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CHAPTER |

INTRODUCTION

1.1 General

In recent years, there is a growing interest among researchers in engineering
mechanics to study behaviors of smart materials due to their useful applications in
various disciplines. Due to their inherent coupling phenomena (electro-mechanical or
magneto-mechanical), smart materials have been extensively used in aerospace
structures, intelligent or smart structures, nondestructive testing devices, medical
devices, and sensing and actuation applications. Several types of smart materials have
already been developed, namely piezoelectric materials, shape memory alloys,
electrostrictive materials, magenetostrictive or piezomagnetic materials, electroactive
polymers and electro/magneto—rheological fluids, etc. Among all materials mentioned
above, the most widely used smart materials in practical applications are piezoelectric
materials. A few examples of piezoelectric materials are Barium Titanate (BaTiO3),
Lead Zirconate Titanate (PZT) and Polyvinylidene Fluoride (PVDF), etc.
Piezoelectric materials exhibit electro-mechanical coupling phenomenon that they can
produce electric field when deformed under a mechanical stress (direct piezoelectric
effect), and conversely they can deform when subjected to an electric field (converse

piezoelectric effect), which are very useful for sensing and actuation applications.

Even though smart materials are applicable in various fields, they also have
some drawbacks in practical situations due to their fracture behaviors. Therefore,
composite materials, which are composed of two or more different materials to
achieve desire performance, have been developed. The examples of traditional
composite materials are fiber-reinforced concrete and metal matrix composite
(MMC), whereas 1-3 piezocomposite is a smart composite material, which is
composed of piezoelectric fiber in one direction through the thickness embedded in a
passive non-piezoelectric polymer (see Figure 1.1). The behavior of composite

materials is very complicated and depends on several factors such as the volume



fraction of the piezoelectric fiber, the material properties of each component, the
aspect ratio, permeable and impermeable conditions at the interface. In addition,
temperature range under working condition is also an important factor. For example,
piezocomposites that are employed for sensing and actuation applications in
aerospace structures could be subjected to extreme environmental conditions, in

which the temperature varies from —500°C to +1000°C.

To develop suitable piezocomposites for practical applications under extreme
temperature range, fundamental understanding of mechanics and effective properties
of 1-3 piezocomposites is important. In order to achieve that it is ordinary to focus on
a typical unit cell of piezocomposite. Therefore, this research is concerned with the
development of accurate model and analytical solution of a thermopiezoelectric finite
composite cylinder subjected to axisymmetric loading with considering temperature
effects. Finally, a computer program has been developed to investigate transient
behavior of a unit cell of 1-3 piezocomposite under axisymmetric mechanical,

electric and thermal loading.
1.2 Background and Review

In this section, a background in this field and the literature review including
the previous work relevant to the current work are provided. In order to know
overview, background and literature review are separated into three parts. The first
part is focus on the models, technique to solve the problem of circular cylinder
subjected to arbitrary axisymmetric loading. The governing equation concerns only
mechanical field. The second part is focus on model, technique to solve the problem
and solution from piezoelectric composite cylinder subjected to axisymmetric load,
both mechanical load and electric load. And the governing equation in this part not
related to entropy equation. The third part is focus on model, technique to solve the
problem and solution thermopiezoelectric composite cylinder in term of axisymmetric

load by using governing equation and entropy equation.



1.2.1 Review on Circular Cylinders

One of the most fundamental problems in the theory of elasticity is stress
analysis of finite cylinder subjected to arbitrary boundary conditions. Filon (1902)
investigate the case of a finite solid cylinder subjected to uniaxial compression with
end friction. Saito (1952) presented a Fourier Bessel solution for a circular cylinder by
using Love’s stress function to satisfy axisymmetric boundary conditions. Wei et al.
(1999) presented a new analytical solution for an elastic solid finite cylinder subjected
to the axial point load strength test (PLST) by using the displacement potential
technique to uncouple equilibrium equations. They found that the maximum tensile
stress increases with increasing Young’s modulus but it decreases when Poison’s ratio
and area loading are decreased. Wei and Chau (2000) later derived a general solution
for finite elastic isotropic solid circular cylinders subjected to arbitrary surface load.
They said, this approach is most compatible with stress analysis of finite solid
isotropic elastic cylinder. Shao (2005) investigated the case of a multi-layered circular
hollow cylinder subjected to axisymmetric loading including steady state temperature.
By using the solution from Shao (2005), Shao and Ma (2008) obtained thermal and
mechanical stresses in a hollow cylinder by employing Laplace transform technique
and series expansion method. Wei and Chau (2009) derived an analytical solution in
the form of Fourier-Bessel series for a finite transversely isotropic elastic cylinder
subjected to non-uniform compression with the end boundary conditions constraint by
friction. They proposed general solution from Lekhnitskii’s stress function and the
result is useful in the analysis of fiber — reinforced coposites. In addition, Ying and
Wang (2010) presented an analytical solution for a finite hollow cylinder under plane
strain condition subjected to non-uniform thermal shock by using trigonometric series

expansion and the separation of variable techniques.

1.2.2 Review on Piezoelectric and Piezocomposite Materials

The theoretical foundation and electroelastic governing equations of linear
piezoelectric materials are presented by Parton and Kudryavtsev (1988). Sottos and Li
(1994) investigated the influence of matrix stiffness, inter layer stiffness, rod aspect
ratio and rod volume fraction on 1-3 piezocomposites under hydrostatic response.



Rajapakse and Zhou (1997) studied an infinite piezoelectric composite cylinder
subjected to axisymmetric electromechanical loading by using Fourier integral
transform. Hou et al. (2003) presented plane strain solution of a non-homogenous
piezoelectric hollow cylinder subjected to dynamic loading by using the separation of
variable technique. Rajapakse et al. (2004) developed a general solution for a finite
annular piezoelectric cylinder subjected to axisymmetric end loading. Senjuntichai et
al. (2008) presented analytical solution for piezoelectric cylinder subjected to electric
voltage and mechanical axial loading applied at the end. Rajapakse and Chen (2008)
presented a fully coupled analytical model for hydrostatic response of 1-3
piezocomposites to determine the effective properties of 1-3 piezocomposites. This
problem considered linear quasi-static. Recently, Wu and Tsai (2012) presented
analytical solutions of circular hollow sandwich cylinders, made of functionally
graded piezoelectric materials (FGPM), subjected to electro-mechanical loading to
investigate the influence of various parameters such as aspect ratio, open and closed-

circuit surface conditions, and materials properties to the solutions.

1.2.3 Review on Thermopiezoelectricity

Kapuria et al (1996) used a potential function technique to obtain an analytical
solution of a finite transversely isotropic piezoelectric cylindrical shell subjected to
axisymmetric thermal, pressure and electrostatic loading. Fulin et al (1996) proposed
potential functions and Fourier-Hankel transforms to develop axisymmetric solutions
of transversely isotropic thermopiezoelastic materials. By using potential functions,
Ashida and Tauchert (1998) investigated temperature, displacement, stress and
electric fields of a finite circular piezoelectric disk subjected to axisymmetric loading.
In addition, they also presented general solutions for a three dimensional
thermopiezoelectric solid of class 6 mm, and for an infinite plate of class 2 mm with
the same boundary conditions. Ding et al. (2000) proposed a general solution of
dynamic problems for piezothermoelastic of transversely isotropic piezoelectric
materials, and showed that the solution can be degenerated for quasi-static problems
by ignoring the inertia terms. Zheng et al. (2002) employed potential function and

integral transfrom techniques to investigate thermopiezoelectric response of a



piezoelectric thin film subjected to laser heating. In addition, they also presented a

prediction of a failure mechanism under heating environment.

Wang et al. (2001) presented an analytical solution for piezothermoelastic
solids of crystal class 6 mm by using potential functions that satisfy thermal,
mechanical and electrical boundary conditions with coupling effects, and showed that
their result agree with those given by Ashida et al. (1994). Wang (2006) investigated
transient thermal fracture of a piezoelectric cylinder subjected to transient thermal
environment by considering two types of boundary conditions. The first type is set up
based on the classical theory of thermal conduction, whereas the second type involves
the stress and electric displacement intensity factor at the crack tip in the cylinder.
Both types of boundary conditions include electrically permeable and impermeable
conditions. Tanigiwa and Ootao (2007) proposed the exact solution for transient
temperature of piezothermoelastic with two-layered hollow cylinder, which consisted
of isotropic elastic and piezoelectric layers, subjected to axisymmetric heating by
employing Airy's stress function and the Laplace transforms.

1.3 Research Objective

The key objective of this research is to solve an exact solution for
thermopiezoelectric finite composite cylinder and consider temperature effect in

transient state.

1.4 Research Scopes

1) Studies the thermopiezoelectric finite cylinder, in which compose of
piezoelectric fiber embedded in finite transversely isotropic peizoelectric
matrix.

2) The problem is subjected to axisymmetric loading; mechanic load, electric
load, thermal load.

3) Loading conditions are assumed to be symmetry along plane x-axis.



1.5 Research Methodology

1)

2)

3)

4)

5)

6)

Formulate boundary value problem due to axisymmetric problem and reduce
the field equations into equilibrium equations in term of elastic displacement,
electric potential and temperature field.

Using Laplace transform technique to solve temperature equation separately.
Take Laplace transform to equilibrium equation and uncouple equilibrium
equations by using potential functions technique into homogenous part and
non-homogenous part.

