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ABSTRACT

487301 9063: Petroleum Technology Program
Student's Name: Thunyaluk Pojtanabuntoeng: Effect of mercury on
corrosion in production wells in the Gulf of Thailand fields.
Thesis Advisors: Assoc. Prof. Chintana Saiwan, Dr. Darrell L.
Gallup, and Dr. Sutha Sutthiruangwong 81 pp.
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Studies of the corrosion of materials used for tubing in oil and gas
production wells are important for cost minimization. In this work, 13%chromium
stainless steel and L-80 carbon steel were selected for study by immersion testing and
potentiodynamic polarization techniques. Simulated produced water with the
composition obtained from the Gulf of Thailand field was used as a corrosive
solution in order to investigate the effect of mercury at various conditions of
temperature, chloride concentration, CO, partial pressure, and pH of the solution.
Temperature was found to increase the corrosion reaction kinetically. Furthermore,
chloride ions (0.1%NaCl-3.5%NaCl) and carbon dioxide were found to enhance the
corrosion reaction by destroying the protective film, especially on 13Cr surface.
Increasing the acidity of the solution causes the solution to be more aggressive due to
the abundance of hydrogen ions to be consumed and generated H; in the cathodic
reaction, while the steel material becomes more metal ions in the solution. In
addition, mercuric chloride, as the representative of the mercury species in the
production wells, with a concentration between 0-12 ppm does not cause any effect
to both materials. Moreover, there is no synergistic effect between trace amount of
mercury and temperature (30°C-60°C) or carbon dioxide. However, with a mercury
concentration higher than 100 ppm, the corrosion rate was increased due to the

increasing in reduction process.
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