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Chapter 1

Introduction

1.1 The rise of Electrical Energy Demands

High population growth over the years and the emergence of large economies
such as China and India have led to higher demand of natural resources and have
caused the world’s energy consumption to skyrocket. Private and public sectors
around the world are committed to renewable energy sources to cope with the
increasing demand. In the transportation sector, many traditional technologies are
progressively being shifted toward using cleaner energy with less pollution. This

includes the shift from fossil fuel to electrical and hybrid energy [1].
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Figure 1.1 Annual energy demand by region

Source: http://static2.businessinsider.com/image/50bd70cc.jpg

The arrival of smartphones and various portable devices have raised electrical

energy consumption considerably. As the devices have improved in both speed and



computational power and features, demands for energy consumption of these devices
escalate at a rapid rate. Unfortunately, the battery technology still cannot cope with
the energy consumption, especially in a commercial environment. This trend has
become more apparent as external battery supplies are needed. The gap of energy
needed and its availability is exemplified in Figure 1.2

Moreover, a shift from traditional printed media to electronic media is
prominent and widely adopted now in many countries. The larger the screen size and
the faster the CPU mean higher energy consumption and demand. Other Internet-
connected and wearable devices have followed suit. Therefore, methods to minimize

current power drain are called for [2].
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Figure 1.2 Energy needed and availability

Source: http://static2.businessinsider.com/image/1200.jpg

Figure 1.3 shows the significant shift from desktop computers connected to a
power source to smart mobile/portable devices around the world. This means the

issue of energy efficiency is much more important than before as the number of



portable device users grows very rapidly and has definitely signified toward the next

emerging technology [3].
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Figure 1.3 Global installed base of Desktop PCs + Notebooks PCs vs. Smartphones +

Tablets, 2009 — 2015E

Source: http://static2.businessinsider.com/image/c000005.jpg

As a consequence, many researches are underway to find ways to save the energy
needed by electronic devices. Broadly speaking, the research is divided into 2 groups,
namely, hardware and software. Studies have shown that software is the principal
factor of energy consumption in computer systems [4].

A typical computer program in execution stores, retrieves, and processes variables
such as local variables, shared variables, and register variables. Heavy use of these
variables wastes considerable energy. One remedy is code modification to reorganize
of original code to properly allocate variables and parameters, thereby balancing the
distribution of energy consumption.

This research is specifically targeted on how the software can be designed and
architected with energy consumption as part of the design. C Programming Language,

a widely used and very portable programming language, is used in this investigation.



1.2. Objective

This study focuses on the reduction of energy consumed by computer programs by

applying code modification to shared variables and register variables.

1.3. Scope of the work

This research will confine the scope within the following constraints:
1. Limit to C programming language.
2. Focus on local stack, register variables, and shared variables.
3. Use is Intel® Core 2 Duo system running Windows 7 as the working
environment

4. The unit of measure is instruction clock cycle.

1.4. Expected Outcomes

The proposed technique will offer the following benefits
1. Reduce energy consumption by computer programs,
2. Improve program performance precipitating from (1), and

3. Compact program/code organization.



Chapter 2

Related work

2.1 Related work

Energy consumption is one of the critical factors for modern portable device
designs. Often, one of the key performance indicators widely used in the industries is
energy consumption, i.e. the current drain. Researches and studies from the academic
sectors and the industrial sectors have been focusing on improving measurements of
the energy consumption in hardware or software or a combination of both despite the
complexity of the systems. Some research papers discuss source code analysis and
coding techniques while others focus on better software architecture design. This
research also explores different measurement tools.

Sheayun Lee, Adreads Ermedahl, et al [4] showed a technique for finding an
accurate energy consumption model at the instruction level using combined statistical
analysis technique and empirical method to estimate the energy consumption of an
instruction. However, it was necessary to analyze the characteristics of memory
devices since the energy consumption was also dependent on it.

Optimization of software solutions called POWERAPI, estimates the power
consumption of processes and applications according to different dimensions (CPU,
network, etc.). Adel Noureddine and Aurelien Bourdon [5] used this library to study the
impact of programming languages and algorithmic choices on energy consumption.
However, they needed to propose more energy models for other hardware resources
(such as memory and disk) and used power-aware information to adapt application at
runtime based on energy concerns.