Get the general solution in term of arbitrary constants in time domain by
solving differential equations of homogenous and non-homogenous equations.
Match boundary conditions to get arbitrary constants for complete the general
solution in time domain.

Take inverse Laplace transform to complete general solution in time domain

for get complete general solution.

1.6 Research Significance

The exact solution for thermopiezoelectric finite composite cylinder is used to

be a benchmark solution for unit cell. In addition, this solution can used to investigate

an effective properties of composite materials such as modulus, behavior under

loading with consider temperature effect.

Figure 1.1 1-3 Piezocomposite



CHAPTER I

BASIC EQUATIONS AND GENERAL SOLUTIONS

In this chapter, the formulation of boundary value problem associated with an
axisymmetric boundary condition of thermopiezoelectric finite composite cylinder is
presented.

2.1 Problem Statement

Figure 2.1 A thermopiezoelectric finite composite cylinder under consideration

Consider a linear thermopiezoelectric finite composite cylinder of length 2h as
shown in Fig. 2.1. It consists of an embedded fiber of radius a with the outer radius of
the matrix denoted by b. Both fiber and matrix are made of a linear, transversely

isotropic thermopiezoelectric material of a special class 6mm. A Cartesian reference

coordinate system {x,y,z}and the cylindrical coordinate system {r,8,z}are chosen,

for convenience, such that the origin is located at the center of the cylinder, and the z-
axis directs along the axis of the cylinder. The composite cylinder is subjected to
axisymmetric boundary conditions (i.e. axisymmetric mechanical, electrical and
thermal boundary conditions) that are even functions (or, equivalently, symmetric)

with respect to the coordinate z.



2.2 Basic Field Equations

Basic field equations for a three-dimensional linear thermopiezoelectric
material presented in this section follow directly from Mindlin (1974) and Parton and

Kudryavtsev (1988). The Cauchy stress tensor oy, the electric induction vector D, and

the heat flux vector h,, in the absence of body forces, free charges and heat sources,

are governed by equilibrium equations and conservation laws as,

c;; =0 (2.1)
D, =0 (2.2)
h,=-T,S (2.3)

whereT, and S denote the constant positive reference temperature at which natural
state of zero stress and strain exist, and the entropy density respectively. In
addition, f, and f denote the spatial and time derivatives of a function f,

respectively. Hereafter, the lower-case indices range from 1 to 3 and the repeated

indices imply the summation over their range.

The infinitesimal strain tensor ¢

;» the electric field vectorE;, and the

temperature gradient e, can be expressed in terms of the elastic displacement
vectoru,, the electric potential ¢ and the temperature change & (from the reference

temperature T, ) respectively as,
1
& :E(ui’j +uj’i) (2.4)

E =-¢, (2.5)

&= _H,i (2.6)



The Cauchy stress tensor oy, the electric induction vector D;, the entropy

density S and the heat flux vector h; are related to the infinitesimal strain tensor ¢; ,
the electric field vector E,, the temperature change 6 and the temperature gradient

according to the following linear constitutive laws,

Oy = Ciu€u — 8 B — 4,0 (2.5)
D =e,&4+<, E.+ 0,0 (2.6)
S=4,6,+PE +ab (2.5)
h = K€, (2.6)

where ¢, €, 4, Kjj, €4, P denote the elastic constants, piezoelectric constants,

temperature-stress coefficients, coefficients of heat conduction, dielectric constants,
pyroelectric constants, and the thermal expansion coefficient. It is noted that the

thermal expansion coefficient is written in term of the mass density p, the heat
capacity per unit volume at constant strainC, and the absolute temperature T as

a=pC,IT.

The above field equations can be written for a special case of a transversely
isotropic thermopiezoelectric medium undergoing axisymmetric deformation along
the z-axis. Equations (2.1) — (2.3) for this particular case, based on the cylindrical

coordinate systems, are given by

80'” n aarz n ao-rr — Oy -0 (211)
or 0z r

90, 90, s _g (2.12)
or oz r

oD, +@+&:0 (2.13)

or oz r



on, +a—hz+m:—TOS'
or oz r

Similarly, the equations (2.4) — (2.6) then become

ou u ou

r

; 1(ou, ou,
E,=—,&6,=—= +—

Eq =18 =—, z 1917
S oz 2(82 arj

10

(2.14)

(2.15a — 2.15d)

E__00 ¢ __00 (2.16a— 2.16h)

' or ¢ 0z

00 00
e =——.,8, =——
or 0z

In addition, the constitutive relations (2.7) — (2.10) for this case are given by

(2.17a - 2.17b)

o, =C,&, +C,&,, +Cs&, —€5E, — 4,0 (2.18a)
Oy =Cp&y +C1&yy +C36,, —64E, — 4,0 (2.18b)
0,, =Ci3&, +C384 +Cp36,, —5E, — 45,0 (2.18c)
o, =2C,¢&, —€:E, (2.18d)
D, =2e.¢,+¢<, E, +p0 (2.19a)
D, =€y, +€56,, +65&,+€55 E, +p,0 (2.19d)
S =48, + &y + A€, + PE, + P;E, + 0 (2.20)
h =Kue ; h=K.e (2.21a—2.21b)

By combining (2.14), (2.17), (2.20) and (2.21) along with additional assumptions that

the velocity gradient is negligible and the electric field is quasi-static, it leads to an

uncoupled Fourier heat conduction equation governing the temperature change 4 ,



11

2 2
s?| Lo, 0 1, 00 (2.22)
or:- ror) oz ot

where o = /K., /K,, is the ratio of the heat conduction coefficient, x denotes the

thermal diffusivity and t denotes the time variable.

Similarly, by combining (2.11) — (2.12), (2.15) and (2.18), it yields two equilibrium
equations in terms of the elastic displacement and the electric potential and the

temperature change 6 :

o’u, o 00
+(els +631) 4 _ﬂ‘na =0

o 10 u, o’u,
Sl o Trar ) g G e o

o’ ror
(2.23)

o(ou u o°u o%u 1aou ’p 10¢ o’p 06
C+Cpy)—| —+—|+Cyy—5F+Cypy—+Cpy——2+€ | —+—— [+6,;,——A;—=0
(G 44)62( or rj “ort /P ot Mroor 15(&2 ror ) Ry

(2.24)

Finally, combining (2.13), (2.16) and (2.19) leads to the governing field equation.

(e5+e )g(aur+ij+e _82u2+l% +e o,
D AN, S & “lor? roor % 72

bA5.0H6) Pp 060 (06 6
e |22 2P P, Y YY1 0
ell[<3r2+r ar] S Py TP Ty

(2.25)

It is evident that the three governing field equations (2.23) — (2.25) are fully coupled
whereas the governing equation for the temperature change (2.22) is independent of
the elastic displacement and the electric potential.

2.3 General Solution for Temperature and Potential Functions

Before solving for the general solution, the following non-dimensional

parameters are introduced and shown in appendix. For convenient notation, all
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quantities have been used the same as previous notation. The equations (2.22) — (2.25)

become
0 190 0? 00
o° — +t-— |+ |0=— (2.26)
or ror 0z ot
o 10 u o°u o%u o’p 00
—+—— U —C;—+Cy—-+(Cy+Cy ) —=+(6+6; ) ———4,—=0
C“[ar2 r@rj S 744 (G ““)araz (& 3l)araz A or

(2.27)

d(ou u o%u o%u 1éu ¢ 10p O’ 00
+Cy)—| —+-—L |+Cy—F+Cpu—F+Cyy——2 48| —5+—— |+€p—5 Ay —=0
(G 44)82( or rj 4 “roor 15[8r2 ror) 2oz’ & oz

(2.28)

alor r or’ ror B a2 ot tor) Pt oz
(2.29)

2 2 2 2
(e15+e31)a(aur+&J+e15[—a uZ+1%j+e auz_ell(é_(p+16_(pj S 6g0+p3%20

The general solution to a system of the above governing differential equations
(2.26) — (2.29) is constructed as follows. First, the Fourier heat conduction equation
(2.26) is solved separately in a Laplace transform domain using a separation of
variable technique. Once the general solution for the temperature change is obtained,
the three coupled equations (2.27) — (2.29) are solved simultaneously in the Laplace
transform domain using the potential function approach along with the separation of

variable technique. Details of such solution procedure are outlined below.
2.3.1) Solution for temperature

The Laplace transform of any function ¢(r,z,t) with respect to a time t can

be expressed as (Sneddon, 1951)

o0

$(r.z,5)=[g(r.z,t)edt (2.30)

0
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The inverse Laplace transform of¢ (T,Z,s) with respect to Laplace transform

parameter is given by (Sneddon, 1951)

¢(r.z,8)=— I (r,z,5)e"ds (2.31)

wherei=+/-1 and « isa sufficiently large real number

By taking the Laplace transform of Eq. (2.26), it leads to

2 2
[%+$a%+%j§:s§ (2.32)

where T=%. The partial differential equation (2.28) can be solved by using a

standard separation of variable technique, i.e. 8 =R(r,s)Z(z,s), and the resulting

general solution for @ is given by

A = ’ X ’r ’ l ’r ’ ’ - ’
H(r,z,s)pz(;{Ap Io[ g J+ B, K, {%H[Cp cos(,slp z)+ D, sm(&p z)}

= ! ,r ’ ,r ’ ’ r - !
+Z[Eq JO(%}L F, Y, L%J][Gq cosh(nq z)+ H, smh(nq z)}

q=0
(2.33)
i l 2 ’ ! 2 ! ! ! ! ! ! ’ ’
WheI‘E)(pZ (lgp) +S,77q = (ﬂq) +S;19paZp177q1,qu1ApprleaDpa
E, F, G, andH_  (p,q=0,12,..,00) are arbitrary functions; 1 and K, are

modified Bessel functions of the first kind and second kind of the n"order,

respectively; and J, and Y, are Bessel functions of the first kind and second kind of

the n" order, respectively (see Watson, 1962).
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2.3.2) Potential functions for displacements and electric potential

To solve a coupled system of equations (2.27) — (2.29), the potential function

technique (Ashida, 1994) is utilized. In this technique, the elastic displacement u,,u,
and the electric potential ¢ are represented by four potential functions v,,y, v, and

v, in the following forms.

u, =§(l//1+l//2 +y,+y,) (2.34a)
0

u, = 5('11‘//1 +lw, +lgys + I14‘//4) (2.34b)
0

P= E(Izﬂ/ll +low, + oy, + |24'//4) (2.35)

where I; and I, (i=12,3,4) are unknown constant to be determined. By inserting

(2.34)—(2.35) into (2.27) — (2.29), it leads to the following three equations.

