

9 (31) w 2 ) (a4,

28
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we have

f € gz(a—l)‘v =}lz(a_1)ﬂ ('a'l“> € L2 (Cd,ﬂa)

8z,~
of
== % € D -1

of .
= o7 €D ;,Q,Eg by the assumption

A
==‘r>'5-z77- €L (Cd,ﬂa)

=>f€©b§]7"
Thus

-fe@ae% &> f €D,0a-1,

so we have D &= D -1y a8 desired. ‘ O
. A ‘
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