Chapter 4
Transport of Cosmic Rays Across Shock

4.1 Introduction

This work is a partial sequel of the works developed by Ruffolo (1991,1995).

We have simulated the interplanetary transport of solar cosmic rays with a vary-
ing solar wind speed. The shock generated by solar flare make solar wind speed
different at downstream region, the region that had been passed by the shock,
and upstream, the region that had not been passed by the shock yet. When
cosmic particles cross the shock they will be accelerated, thereafter they go away
from that shock. This makes anisotropy at both sides of the shock.
4.2 Reference Frames

Before we go into details some convenient convention about reference
{frames will be devised, following de Hoffmann and Teller (1950). There are two

reference frames used:

The co-moving or local frames These frames are those in which the observer

is at rest relative to the medium on the one or other side of the shock.

The shock frame This frame is one in which the observer is at rest relative
to the shock front. Viewed from this frame the flow will appear time-

independent. This frame from now on is called de Hoffmann-Teller frame.

4.3 Conservation and Lorentz Transformation of Physical Quantities
Because flow in de Hoffmann-Teller frame appears time-independent, we

] ) . ) ) |
will work in this frame when we consider the conservation and Lorentz Trans-
|

|
formation of physical quantities. Consider the shock which stands stationary
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between two regions, upstream and downstream solar wind. In upstream region
the flow velocity V,, will be directed toward the shock plane; iq downstream
region the flow velocity V,q is directed away from that plane. |

For convenience we assume that the directions of the flows a;re parallel to
magnetic fields in corresponding region. We denote cosine of pitch angle by g,
the angle between a flowing particle and magnetic field. In de Hoffmann-Teller
frame magnetic moment M = P%*(1 — u?)/2mB of the particle ‘Eis conserved
(Dekker, 1983), so do its energy and momentum {(de Hoffmann and :;Telier, 1950;

Liist,1960). From these principles we can derive relation about u’s and momenta

P’s from one region, after crossing the shock, to the other region as following.

1. Particle Crossing from Upstream to Downstream Region: Consider a par-
ticle with momentum P, and cosine of pitch angle g, in upstream local
frame. The particle is directed toward the shock. Using Lorentz Transfor-

mation from upstream local frame to de Hoffmann-Teller frame for x and

P we do the following:

In any frame u can be determined from P by the relation

where
P is the component of P parallel to the magnetic field

P, is the component of P perpendicular to the magnetic field

then in upstreamn de Hoflmann-Teller frame we obtain

Psu.” = 'Tsu(Pu.ﬂ - ﬂauEu)
Psu,i. =TIyl = Pu\fl -_Jutz‘.

where ﬁau = au/c and YU = 1/ 1- Eu and

_ Py Py

fou = = \ (4.3)
Pua 1,P32u,”+P.!2u,J.' \
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and energy of the particle was calculated from relation

By = /P2 + mici, | (4.4)

When a particle crosses the shock in this frame, its magnetic moment and

momentum are COHSQI‘VG(], 50

Pus — Pd.s : (4.5)

and

Pfs(l _lui.s) < Pja(l "#3,)
2B.m 2B,m

(4.6)

From eqs (4.5) and (4.6) we can find a relation between 4 of particle before

and after crossing the shock as follow:

B
fas = —\/1 3 E,df(l = pi,) (4.7)

minus sign is used because the particle is directed toward the shock. Now
we know momentum Py, and u4, in downstream de Hoffmann~Teller frame,
then we transform these physical quantities from this frame to downstream

local frame:

Pd.” = VSd(PdS.II + ﬁduEdu) (48)
Foo = Pags = Payf1 = i, (4.9)

where a4, = Vau/c and 7,0 =1/4/1 — 53 -and because of conserving energy,

we obtain
Eg = E,, (4.10)
then we can calculate ¢ in downstream de Hoffmann-Teller frame:

Pag _ Py
Fa o /Py + PL,

(4.11)