4 1 o0
o & (Clll//i,rr +FC11‘//i,r +M j'//a,zzJ = /1115 (2.36)
0 < 1 ol
— Nw. +N =w. +Py _ |=A,.,— 2.37
62 il( |l//|,rr i r lr//l,r IWI'ZZ) 233 az ( )
0 < 1 06 06 6
—E Fy. +F-yv. +Gy. |=—p,——pP| ——— 2.38
62 — [ |l//|,rr i r l//l,l’ |V/|,zzj p3 az pl( ar r j ( )

where M;, N;, P;, Fi, and G; are arbitrary constants defined in appendix.

To obtain the solution of (2.36) — (2.38), it is sufficient to find the potential

functions such that z//i(i=1,2,3) satisfy a system of homogenous differential

equations (2.39) and y, satisfy a system of non-homogenous differential equations

(2.40).
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0 < 1
_Z(Cl1Wi,rr +=CuWir t M jl//i,zzj =0 (2393.)
or 3 r
0 < 1
_Z(Ni‘//i « TN =i, + Ry, zz)zo (2.39b)
0L 3 ' r - ’
0 < 1
_Z(I:Il/ll rr+Fi_l//ir+Gil//i zzjzo (239C)
oz 3 ‘ r - ‘
0 1 oo
5(011‘//4,” +Cpy FV’A,r +Myy,,, j =4 a0 (2.40a)
0 1 o6
E(Nﬂ//ur +N, Fl//4,r + P4l//4,zzj =g o 2.40b)
0 o6

(2.40c)

00 9)
oz

1
—| F +F, = +G =—p,——p,| —+—
[ W TH, rl//4,r 4'/’4,zzj Ps p pl[ar r

To avoid directly solving a system of fully coupled homogeneous equations (2.39), it
is customary to obtain the solution for each v, (i =44 2,3) from the following system

of fully uncoupled homogeneous equations.

1
Cll'//i,rr +Fclll//i,r +M j‘//i,zz =0 (2413.)
1
Nil//i T Ni Yt I:)|l//| z = 0 (241b)
, ron ,
1
Fi‘//i rr +Fi_l//ir+Gil//i z =0 (2410)
, o ,

In order to obtain a non-trivial solution for y,of the above system, M,,N,,P,G,

and F, must satisfy the following relation,
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<

G
F

prd |_TU

=2i=12,3 (2.42)

p)

1 i

The equation (2.42) is used to determine I;,l,; and »?(i=12,3). In particular, y

are roots of the following cubic equation.
A(}/iz)SJrE(}/iz)z+C(yi2)+5:0 (2.43)

where A,B,C,D are constants expressed explicitly in terms of materials properties

(see appendix). Upon exploiting the relation (2.42), the system of three equations
simply reduces to

2 2
al//i_'_lal//i 25‘/4:0

+ 7 2.44
ol ror U ar (2.44)
By taking Laplace transform of Eq. (2.44), it results in
2— — 2—
oV, +16V/i +a Yi_o (2.45)

o> r or 0z’

z ' . . :
where z, =— . The general solution y; in the Laplace transform domain can readily
Vi

be obtained by using the separation of variable technique, i.e.; =R(r,s)Z(z,s),

w,=R(r,s) and ¥, =Z(Z,s). The final result is given by

grmirasirfes(z) sl

+2[EmJ )+FoY (&, )]{Gm cosh (ﬂ} H,, sinh (%J}L A, {rz —2(iﬂ+ B Inr

Vi Vi

(2.46)
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m?! ~im?

wherev,, & are constant; Ay, A ,B,.C,.D,.E..F.G, and H; (i=123) are

arbitrary constants.

A particular solution of a system of non-homogenous equations (2.40) can be
obtained explicitly for the thermopiezoelectric crystal class 6 mm (i.e., p,=0). By

first taking Laplace transform of (2.40), it leads to

0 1 00
5((:11'//4,” +Cy F'//4,r +Myy, ) =My or (2.47a)
0 1 06
E(Nzll/jzl,rr +N, Fl//4,r + P4l//4,zzj = Ay ey (2.47b)
0 1 00
E(Fd/ﬁ,rr +F, F‘/’4,r + G4‘/’4,zz} =—Ps E (2.47c)

By substituting the general solution for the temperature change given by (2.33) into

(2.47) and choosing the constants M, Na, P4, F4, and G4 such that

: en _ 2 A = —Ps —w (2.48a)
(;gnj Cy _3;M4 [?j N4 _‘9nz1p4 (;g‘nj F4 _‘9nsz4
211 — 233 — —Ps -y (2.48b)

The particular solution 7, can then be obtained in the Laplace transform domain as

_ 2 2,7 2,7 : (s
w,(r,z,8)=) A4plo( g }LBM)K{ g J [C4pcos(9pz)+D4psm(l9pz)}
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Z [ | ] +F, Y[ ;] [Gm cosh(;yq'z)Jr H4qsinh(77q'z)} (2.49)

where y, &, 1)\, and A,,B,,,C,,,D,, Es Fyq. Gy and H,,  are arbitrary
functions. It is remarked that the conditions (2.48) are employed to determine the

constants |, and 1,, (see the appendix).

Since the current research focuses only on axisymmetric boundary conditions that are
symmetric with respect to the plane z=0, the potential functions must be even
functions with respect to the z-coordinate. For completeness of the general solution,
the potential functions given by (2.46) must contain a solution of a radially symmetric
plane problem of an annular cylinder. As a result, the general solution for the potential
function and the temperature change in the Laplace transform domain are given by

‘/7|(r72)=%,[r22(%} ]+Boolnr+Z[Am o (D) + B Ko ( ]COS[ %Z]

+Z[E,HJ )+ FuYo ( ](:osh(égln J fori=12,3 (2.50a)
Vi

o 1 'r. L Ir ’
+3| E,do [%} F., (%J cosh(,z) (2.50b)
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oo

2.4 General Solutions for Field Quantities

The general solution of the elastic displacements and electric potential T,,U,,® inthe

Laplace transform domain can readily be obtained by substituting (2.50) — (2.51) into
(2.34) — (2.35), and this results in

o-rEArad S e i o

i=1 m=1

; é:inZ N ZP, Zp,r Zp,r ’
_Zz;n[EmJ (&) +FinYl(;nr)]cosh[T}pZ;?{AApll[TJ B4PK[ 5 ﬂcos(spz)

i=1 n=1 i

i%‘*[E«H { r}F YL 5rHCOSh(Uq'Z) (2.52)

=—4Z - AO.Z+ZI1.Z = [ Anlo imKO(uimr)]sin[U‘Tmin

gqét

) | " me1

+
[:_4w
DM

mm

i 7/i|: (énr)“‘FinYo(ginr)}Sinh[il ] |14219 {AMJ{ | ]-FB K[ éjrﬂsin(gp'z)

S ! lu ’r ,Ll ’r . '
S0, {EMJO [%} FYo [%J]smh(% z) (2.53)
q=0

3

w——4z L An,z+ZI2,i‘L[ Aty (0,r) BimKO(Uimr)]sin(Ui_sz
B e

i=1 | i=1 m=1 /j

+Z|2|z§'”[EmJ (&r)+F.Ys (&) ]smh( " J 1423 [AAp 0[ "’J+B K (lgrﬂsin(éﬁ)’z)

n=1 |
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0 , U ’r p rr - ,
1, 7, E4q30[%}+ F, [%J sinn(7,2) (2.54)

The general solutions for the strain, the electric field, the temperature gradient, the
stress and electric induction can be obtained from (2.15) — (2.19). For convenience,
such solution is separated into five parts. The first part corresponds to the non-series

term, and is denoted by a superscript ‘0’. The second part corresponds to the series of

the modified Bessel function associated withl,; and 1, (i =1,2,3), and it is denoted by
a superscript ‘1°. The third part corresponds to the series of the Bessel function
associated withl;; and 1, (i=1,2,3), and it is denoted by a superscript ‘2. The fourth
part corresponds to the series of the modified Bessel function associated with 1,,, 1,,

and the temperature field, and it is denoted by a superscript ‘3’. The last part
corresponds to the series of the Bessel function associated withl, ,l,, and the

temperature field, and it is denoted by superscript ‘4”.