PowerScope is an energy profiling tool which was proposed by Jason Flinn and
M. Satyanarayanan. PowerScope [6] profiles CPU cycles of specific process and
procedures in software. The approach utilizes hardware instrumentation to measure
current levels with kernel software support to perform statistical sampling of system
activity. It is able to pinpoint the key energy consumption source and hence reduce

the energy consumption of an adaptive video playing application. However, it needs



further exploration and better model of the relationship between energy usage and
battery life.

Nadine and Bill [7] proposed Green Tracker, a tool for estimating the energy
consumption of installed software systems. Green Tracker utilizes a benchmarking test
to determine which software systems are the most efficient given the user’s current
computer configuration.

Thanh Do, Suhib Rawshdeh, et al [8] proposed a tool called PTOP which was a
process-level power profiling tool. The tool provides the power consumption (in
Joules) of the running processes. For each process, it gives the power consumption of
the CPU, network interface, computer memory, and hard disk. The tool consists of a
daemon running in kernel space and continuously profiling resource utilization of each
process. For the CPU, it also uses TDP provided by constructors in the energy
consumption calculations. It then calculates the amount of energy consumed by each
application for a period of time.

Various techniques have been attempted to cope with measuring power
consumption at instruction level problem. A simple yet effective technique will help
extend the battery life on mobile devices by controlling data access. Eugene Shih,
Paramvir Bahl, al et [9] introduced a method to extend the battery lifetime by reducing
its idle power, the power a device consumed in a standby state. To reduce this, the
wireless network card was shut down when it was not being used.

From a software standpoint, proper management of memory allocation and
access will help reduce the amount of energy consumption [10]. It involves the
problem of allocating memory to variables in embedded Digital Signal Processing
software to maximize data transfers from different memory banks to resisters.

Mike Tien-Chien, L. and V. Tiwaris [10] showed a software analysis tool that had
a method to compile program into the instruction level and analyzed it at instruction
level.

David Binkley [11] showed trends of source code analysis to extract information
from the source code to help a programmer analyze their program’s performance and

tweak it. There were choices to tweak from changing high level source, recompiling,



re-tweaking, or performing the change on the lower-lever assembly code or
abandoning the tweaking.

Since C programing language was developed in 1972, the language has been
widely used and very portable for the majority of hardware platforms today. It is a
popular language of choice to implement software in embed devices compared to
ASM. C is a very unique high-level language that still provides low level control
especially on memory utilization and can generate a compact-size executable which
is suitable for small memory footprint devices.

As technology today has come to hand held portable devices, application
development uses high-level programing language such as Java or Objective C.
Programmer can still use native code like C because it is better for computationally
intensive algorithms such as game development and visual computing [12, 13].

Tim A. Wagner, Vance Maverick, et al [14] conducted research using C language
as a primary tool for analysing each function in machine language that the GNU C
Complier generated.

John Max Skaller [15]discussed the introduction of nested functions into C/C++.
Nested functions were well understood and their introduction required little effort
from either compiler vendors or programmers. Nested functions offer significant
advantages, including rapid prototyping and functional decomposition, as well as gains
in both processor and programmer performance.

Yanbing Li and Henkel J. [16] showed combinations and sequences of
transformations that yielded the most energy savings under memory size constraints,
evaluated the impact of transformations, and estimated the energy used by code
segment that contained repeated loop and procedure calls.

Tiwari V., Malik S., et al [17] mentioned that power constraints were increasingly
becoming the critical component of computer design specifications. They described a
framework for energy estimation of a program using the instruction level power model.
They showed the average current and the number of cycles for each to determine the
power used.

Some research efforts analyse basic aspects of the way programs manipulate

the runtime stack. Cullen Linn, Saumya Debray, et al [18], and Thomas Reps and Gosul



Balakrishnan [19] showed how the runtime stack was used and the stack behaviour of
a function. For each function call in C, they showed how stack locations stored values
of functions and parameters.

Peter Sestoft [20] investigated when function parameters can be safely
replaced by global variables. It showed the benefits of using global variables to reduce
the time and space cost of stack allocation of function parameters whenever possible.
As function parameters are replaced by global variables, using the stack is more
expensive in terms of run-time and storage consumption than fixed global allocation.