I
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2. Particle Crossing from Downstream to Upstream Region: known in down-

stream local frame are py and Py , now consider Lorentz transformation
|

from downstream local frame to downstream de Hoffmann-Teller frame:
i
i

Fasf = vas(Pay ~ BasEa) ' (4.12)
Py = Py = Pyfl = 2 (4.13)
Pys ) Pus |
A\l A ‘ 4.14
S Pds Pjs'“ + Pds,J_ ( )

where (4, = Vi /c and 74, = 1/,/1 < B3, when a particle crosses the shock

from downstream to upstream, it conserves magnetic moment and momen-

tum:

Pu.? = -Pds (4.15)

9mB,  2mB, (4.16)

then we obtain ‘

Mus = \/ | E(l - #3) _ (417)

we then transform P, and pys to upstream local frame:

PU,” = 7us(Pus,” + ﬂusEus) (418) ‘
Pu,J_ = Pu.s,J_ (4-19) i
where By, = Vi /c and 7, = 1/,/1 = 32 and E,s = \/P.c* + m?ct and | -
P, 3
o = A = 1 (4.20)

£, \/Pf.u + P:?,J_

In the case a particle crosses shock from upstream to downstream, it is |

|
possible to be reflected by the shock front. When this is the case its n‘lomentum

1s conserved in the de Hoffmann-Teller frame, then we can calculate its value \
|
|
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in upstream local frame by Lorentz transformation between de Hoffmann-Teller |
|

frame and upstream local frame, ‘I
|

Before collision with shock, the particle has momentum and cosine of
\

pitch angle P, and g, respectively. Transforming to upstream dé Hoffmann-

'
4

Teller frame we obtain ;

Pus,u = 7us(Pu;‘“ — .BusEu) (4.21)
Pus,J. = Pu,J. = Puvl—,ui : (4.22)

when reflecting at the shock front, the particle has new P,; and y,,:

Prs,“ X Pus,“ (4.23)
Hrs = —Hug (424)
where P, is momentum component parallel B, in de Hoffmann-Teller frame
P, 1 is momentum component perpendicular B, in de Hoffmann-Teller frame,
We then transform back from de Hoffnann~Teller frame to upstream local frame
again:
Py = Yus(Propp + BusErs) (4.25)
P,-‘J_ = R's,J_ (4.26)

where E,, = /P%c? 4 m2ci.

4.4 Numerical Method The transport equation in this work is in the form

BF(t,a;:,_-'-:__,P) = —-éajva(t,,u, z,p) (streaming)

d v’
—sec($) 5~ (1 -~ #2?) Vaw
F(t, p, 2, p) (convection)}

N OX ( Vaw )

5;—2—3# 1- y-‘?—vsecqb
Ky, z,p) (scattering)

(4.27)
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The above transport equation was solved by means of ﬁnite—diﬂerencei
method. Each term in the right was treated as if it stands without the other two
terms, then it was updated with the left term in each time step. This method of

updating F(t, s, z,p) is called operator or time splitting:

1. Update the distribution function # with the first half the effect of pitch-

angle scattering.

2. From the result above compute new # due to streaming and convection

eflect.

3. Update F due to the scattering eflect for the second half. The result of this

step is F' at new time.

Above are general procedures to update distribution function F under ap-
propriate assumptions. We have the following assumptions in mind for transport

across an oblique shock front:
1. Transmission of flux can be classified into two cases

a If the flux in entire cell is transmitted, we perform z-transport by

assuming p, i1, V,,, are at initial grid point.

b If partial flux was transmitted we perform z-transport by assuming
P, Voo are at initial grid point but use y at center of transmitted portion

of cell.

2. Reflection of flux. In this case we perform z-transport by assuming P, u, V,,,
are at initial grid point as in the first case except that when particles reach
z of shock, we work in the de Hoffmann-Teller frame for change:‘e = —pu,

and thereafter transform it to local frame.