gl = 2_2 A, —By, = (2.55a)

2 zz{< P 1 (0) =1, (0 [ A+ (0 K () + 221, () B}(j

i1 m=1 (L Vi
(2.55h)
—2 3 __ 2 i 3 2 i &z
8rr - ZZ (gin) ‘]O(é:l r)+ r Jl(é:inr) Ein + (gin) YO (é:inr)-i_ r 1(§inr) I:in COSh }/
) (2.55¢)

2
_ X Z, ;(’I’ Z’ Z’r ’
3= S N B R PR T cos(S z)
”%[5}{5}&{51% P
! 2 ! 1 14

o0 Z r Z Z r i
+ 2P K2+ 22K |22 B cos(.9 z) 2.55d
Z::? [ 5} °N s J Sr l[ S J 4P P ( )

2
RN B 7N s U g | g :
e ) e S Ry . Ry PRy i Ry cosh( z)
r qu [5 O[ 5 J 5[_ 1 5 4q 77q
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2
© ﬂq’ ﬂq!r ﬂq! ﬂq!r ( , )
= =2 | Yo == [+52Y,| == | [Fyg cosh(n, z 2.55¢
qo{[5]o[5J 5r1[5ﬂ4q " | )

E;'gzzipbi+soori2 (2.56a)
gl = ZZ ;m[/s,m L (0,7) =B K, ( ]cos[ ZJ (2.56b)
i=1 m-1 Vi
zzi”[ E,J, (&,1)—F.Y, ( }cosh[é”zj (2.56¢)
i=1 n-1 Vi
oy 2, X, T ,
g = ;y%pll . }B“K{T}]cos(gpz) (2.56d)
4 X :u_q’ _ /'l4q'r _ 1u4q,r '
g%qz(;ar[ E,J,| = J qul[ = Hcosh(nqz) (2.56¢)
gl =—4i'1—; i (2.57a)
i=1 7
z :i'ni[uﬂj [=Anlo (D7) =By Ko | ]cos( ZJ (2.57b)
is1  m=1\ 7 Vi
ilhz[f j [Endo (&) +F Y, (&.r) ]cosh(g'” J (2.57¢)
ie1 =1\ Yin Vi
N 2T 2T
gzz_lmg(gp) [ A4p|0( > J B, K { > Hcos(& 2) (2.57d)
gt = IM(%(%’ )2 [E4q30 (%r} +F,Y, [%rﬂ cosh (nq'z) (2.57¢)

[ (A —1) Al (08 ) (1 +1) By Ky ]sm( j (2.58a)

522,%iié—f[(—lﬂ—1)EmJ1(§mr)+(—| F,Y, (&,r) ]smh{fmzl (2.58b)
sl

7i
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> 19, ' r r '
2 ZEZP_ZP (-1, —1) A, 1, ol +(l, +1)B, K, | =2 sin(sz) (2.58¢)
24 5 5 5

- ror !r ! ,
£ =2 3 T (ch, ~1)E, 3, P2 |k, ~1) R | 22 Hlsinn(n2)  (2:580)
255 5 5

ZIZ, 'm[Am (0 BimKl(uimr)]sin(U‘mzj (2.59%)
ZIZIZ;”[EmJ EF)+FY,( ]smh(g'”zj (2.59b)
i 7|
N gpllp, lp’r X = /
:IZ“; 2 [Aapll > }—BAPKl[%Hsm(,gpz) (2.59¢)
S M Ho T B ||
E; _|24qz_(; ‘15‘* [E4qu g } +F, Y[ ; ”smh(nqz) (2.59d)
Ef=4il% i (2.60a)
i=1 /i
Ezlzzs“lzli[u J [ Anly (0,7)+ B Ko ( ]cos{ ZJ (2.60D)
i1 ma\ /i Vi
E? =i| i(‘f—jz [—E,ds (£,0) - FY, (£ r)]cosh(é”zJ (2.60¢c)
z — 2i ~ ]/i in~0 in in"0 in 7i '
IR 2,7 2,7 :
ES =|24;(9p) [AAplo[ . J+B4pKO . Hcos(lgpz) (2.60d)
_ )2 1y T 1y ¥ :
E: =|24qz_;(77q ) [—EMJO[?J—FMYO 7Hcosh(m z) (2.60€)
o oo | ar | X e | et ,
g _DZ(‘; 5‘[ A, |1[ . ]+Bp Kl[ > J]cos(&lpz) (2.61a)

s ! , ! Vr ,
e_r4=2%{5q Jl[ﬁ; J FEY ["; Hcosh(nq 2) (2.61b)
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I r . '
@Zszzgp {Ap |O(Z§p J +B, 'K (Z; Hsm(&lpz) (2.62a)
p=0

g = in [ E,J { : J F Y[ 5rﬂsinh(nq'z) (2.62b)

3

50 = Z(ch 420, —4cy, L e, Z]Am +(—2%“+ 2 ] By (2.63a)
7/ o

i=1 i i

2 L 1.
(Uim) [011 —Cy3 y_lz —e5 =5 |l (Uimr

)
A cos[l)‘—mzj
' +o,, (—hvtcﬁj l, (0F) 7

NgE

i=1

3
Il

r r

1, I,

3 = (Uim)2 (Cll_cﬂ 71'2 —831%J KO(Uimr)
+§7 Z C I I
i=1 m=1 +0;, ("'i—i) K. (Ulmr)

r r

B, COS (U'—”‘ZJ (2.63b)
Vi

3a)(;»2{£H+Qy%ﬁemi%j%(;J)

G = Zz ‘ : E,, cosh (ﬁj
i=1 n=1 +é:in (% Clzj (é:lnr) Vi
o Gttt Juan
+ZZ i i F., cosh (%j (2.63c)

i=1 n=1 +&, (i—cﬁle(é”r)

r r

A, cos(sp'z)
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B4pcos(9p'z)

p=0 ' '
J_p(g_cﬁ]& ZoT
or\r r o

o et | et :
. Aplo[ g }LBp K{ g ] cos(l9p z) (2.63d)

p=0

’

2
Hy )\ A2 L T
—Cy %J +Cply, (Uq) +684l3, (Uq) ‘]0[%]
E,, cosh (nq'z)

2

My \ A7
_Cll[_q +Cly, (Uq) +eyl,, (Uq) Yo {iTJ

q:O ’ ’
gi(@&]n ot

F,q cosh (nq’z)

o\r r o
3 ’ ’r ’ ,r 4
A )| B3| 2 [+ R Y| S | foosh(n, 2) (2.63¢)
q=0 o o
0 _% ly l, 1 Cy
O = Z 2012 + 2011 —4c;, ? —4e; 7 A +| —C F Boo + r_z By, (2.643)
i=1 i i

I, L.
3w (Uim )2 [Cu —Cy =7 —8y %j IO(Uimr)
5-;6 :z | i

i-1 m-1 C, Cy Vi
+Uim(——+— |1(Uimr)

A, Ccos [U'—"‘ZJ

l. L.
(Uim )2 (ClZ —Cp; ﬁ_eﬂ ﬁ] Ko (Uimr)

B cos(U‘—mzj (2.64Db)
Vi
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2 L L
s | (Gn) (_C12+C13%+631%j‘]0(§inr) £z
D 4 ' E,, cosh [LJ
i=1 n=1 +§in(cﬁ—&j~]1(§i r) Vi
r r
L l,;
3 (é )2 (_C12+C13%+e31%)Y0 (§| I’) {: 7
Y ! ' F,, cosh (LJ (2.64c)
i=1 n=1 C C Vi
+6; [i_i]ﬂ(é r)
r r
_ N 0
X r\? r\2 X ¥
Cp, [?p} _C13I14(‘9p) _e31|24(‘9p) Io[%}
Top =D, A, cos(.9p’z)
-0 ’ ’
" J_p(_& @j. 743}
1
o r r o
— B , ) , -
X ' P 1\ Xp ¥
B {012 ?p} _C13|14 (lgp) _631|24 ('gp ) JKO[%J
+> B,, cos(Sp’z)
. +LJ(C£_&JK 2
s\r r) 1 ¢
3|, r . r :
AHZ[AP |0£ZL]+ B, K, @ﬂcos(sp 2) (2.64d)
Py 1) o
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2
P ' ’ ) \2 P (r
—Cp, ?qJ +Cyly, (Uq) +8yly (Uq) JOL%J
g=0 ! ’
A N N
o\r r o
i 2 ’
K r\2 12 Hy ¥
—Cp, [7(‘ +Cygly, (77q ) +€5ly (77q ) Yo [%}
q=0 ’ ’
A(z&% "
o\r r o

N 7A O I D
_2112!Eq30[%J+ F, Yo ; J]cosh(nq ) (2.64e)

E. cosh(nq'z)

F,, cosh (nq’z)

=0

_ 3 I L.

