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ABSTRACT

4871004063: Petrochemical Technology Program
Anothai Tansuwan: Epoxidation of Ethylene over Silver Catalysts
in Low-Temperature Corona Discharge.
Thesis Advisors: Dr. Thammanoon Sreethawong and Assoc. Prof.
Sumaeth Chavadej, 70 pp.

Keywords: Ethylene Epoxidation/ Low-Temperature Corona Discharge/ Silver
Catalyst

The production of ethylene oxide via partial ethylene oxidation, so-called
ethylene epoxidation, is currently indispensable for obtaining valuable chemical
feedstock or intermediate to be used for manufacturing several kinds of chemicals,
such as solvents, adhesive, surfactant, and foam polyurethane. In this study, the
epoxidation of ethylene in a low-temperature corona discharge system in the presence
of different catalysts, namely Ag/(low-surface-area, LSA)a-Al,03, Ag/(high-surface-
area, HSA)a-Al,O;, Au-Ag/(HSA)a-Al,O;, and Auw/TiO;, was studied. In a
comparison among the studied catalysts, Ag/(LSA)a-Al,O; catalyst was found to
offer the highest selectivity of ethylene oxide, as well as the lowest selectivities of
carbon dioxide and carbon monoxide. The selectivity of ethylene oxide increased
with increasing applied voltage, while the selectivity of ethylene oxide remained
unchanged when the frequency was varied in the range of 300-500 Hz. Nevertheless,
the selectivity of ethylene oxide decreased with increasing frequency beyond 500 Hz.
The optimum Ag loading on (LSA)a-Al,O3 was found to be 12.5 wt%, at which a
maximum ethylene oxide selectivity of 12.98% was obtained at the optimum applied
voltage and input frequency of 15 kV and 500 Hz, respectively. Under these optimum
conditions, the power consumption was found to be 12.6x10™'® W's/molecule of
ethylene oxide produced. In addition, low oxygen to ethylene molar ratio and low
feed gas flow rate were also experimentally found to be beneficial for the ethylene

epoxidation.
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