3. The new value of P is determined based on P,iy = P[w] and gos was as in |
1

the first case. "

. For the effect of acceleration we compute Fp., = (dP,y /dPn;w)Fold where

Foq is the flux at the old grid point, but interpolated or extrapolated to

2F,14 — Puew where Py = Plw), i.e. F{P|w]— AP), as if a particle started |

at Plw] — AP to end up at Pluw].

5. Divide F,.,, among new cell as if F/(1) were uniform in the old cell i.e. we

investigated what fraction of the old u interval is mapped to each cell.
4.5 Numerical Results

After computer program was coded from the procedure above it was run
until steady state was reached. The output was plotted between yu, P, and density
of particle as figure below.

Figure 4.1 is the initial distribution of particles before simulation. The
flux at upstream region is higher than at downstream one. Figure 4.2a,b,c are
results of simulation to investigate only propagation effect. Three figures are
shown at different angles of views. We find that the flux near the shock at
positive values of y is sharply higher than other region. This is due to reflection of
particles at the shock front. Figure 4.3a,b,c are result of simulation to investigate
both propagation and acceleration effects. We find that when acceleration effect

is included, regions not only at positive values of i but also at negative values
of u are curved up near the shock. However, those curved distribution are still
less than the sharp peak. The curve distributions occur from acceleration effect
of shock to particles i.e. the shock accelerates particles into higher momentum
state. Normally the number of particles at high momentum are less than the

number of particles at low momentum states. So the acceleration of shock to

particles increases a number of particles near the shock front.
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Figure 4.1 Initial distribution of particles
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Figure 4.2a Distribution due to pt
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Figure 4.2b
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Figure 4.2¢
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Figure 4.3a Distribution due to both propagation and acceleration effects
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Figure 4.3b

N \\\\\\\\\\\\\\\\\\
LR
BEtERRRR RN R AR RRAY!

LY AN
4 ‘\\\\\\\‘\\\‘\‘\\\\\\‘\\
.,'\\\\\\\\\\\\\‘\\\\\‘{&

47




48

Figure 4.3¢ |
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4.6 Data Analysis

_ |
We use assumption about F(u) depending on § as Ruffolo and Khum.
lumlert(1995):

F(u) = Fo(1 4 6p) (4.28)

we find the average of ;1 from

<p>

il

[ urisf.

i 1
~ f_l,uFo(l +<5,u)d,u/j:l Fo(l +dp)dy
)

= (4.29)

then we can find anisotropy from
0=3<pu> (4.30)

i.e., we found relation between anisotropy and average of . Above is a procedure

to find analytically average of u and assumed the relation § = 3 < i > to hold

numericaily too. But in our simulation we determined < ¢ > by numerical !

method, i.e. integral sign was replaced by summation of discrete values of Moas

follow

<p>= i nF )/ Zl: F{u). (4.31)

p=—-1 u=-=1

Then we can quantitatively determine ¢ from eq.( 4.23) for each value of z. From
figure 4.1 make us know qualitatively anisotropy of particles in region near the
shock front both upstream and downstream local frame. In downstream region
density of particle decreases while ,u increases, such distribution of particles due
to u is called negative anisotropy, while in the upstream region the density of
particles has a positive anisotropy. We found that density is very high at pos-
itive values of y. Those results are due to propagation effects. Paﬁticles move
from upstream region toward the shock and are thereafter reflected at the shock

|
|
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front back to upstream region. The reason we are sure that this ils the effect of |
reflection is because when we dropped the effect of acceleration \l\re found that
this high density does exist while other results disappear. The other effect we
have studied is the acceleration effect, i.e., acceleration of particles by the shock
while crossing it. This effect excites particles to a higher state of momentum,
then the high-momentum particles move away from the shock. This accounted
for the anisotropy of particles mentioned above.

The results of simulations are compared qualitatively with those from
observations from the ISEE-3 spacecraft (Richardson et al, 1990). The agree-
ment was found from both results, i.e., in the upstream region the';e 18 positive

anisotropy while in the downstream regiou there is a negative anisotropy.
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