O-?z = Z(Cm _Css%_ess %J Ay (2.65a)
i=1 7i Vi

—1 3 & 2_ C I e Z

o :ZZ(Uim) Gy — 20— }[Am o (O r +B,, K }COS[ ] (2.65b)
i=1 m=1 L 7i Vi
3 w B

52 :ZZ(;H)Z —c13+cj/3!1' e;flz'}[E (&.r)+ FinYO(finr)]cosh [%) (2.65¢)
i=1 n=1 L i i i

2
o ’ ' 2 ! 2 lr !r ’
p=0
A T :
%SZ[AF) IO[%}r B, K{Zg ﬂcos(gp Z) (2.65d)
p=0

2
o0 ' 2 I} 2 r ’r !/
o :Z —Cy, Ha +c33I14(77q ) + €4l (77q ) =N Hl +Fy Yo Al cosh(nq z)
o 5 5 5

—ﬂﬁsi{Eq'\]{ﬂ; J +F YL : J]cosh(nq'z) (2.65¢)

3 ® 2
5;:ZZU'_m(c44+c44I1,+e15I2, [ Anly (0,r)+ B K ( ]sm[ ZJ (2.66a)
i Vi
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52 =§3:i§—£(044 +Cyl,; +e15I2i)[—EinJl(§inr)— ]smh[‘fm ] (2.66b)
i-1 n=1 J; 7i

N X, T A I
aj;zzé o (c44+c44I14+e15I24)!—A4pI1{%J+BAPKl[%HSIn(QpZ) (2.66¢)
p=

ay M ur well
5= 3 A (- 15I24)!E4qJ [ : }—aqvl[%]]smh(nqz) (2.664)

[_)rlzzzui_m(els+e15I1i—e11 Li) [ = Al (0F) + B Ky ( ]sm( ] (2.67a)

i=l m=1 /j

Ijr2 = iiii(els +e15|li_ € I2i )[_EinJl(é:inr)_ FinYl(é:inr)]Sinh EJ (2-67b)

i=1 n=l 7 7i

~

xR

_ 0 13 P 'r P rr - ,
5 =Y £k (o +eli— e |24){—A4p|1£%]+ B4pKl[% }m(sp z) (2.67¢)

p=0

! !’

=1~ My ,u'r r
q=0

3 I
=4 = S 1A 2.68
;(esl €3 % T S5 )2 JAm (2.68a)
=ii(uim) (e31—e33 '2 L ][Am o (Unl)+ B Ko ( ]cos[ j(z 68b)
i=1 m-1 Vi
D = ii(;n)z (—eﬂ +e33|1—‘2— €5 I%J[EMJO (&ar)+FYo (Sar ]cosh[ J(Z 68c)
i=1 n-1 Vi Vi i
b? - g[eﬂ [%’]%IM EX )+ b EX )Z}[Aﬂ)l{zzr}r BM({ p rﬂcos(gp'Z)

c a2 e | T :
+paz{Aplo{%J+Bp KO[ g j]cos(gp z) (2.68d)



g=0
12 'r
+pSZ:[Eq J ”L} Y, {%Hcosh(nq z) (2.68e)
=0
~ . ’ ’ !r ’ ' ’
h, ——%Z(% ){Ap |1(Zg JBp Kl[lp Hcos(gp 2)
p=0
Kaof A ery | #aT ] o | HT :
—?Z( u, ){Eq J{%]Fq Y, {%Hcosh(nq z) (2.69)
q=0
— > ' ' Z 'r / Z , !
h, = Kllz(‘;(gp ){Ap l, (%} B,'K, [Lﬂsm(sp 2)
p:
0 , , 'r , ’r . r
Ky (7, ){Eq J, {%}L EY, [‘%ﬂsm(m 2) (2.70)
=0

It is worth noting that all unknown constants appearing in the general solution

presented above need to be determined once the boundary value problem is

formulated.



CHAPTER 11

FORMULATION OF PIEZOCOMPOSITE CYLINDER

3.1 Piezocomposite Cylinders Subjected to Thermal Loading

0=T/(z,1)

.....

Iy

MM

Fig. 3.1 Piezocomposite cylinder subjected to zero heat flux at both ends and
prescribed temperature at curve surface.

In this section, arbitrary constants 3., "7, 4, . A',B, ,E, F, defined
previously are solved separately for the thermal boundary conditions. Consider the
case of a piezocomposite cylinder as shown in Fig. 2.2, which is subjected to zero
heat flux at both ends and a prescribed temperature Tl(z,t) at its curved surface. The
interface at r=a is assumed to be perfectly bonded and permeable. Because the
general solutions of temperature fields in previous section are in the Laplace domain,
the Laplace transform is applied to the boundary conditions. To identify the domains
of fiber and matrix, the superscript m represents the matrix domain and the fiber

domain is identified by the superscript f . The boundary condition in the Laplace

domain can be expressed as

h"(r,+1)=0 for as<r<b (3.1a)
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h'(r,#1)=0 for 0<r<a (3.1b)
0"(a,z)=0"(a,z), h"(a,z)=h"(a,z)  for -1<z<1 (3.2a-3.22b)
a"(b,z) =T,(z,5) for 1<7<1 (3.33)

— T,(z . .
where T,(z,s) = % denotes the non-dimensional temperature.
0

First consider the Eq. (3.1), the acceptable eigenvalue and the eigenfunction

must be in terms of cosine functions. Therefore, the general solutions of temperature

field are

=y > | !/ mr ’

" =>"| A1, me +BI'K, Zo! cos(9)'z) for a<r<b (3.4a)
~ B "

| zhr

ef:z; Alo| S cos(9,2) for  0<r<a (3.4b)
p=

Where 47" =97 = pz forp=12,3,...

In view of Eq. (3.2), B} and A}’ can be expressed in terms of A" as

m f m f
r | P p Zpa | Zpa
m 1 f
, 5" 5’ 5 5 ,
B™ = A (3.5a)
P ;(;‘a Z,a
r m Il m
o o

L Zeg k| Zeg |k | Zoa )| 2
. 5 5 5 5 y
A, =1, o 4 4 4" Ay (3.5b)
TK,| 228 (1| 224 [+K,| 224 |I,| 22 &
o o o o
omof m
where T’ = Alflgmz—‘;
115 Zp
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Substitution Bg" from Eq. (3.5a) into Eqg. (3.3). The unknown Apm' can be determined

by introduced Fourier cosine series expansion into the right hand side terms

'ITl(z,s) = ZT cos(9)'z) (3.6)

where T, (z,s) = 2J'cos z)dzand T,, =2 j T,(z,5)cos(9'z)dz (3.6b - 3.6¢)

0

Then, the unknown Ag" can be determined from

([N )
ST e

A" cos(sz) = if 005(3 )

m P P
K (—Z"mrj "
o

(3.7h)

The constants B;"and A]'can be taken from Eq. (3.5). In addition, the potential

functions 7] and 7, in Eq. (2.49) can be expressed as

Z[A4p 0[ mmr} +BI'K {%]]cos(&{f'z) (3.8a)

0 f,r ,
7! _ZAijO[Z;f Jcos(sg z) (3.8b)
p=1




<—

m _ jjm m’/ m pAm/
where A = 2 L A =a"A
m zm m m/ 2
cll[ 5" J -MJ (& )
B!, - ! B}’ = "B}
m zm’ m m’/ 2
( : J “z(or)
f
A, = = A =o' A
£r
v4 '\
le1{5r)f ] _MAf ('9; )
3.2 Piezocomposite Cylinder Subjected to Mechanical and Electrical Loading
" =P(z,s) i N f i/ " =P(z,s)
_ H | — = _
5" =V (z,s) LIS * 5" =V (z,s)
D" = D(z,s) \l/ h \L& D" = D(z,s)
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(3.8¢)

(3.8d)

(3.8¢)

Fig 3.2 Piezocomposite cylinder subjected to prescribed traction and electric

displacement at curve surface

In this section, all arbitrary constants Ay, By, A, By, E.F. A, By,,

E... F

4q0 ' aqr

v, &, In the previous section are solved for the applied mechanical and

electrical loading. Consider the case of a piezocomposite cylinder as shown in

Fig. 3.2 This composite cylinder is subjected to prescribed traction and electric

displacement at its curve surface. The boundary condition in Laplace domain can

be expressed as



Ga(rtLs)=G,-"+G," +Gn"+Ga"=0
G (r,xL,s)=5-"+5!"+5. - +5 =0
or(r,tls)=-"+5-"+5-"=0

o (rtls)=c-"+5-"+5-"=0
D"(r,+1,s)=D"-°+ D" +D"*+D"* =0
D/(r,+1,s)=D/-°+D/*+D/-*+D/-*=0
Gy (b,z,8)=64-"+&, "+, +05" =P(z,s)
an(bz,s)=cp-"+a0-+an-> =V (z,9)
D" (b,z,5)=D]"-*+D"-*+D/"-* = D(z,s)
oy (a,z,s)=56,(az5s)

o (a,z,5)=5,(az5s)

0" (azs)=0(azs)

0" (azs)=0, (azs)

" (a,z,s)=0"(a,z,5)

D" (a,z,5)=D, (a,z,s)

Let

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for
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a<r<b (3.92)

0<r<a (3.90)

a<r<b (3.10a)

0<r<a (3.10b)

a<r<b (3.11a)

0<r<a (3.11b)

~1<z<1 (3.12)

~1<z<1 (3.13)

~1<z<1  (3.14)

~1<z<1 (3.153)

~1<z<1 (3.15b)

~1<z<1 (3.16a)

~1<7<1 (3.16h)

“1<z<1 (3.17)

~1<z<1 (3.18)
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J,(&na)+ Ry, (&na) =0 (3.19)
EnJ, (&nb)+FY, (&1b)=0 (3.19b)

To satisfy the eigenvalue problem of Eq. (3.19), the eigenvalue must be the same

value for each i (i=1,2,3) and

Fr (3.20)

First, consider the boundary condition in Eq. (3.10). To satisfy the boundary

condition, let choose ™" =mzy™". Therefore, &' (F,+1,s)can be reduced to

Mt =g™mi2 L 5™ Then, using Eq. (2.65) with boundary condition in Eq. (3.9a),

r

the following equations can be obtained

5y Z4AZZI A (3.21a)
5 iiAT;ﬂ. | Anlo (may'r)+ BpKy (may'r ) [cos(mzz) (3.21b)
5 ii/\iﬁ. [EnJo(&7r)+ R, (£0r) |cosh (é—rﬂ (3.21¢)

m'r m'r
FM =3 AT [A;“p I, {%} Bl K, [—é"m J] cos( prz)

p=0

—%32[”' [)fmrJ+ Bpm'Ko[fmrJ]cos(pﬂz) (3.21d)

Where ATY, AT, A2 and AT see appendix

771 ) zzmi ! zni zp

Substituting Eq. (3.20) into Eq. (3.21c), and let



Eq. (3.22) then becomes

52 ZZAZZN cosh [%j FaHo (&)

n=l i1 Vi
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(3.22)

(3.23)

Then, use basic function H (§ ) to expanding the Bessel and modified Bessel

function in radial direction of matrix.

In (mﬂ?/imr) = CIn:)mi +2clr;]miHo (éjmr)
j=

K (m7z7/| ) KOHI+ZC|Jm'H (é’: )

m
1jmi ?

Where C5,i» Ciris Cron @nd Cgi; see appendix

Kjni
n is order of Bessel function or modified Bessel function.

Then, Eg. (3.21) becomes

3

o 3
Gp =22 (-1 Ac r%ln.An+ZZZ )" AT ATH, (&)

n=l i=1 j=1 n=1 i=1
o 3 3
2. 2(-1) Agnc zan.B.:+zzz ) AfmCinBaHo (&)
n=1 i=1 j=1 n=1 i=1

(3.24a)

(3.24b)

(3.249)

(3.25a)

&1 =3 [(1) A" a5 ks AT+ 33 (1) Al - 23 |ep AT H, (£

n=0 j=1 n=0
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[ (0 A" 28 B + 23 [ (-0 AT~ 3 B Hy ()

n=0 j=1 n=0

(3.25h)

By using linearly dependent vectors, the sum of coefficient in front of vectors

H, (&'r) is must be equal to zero, yields

SAATAT + 33 (<) AThe r%lmAw+ii 1) AT B
i=1

n=1 i=1 n=l i=

+Z[( ) A"~ ]C.On. AT + Z[ ) A" - 233} cr® B™ =0 (3.262)
n=0

e ml ml e ml ml m ng m

Z Z( AZZm |Jn| An + Z Z Azzm ij Bm + ZAZZHI Cosh [ }/ j F

n=1 i=1 n=1 i=1 i

() A" 25 Jei AT + 3 () A" 25 JeziBy =0 (3.260)

To limit range of summation, we truncate the upper limit to Q. Therefore, the

number of equation for ,, =0 is 1+Q.

Then, using Eq. (3.65) with boundary condition in Eq. (3.9b), the following
equations can be obtained

G,° Z4A§Z?Ab (3.27a)
&t = ZZA;,AmO(mm/, r)cos(mzz) (3.27b)

5= S AL, (& )cosh(gffj (3.27¢)
Vi

i=1 n=1 i
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oAl ZA [Z;,r]COS(pﬂ'Z)/l;iA“l [lg’r}os(pnz) (3.27d)
zp pO 5 324" To| T .

Where A2, A AT2 and AT see appendix

zz1 zzmi ! zn zp

Then, use basic function J,(&r) due to J,(&,'a)=0for expanding the Bessel and

modified Bessel function in radial direction of fiber.
In (mﬂ'?/ifr)ZCImei +zcljmi‘]0(§jfr) (328)
j=1

Where ¢, and ¢ . see appendix

Ijmi

n is order of Bessel function or modified Bessel function. Eq. (3.27) becomes

_fl ZZ Azfzj;ll I0n| n+iii Azfz::n |jn| ;Jo(gjmr) (3293.)

n=1 i=1 j=1 n=1 i=1

o0

5= (1) ALe' ~ 4% kAl +$

n=0

pIE AN VN

1 n=0

(3.29b)
By using linearly dependent vectors, the sum of coefficient in front of vectors
J,(&]'r) is must be equal to zero, yields
R fl fT fr
Z4AZZI AOI +ZZ Azznl I0n| n +Z|: Azzpw _233:|CI0n| = 0 (3308‘)
n=1 i=1

ii Azfz%u Ijnl n ZAzfzfn COSh{i_ij +Z[( 1) Azszpw _%3:| ljni _0

n=1 i=1

(3.30b)
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To limit range of summation, we truncate the upper limit to Q . Therefore, the

number of equation for & =0 is 1+Q.

By following this method, the boundary conditions at both end (3.10), &' =&, =0

can be reduced to

ZA;”,i. R = (3:312)
ZALﬁ. E,=0 (3.31b)

i=1

Where A™ and A'2 see appendix

zmi zmi

To limit range of summation, we truncate the upper limit to Q . Therefore, the number

of equation for 5 =0 is Q and & =0 is Q.

The boundary conditions at both end (3.11), D" =D, =0 can be reduced to

o 3 L

ZAmOAb, S ATAT LS S e AT +ic,’“§;Am3A1m' " ZczgnA;*:Bm’ ~0
o i
(3.323)
> CRATIAL + 33 L ATB] + Y A +ZCJ§’ ATAT + ZC&EA“B“’ =0
S5 e <
(3.32b)

Where AT°, AT AT AT2 and AT® see appendix

z zni? ni? zrni ZJ

SAAL S S Gl ALA! +YCALA =0 (3.332)

i=1 n=1 i=1l
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o 3 3 0
22 CimAai A+ D AGE+D CirAAT =0 (3.33b)
n=1 i=1 j=1 n=0

Where A%, AlX) AL ALz and Af? see appendix

zi ! zni? zni? zji

To limit range of summation, we truncate the upper limit to Q . Therefore, the number

of equation for D" =0 is 1+Q and D =0 is 1+Q.

Then consider boundary conditions at outer surface (3.12) — (3.14) and at the interface
(3.15) — (3.18). To formulate linear equations by using linearly independent vector

method, Fourier cosine — sine series expansion in z direction is needed.

Fourier cosine series expansion

f (z):fwT(z)+i f, (2)cos(n72) (3.340)
Where fco(z)=2j' f(z)dz (3.34b)
fm(z):zj f (z)cos(nzz)dz (3.34¢)

0

Fourier sine series expansion

f(z)=i f,, sin(nzz) (3.353)

n=1

Where f, =2| f(z)sin(nzz)dz (3.35h)

O ey

Therefore, linear equations due to the boundary condition at outer surface (3.12),

&y =P(z,5) can be expressed as
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3 w 3 rrm

D AWAS+ATBG + DD K ATIRT + ATAT + AT B =2 (3.362)
i=1 n=1 i=1

3 3 0 3 ' ’

D AT+ Y A B Y AR ATAT S ATLBY < p]" (3:36D)
i=1 i=1 n=1 i=1

mO moO ml ml m2 m3 m3 ml m2 m3 m
Where Arri’ Arrb' Alrrji’ AKrrji’ Arrni’ Arrl’ ArrK’ Crr ’ Crr ’ Crr ’ Crrb

and C;, see

appendix

To limit range of summation, we truncate the upper limit to Q . Therefore, the number

of equation for &y =P(z,s) is 1+Q.

The boundary condition at outer surface (3.13), &, :\7(2, s) can be expressed as

3 3
1 1 3 4 3 m’
DATAT D AR B — AT AT + AR B =V (3.37)
i=1 i=1
Where AL, ARni Al and Ay see appendix

To limit range of summation, we truncate the upper limit to Q . Therefore, the number

of equation for &7, =V (z,s) is Q.

The boundary condition at outer surface (3.14), D" = [_)(z, s) can be expressed as

3 3
ZAzl_rmb_lA]n; +ZArl?il_rmb_K B:: +Am3 m’ +Am3 Bm' _ Dr:m (338)
i=1

Irn Krn=n
i=1

Where A™, A™ A™ and A™

Irji ? Krji? Irn Krn

see appendix.

To limit range of summation, we truncate the upper limit to Q . Therefore, the number

of equation for D" =D(z,s) is Q.
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Then, the linear equations due to the boundary condition at the interface (3.15)

o" =& can be expressed as

3 o 3

m0 Am mopm m2 A m2 &—m m3 pAm’ m3 pm’
zArri Abi +ArraBOO + zz chniArrni I:ni +Arr| A\) +ArrK BO
i=1

n=1 i=1

3 o 3
= Arfrlsp\)f' + ZArfr?A)fi + Zz fc(f)r21iArfr§i Enfl (3393.)

i=1 n=1 i=1

3 3 © 3

ml m ml m o2_rrmapm m3 pAm’/ m3 pm’
ZAlrrjiAji+ZAKrrjiBji+ZzAnji_ Fni +A Ah + A B
i=1 i=1

rrl K =n
n=1 i=1

3 o 3
= ZAlfriji Ajfi +22Agji2_ma l:nlrin +ArfrI3 § (3.39b)

i=1 n=l i=1

Whel’e AmO AmO Aml Aml Am2

m3 m3 m
rri ! rra’ Irrji? Krrji? rrni? Arrl’ ArrK’ C

Cm— AfO AfO Afl

rra? rra? rri ! rra’ Irrji?

AP, AP CI Cl? Cl® and C - see appendix.

rra

To limit range of summation, we truncate the upper limit to Q . Therefore, the number

of equation for 57 =5 is 1+Q.

3 3 3
ZATEni Ar: + ZAE:rlsz:: +Arl1:jnA1m, +Anlgfzn Br:n’ = zAlfénlA; +Alfr§n . (340)
i=1 i=1 i=1
ml ml ml m3 m3 f1l f3 H
Where Alrzni’ AKrzni’ AKrzni’ Alrzn’ AKrzn’ AIrzni and AIrzn see appendlx.

The boundary condition at the interface (3.15) &7 =&, can be expressed as

3

3
ZaZ A\)n.] +1 Bg(]) +Agu3_rm_lpbm' _Agus_rm_K B(;nr _ ZaZ Abfi +AOCu3_rf_|A3f' (3418.)
a i=1

i=1

3

3 3
D ATAT D AL BT AT AT + AT BT =D ALAL+ AL A (3:41b)
i=1 i=1

Kurn™=n lurn
i=1
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Where Am3 Af3 Af3 Aml Aml Afl Am3 Am3 and Af3

lur? lur? lur? lur ? Kur ? lur? lurn? Kurn lurn

see appendix.

To limit range of summation, we truncate the upper limit to Q . Therefore, the number

of equation for 57 =5,! is 1+Q.

S fihi am o forhi ot L amiam S amipm | [—fTSATS AT
S o 3 ol g S amag S ariep | [SUEATA
" m - . "
TR ARE =TI - ) g g 6
3 © 3 o 3
f f m m m f f f ’
+ZAljzlAj +ZZ fsoﬁiAuzjzi Fai +ZZ fsosiAUZJ?i E. +fsé?/\|fu§j Ajf
i=1 n=1l i=1 n=l i=1
Where AT, AR, AL, Ala, Agsn Ay, Aoy and ALY see appendix.
: fsrglolgj m : fs(f)iolzfi f > ml pm S ml pm —fmsAm3_Am'
Z m 2'Abi+z ¢ 2A0i+ZA|¢Aji+ZAK,,,Bji s0j" M ei™
= (") = (') " > — ] _fmAm gm (3.43)

s0j* " Kej ]

0

SSALA S ERAREN SIS AR | 0o
i=1

s0 |
n=1 i=1 n=1 i=1 ) o1

Where AT, AR, A ADE AL AT A and A

Kg? lp? ji? pji? lpj? Koj lpj see append'x

(3.44)

3 3
cDl_rm_I Am CDl_rm_Kpm
ZAni A’Ii +ZAni Bni ACDB_rm_I m _ACDS_rm_K Bm
-1 i=1 1.3 n A4n n 4n
- CD3_rm_1 pf
_An AAn

+Z3: Ac;im_rf 1 A1:1
i-1

ml ml f1l m3 m3 f3 H
Where AIDrnia’ AKDrnia’ AIDrnia’ AIDrnia’ AKDrnia and AIDrnia see appendlx'

The equation (3.26),(3.30),(3.31)—(3.33),(3.36)—(3.44) are wused to
generate a system of linear algebraic equations of order (7+15J) with arbitrary

constant A", B, A, AT, Bl

ni?

Fr, Ay and El . This system of linear algebraic

equations can be solved numerically.



CHAPTER IV

NUMERICAL RESULTS

In this chapter, the result for special case of transient response of
thermopiezoelectric cylinder which homogenous material is presented. A computer
code has been developed to obtain the numerical results from the boundary value
problems that formulated in the previous chapter. Since the problem is formulated in
the Laplace domain, the transient solutions are obtained by employing a numerical
Laplace inversion scheme. In this thesis, Laplace inversion scheme proposed by

Stehfest (1970) is employed. The formula due to Stehfest is given by
N ~
f(t)z'oizzcnf(n'ngzj (4.13)

neN/2 min(n,N/2) kN/2 (Zk)'

k:[(n+1)/2](N/2— k)!k!(k —1)!(n —k)!(Zk _ n)! (4.2b)

Where ¢, =(-1)

and N is an even number.

4.1 Piezoelectric Cylinder under Uniform Temperature

L) =Tf(1) T =Tf(0)

(NN

RARAAA

Fig 4.1 Piezoelectric cylinder subjected to zero heat flux at both ends with uniform

temperature at its curve surface.
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Consider a cylinder subjected to uniform temperature T,(t)=T,f(t) at its
curve surface is shown in Fig 3.1. The inner and outer diameter of the cylinder are
a=0.1h, and b=0.4h respectively, with same material properties k{“"‘/kg”f =1 and

the thermal expansion coefficient o =4.4x10°K™. Let the constant positive

reference temperature be T, =300K . The complete solutions in this case are given by

" :Abm'lo[%mrj+ Bg"KO[?mrj for a<r<b (4.2a)
— ' }(fr

0" =A IO[;f ] for 0<r<a (4.2b)
where

m f m f
Ik, (Zo ajlo (zofajmo (Zo a] ] [Zofaj
o fo) o o
(s) (4.2¢)

m_Tf

A =T, MTl,
- (l&“a} {Zoffa]_| [zoma), [Zoffaj

, _ 1 §m 0 5 0 5m 1 5

B =T,f (s) == (4.2d)
(e (w5 )]

A =T, f(s) i i i 0 (4.2¢)

[L+I1,

"h ma fa ma a
leKo(;g’m j r%’?m ]u{ﬂgf }—|0(—’g’m jll(?f H (4.2)
2™ ma fa ma a
M,=1 (’?m ] rK, [?m ju{?f ]+ Kq [—?m Jll [?f H (4.29)
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There are two cases of the time-dependency f(t) for the thermal loading

considered in the numerical study as shown in Fig. 3.2.

f(B) f(t)

A A

(a) (b)

Fig 4.2 Time-dependency of thermal loading considered in the numerical study.

The Laplace transforms for the loading cases (a) and (b) are given by Egs.
(4.3) and (4.4) respectively.

f_a (5) :% for case (a) (4.3)
f, (s)= w for case (b) (4.4)

Transient response of thermopiezoelectric cylinders under thermal loading is
presented next. It is noted that the temperature distributions in the fiber and matrix
parts given by Egs. (4.2) are independent along the length of the cylinder (the z-
direction). Therefore, only radial variation is shown in the numerical results. First, it
is important to examine the convergence of the numerical Laplace inversion scheme
given by Eq. (3.1). Radial profiles of nondimensional temperature change in a
thermopiezocomposite cylinder for different values of N at t=0.1 under thermal
loading case (a) are shown in Fig. 4.3. Numerical results presented in Fig. 4.3 indicate
that the converged time domain solution for this problem is obtained when N is

greater than 12.



.020

018 -
016 -
-
3
014 -
—e— N=10
012 N-D2
LE R R R R N = 14
010 . . .
0.00 01 02 03 04

r/h

Fig 4.3 Convergence of solutions with respect to the number of term in Laplace

inversion scheme (N ) at t=0.1.

1.2
t=2
1.0 -—e @ L 2 L ——
t=0.5
31 1203
= 6
< t=0.2
4
- t=0.1
2 —— Numerical results
t=0.05 ® [Exact
0.0 A T T T T
0.00 .05 .10 15 20 25

r/h

Fig 4.4 Radial profiles of transient temperature in a thermopiezocomposite solid
cylinder under loading case (a).
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Radial profiles of transient temperature in a thermopiezocomposite solid
cylinder for different values of time are shown in Figs. 4.4. The numerical solutions
for those figures are compared with the exact solution (conduction of heat in solids -
carslaw and jaeger). The temperature change throughout the cylinder is nearly zero
except in the vicinity of the applied temperature. Thereafter, the temperature in the

cylinder gradually increases with time before reaching the steady-state temperature,

which is 6 =T, throughout the cylinder.

1.2
t=2
1.0
t=03
8 -
t=02
£ 61
D
4 -
t=0.1
2 -
t=0.05
0.0 . . . .
0.0 2 4 6 8 1.0

r/h

Fig 4.5 Radial profiles of transient temperature in a thermopiezocomposite composite

cylinder under loading case (a).

Radial profiles of transient temperature in a thermopiezocomposite composite

cylinder for different values of time are shown in Figs. 4.5. The ration of heat
conduction coefficients properties between matrix and fiber is K" /K" =3 . The
temperature distribution of matrix is faster than fiber because the value of heat

conduction coefficient of matrix is greater than fiber. Thereafter, the temperature in

the cylinder gradually increases with time before reaching the steady-state

temperature, which is @ =T, throughout the cylinder. The temperature at any value of
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time from thermal cylinder problem is used to input data to thermopiezoelectric

problem.
4.2 Comparison Elastic Finite Solid Cylinder under Mechanical loading.

In this section, Firstly, let compare numerical results with Meleshko and Yu
(2012) in case of mechanical band loading. The cylinder is elastic with h=a and

Poisson’s ratio v =1/3. And boundary condition at outer surface are defined by

| -p |z|<h/2
P(Z)_{o, h/2<|7<h (43)

g, Ve N\
-(, r"‘“’“-a-hi.
ARAR, > .

s i ohi¥a.] l 5

= Z,S e Z,S
&, =P(z,5) l l l{_ o, (z,5)
H

Fig 4.6 Thermopiezoelectric cylinder subjected to mechanical loading at its

curve surface.

In Figs. (4.5) — (4.7) are shown the comparison of radial, axial and shear
stresses along z-direction at various radius r. The number of term for converge
solution at inside solid cylinder is greater than 30. But for satisfied boundary

condition at outer surface, the number of them is greater than 200.
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Fig 4.9 Axial stress along z-direction of elastic finite cylinder compare with
Meleshko and Yu (2012).

4.3 Thermopiezoelectric Finite Solid Cylinder under Mechanical loading.

The solution of thermopiezoelectric solid cylinder is presented. This solution
is used for a benchmark solution for compare with thermopiezoelectric composite
cylinder. The numerical results for thermopiezoelectric finite cylinder subjected to
constant mechanic and temperature loading at curve surface are presented. The
thermopiezoelectric solid cylinder is composed of radius a and height 2h. Material

properties of thermopiezoelectric for this thesis are defined by

¢, =741 ¢,=452 ¢,=393 ¢, =836, ¢, =132 (10°)N/m’ (4.6)
e, =-0.138, e, =-0.160, e, =0.347 C/m’ (4.7)

4y =0.621, Ay, =0.551  (10°)N/Km? (4.8)
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£,=826, £,=903 (10%)C?/Nm’ (4.9)
p,=-294 (10°)C/N (4.10)

In Figs. 4.8, the number of series solution (Q) for complete solution of radial

stress of thermopiezoelectric solid cylinder due to temperature loading in transient

state at z=0 are varied. For convergence of solution, the number of series solution

(Q) have to greater than 15. Therefore, for boundary of constant temperature and

mechanical loading, the number of series solution (Q) is selected 15 terms.

Figs. 4.9 — 4.10 is shown the radial and axial displacement due to constant
temperature. The radial and axial displacement is increasing when time is increasing
in transient state. It is corresponding that the cylinder is extend when its subjected to
temperature. When time is come to steady state t =2, the maximum radial and axial

displacement is equal to the thermal linear expansion of thermopiezoeletric material

(u, =0.00000425) and (u, = 0.000002749) respectively.

Figs 4.11 is shown the radial stress due to constant temperature. In transient
state t <2, the expansion of cylinder is not uniform, strain components are exist.
Therefore, the stresses are exist in cylinder. When time is increasing to steady state
t =2, the expansion of cylinder is uniform, strain component are not exist. Therefore,

the stresses in cylinder are reduced to zero.

Figs. 4.12 — 4.14 is shown the radial displacement, axial displacement and
radial stress in r-direction due to constant temperature and constant mechanical
loading. The effect of temperature is more decreasing when time is increasing in
transient state. Because of applied temperature when its come to steady state is seem

to applied permanent displacement to cylinder.
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Fig 4.10 Convergence of solutions of radial stress due to constant temperature at

z =0 with respect to the number of term in series complete solution (Q) at t=0.1
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Fig 4.11 Radial displacement due to constant temperature at z =0 with respect to

various normalize time.
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Fig 4.12 Axial displacement due to constant temperature at r =0 with respect to
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Fig 4.13 Radial stress due to constant temperature at z =0 with respect to various
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Fig 4.14 Radial displacement due to constant temperature and mechanical loading

at r =0 with respect to various normalize time.
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Fig 4.16 Axial displacement due to constant temperature and mechanical loading

at r =0 with respect to various normalize time.

4.4 Thermopiezoelectric Finite Solid Cylinder under Mechanical loading in

transient state.

In this section, the numerical results for thermopiezoelectric finite solid
cylinder subjected to constant temperature and band mechanical loading with same
material properties as previous section are presented. The boundary condition at outer
surface are defined by

_J=p(s), |z <hy
P(Z’S)—{ 0, hy <[z <h (4.11)

The number of series solution (Q) in this case is greater than 50 for converge

solution. Because in transient state is very sensitive, therefore the number of series

solution is more required than regular case.
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Fig 4.17 Radial stress along z-direction due to constant temperature and band

mechanical loading h, =h/2 with respect to various normalize radius.
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Fig 4.18 Radial stress along z-direction due to constant temperature and band

mechanical loading h, =h/4 with respect to various normalize radius.
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Fig 4.19 Shear stress along z-direction due to constant temperature and band

mechanical loading h, = h/2 with respect to various normalize radius.
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Fig 4.20 Shear stress along z-direction due to constant temperature and band

mechanical loading h, =h/4 with respect to various normalize radius.
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30

25 4

20 1

A5 1

10 7

c,/Pz

.05 A

0.00 -

-.05 A

'.10 I T 1 T
0.0 2 4 .6 8 1.0

z/h

Fig 4.22 Axial stress along z-direction due to constant temperature and band

mechanical loading h, =h/4 with respect to various normalize radius.
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4.5 Thermopiezoelectric Finite Composite Cylinder under Mechanical loading in

transient state.

h
i3
— 22 WA x
o, =P(z,s)
h

=
\Le &, =P(z,s)

< <«—

Fig 4.23 Thermopiezoelectric Finite Composite Cylinder under Mechanical

loading at curve surface.

In this section, the numerical results for thermopiezoelectric finite composite
cylinder subjected to constant temperature and constant mechanical loading at outer
surface are presented. Material properties for both fiber and matrix are same as
previous section. Therefore, the results of solid cylinder in section 4.2 are used to

compare the results in this section.

The problem statement are defined by radius of fiber is a =0.1h, the radius of
matrix is b=h and height of cylinder is 2h. The reason for choose size of fiber equal
to a=0.1h is generated domain of composite closer to single domain. The mechanic
boundary conditions are assumed to be a perfectly bonded and the electric boundary
conditions are assumed to be an permeable. The composite problem is more

complicated than solid problem because it has an interface between two materials.

Therefore, the number of series solution (Q) is more required than solid problem. For

this problem, the used number of series solution is 150 terms.
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and composite domain due to constant temperature at t =0.5
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Fig 4.26 Comparison of radial displacement along r-direction between single domain

and composite domain due to constant temperature at t =0.1
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and composite domain due to constant temperature at t =0.5
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In Figs. 4.20 — 4.25, the results from composite domain in transient state are
close or exactly the same with the results from single domain at any radius except
near the interface. But at the interface, all quantities look jumping and make curve not
smooth. Because the interface of fiber, it seems to be an outer surface of the cylinder
in section 4.2 and the interface of matrix it seems to be and inner surface of hollow. In

section 4.2, to satisfied boundary condition at outer surface, number of series solution

(Q)have to greater than 200 terms. Because, at the interface, the functions that

explain the behavior of thermopiezoelectric is very complicated. Therefore, number of

series solutions (Q) in case of composite materials are more needed than 150 terms.

However, to increase more terms, the computer program cannot get the value of
coefficient because the numerical error of operation the large value in the system of
linear equations. Therefore, one of the solutions to solve this problem is try to
manipulate or scale the large value. When time is closer to steady state, the jumping
behavior at the interface is decreasing. And the results of composite domain are same

as the results of single domain.



CHAPTER V

CONCLUSIONS

5.1 Summary and Major Findings

The complete solutions for transinet response of thermopiezoelectric finite
composite cylinder subjected to axisymmetric loading are presented. The temperature
field are solved separately by using separation of variable method in Laplace domain.
Then solved mechanic and electric filed by potential function method in Laplace
domain. After matching general solution wiht boudary conditions in Laplace domain,
the numerical inversion of Laplace scheme is needed. In this thesis, Gaver-Stehfest
scheme is used to transform solution on Laplace domain to time domain. The number

of Gaver-Stehfest term for converge is greater than 12.

For complete solution of thermopiezoelectric finite solid cylinder, the number

of series solution (Q) for stress field, displacement field and are required at least 15

terms. The stress field due to temperature in transient state are less significant when
the time is incresing and not producing when the time is in steady state. But for
displacement field, the effect of temperature is more significant when the time
incresing in transient state and constant when the time is steady state.

For complete solution of thermopiezoelectric finite composite cylinder, the

number of series solution (Q) for stress field, displacement field and are required

more than 150 terms for capture the bahavior at the interface. The limitation of our
computer programming is not maniputale the very large value of number. Therfore,
the solution at the interface still have an error in all quantitles in transient state. The
solution of composite domain are almost or exactly the same with the solution of
single domain when the radius is not close to the interface. For steady state, the
solution of composite domain and single domain are exaclty the same at any point of
cylinder. The stress field due to temperature in transient state are less significant when
the time is incresing and not producing when the time is in steady state. But for
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displacement field, the effect of temperature is more significant when the time

incresing in transient state and constant when the time is steady state.

5.2 Suggestions for Future Work

The boundary value problem focused on in the current study is restricted only
to the axisymmetric boundary conditions and temperature boundary condition is not
depends on z-direction. Therefore, too many choice for improve the solution for

general case. For instance,

Q) To manipulate the operation of the very large number to get a correct
solution at the interface.

(i)  The boundary condition of temperature field can be depends on z-
direction.

(ili)  The mechanic and electric boundary condition can be arbitary.
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APPENDIX B
From Eq. (2.43) the coefficients A,B,C and D are given by
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From Eq. (2.48), the value of 1, and I,, for & can be determined in term of material

properties by solving 2 equations as shown below.
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From Eq. (2.48), the value of 1, and I,, for & can be determined in term of material

properties by solving 2 equations as shown below
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