Jack W. Davidson and David B. Whalley [21] also mentioned that when using
registers to store variables, the number of instructions executed was affected by two
factors. Typically, as more variables were allocated to registers, the number of
instructions used for saving and restoring registers increased. On the other hand, as
frequently used variables were allocated to registers, the number of instructions aside
from those used for saving and restoring registers decreased.

At a finer grained level, Grochowki and Annavaram [22] analyzed energy per
instruction (EPI) based on an Intel processor. They described Energy per Instruction
(EPI) as a measure of the amount of energy expended by a microprocessor for each
instruction that the microprocessor executed. They explained the factors that affected

a microprocessor’s EPl and derived a historical comparison of the trends in EPI over

multiple generation of Intel processors.



Chapter 3

Proposed Methodology
3.1 Proposed Methodology

To explore the operating characteristics of parameter and variable allocation at the
instruction level, a C program is first compiled into assembly code by using a compiler
to inspect the clock cycle and the number of instructions. The total number of
instructions used by the entire program can then be converted to energy consumption,
which is measured as energy per instruction (EPI). The unit of EPI is expressed in Joules.

According to [22], the value of EPI of selected Intel CPU were investigated. The total

energy consumption of the program can be calculated using the formula below.

Total energy consumption = EPI x Total number of instructions

Figure 3.1 shows a calculation example of the total number of instructions in
pseudo code of assembly language. The left column shows instruction set which is
compiled from a C program. Then a simple count is made from first to last

instructions. The total number of instructions is n + m.

Label 1: Count
Instruction A 1
Instruction B 2
Instruction C n

Label 2:

Instruction D 1

Instruction E 2

Instruction F m
Total number of Instructions n+m

Figure 3.1 Find total of instruction
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This study uses the total clock cycle for estimating the speed of the program. Each
machine instruction is examined to determine the number of clock cycles. Each
instruction has different numbers of clock cycles depending on the type of instruction
as shown in the example in Table 3.2. Reciprocal throughput (RT) is the average
number of core clock cycles per instruction for a series of independent instructions of
the same kind in the same thread [23]. Latency (L) of an instruction is the delay that
the instruction generates in a dependency chain. The measurement unit is clock cycles
[23]. The total clock cycles of every instruction can be summed for measuring

instruction speed.

Table 3.1 Clock cycles for an instruction

Clock cycle Clock cycle

Instruction

(RT) (L)
MOV r,m 1 2
PUSH r 1 3
POP m 15 2
INC 0.33 1
ADD r,r 0.33 1

This research will focus on finding energy consumption of allocating variable in local,
shared variable, and register in C programming. The amount of energy consumed by
local variable allocation is analyzed by comparing shared variable and register memory
utilization. For this study, a set of programs that perform the same functionality are
written in three different ways. Each program uses either local, global, or register

variables. Figure 3.1 illustrates such an arrangement.
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C Program

( ) ( ) ( )
Local var Shared var Register var
|\ J . J |\ J
\ 4 v \ 4
4 N 4 N 4 N
Assembly Assembly Assembly
Instruction Instruction Instruction
& J . J & J
\ 4 47 v
4 N 4 N 4 N
Energy Energy Energy
Consumption Consumption Consumption
& J - J & J

Figure 3.2 A comparative energy consumed by local variable, shared

variable and register variable

The above study demonstrates the impact of memory utilization to the
energy consumption as well as the speed of program execution.

There are two scenarios to be investigated, namely, (1) local variable vs. shared
variable, and (2) local variable vs. register variable. A collection of C programs are set
up to assist in the analysis. The following case studies will be carried out to exercise
both scenarios. Each case study will show the energy consumption and the total clock
cycle used. There are 4 cases of programming function deployed in each scenario:

1. Function calls

2. Repeated function calls

3. Function calls to function

4. Repeated function calls to function

The explanation of these 4 cases is described in details.



1. Function calls. This is the simplest exercise for parameter allocation, access, and
retrieval. Normally, a programmer will use local variables declared in the main
function. These variables will subsequently be passed to other functions in the
form of parameters. In scenario (1), program modification is done by moving local

variables to shared variables, thereby no parameter passing is needed. In

scenario (2), the register keyword is simply added to proper local variables.

In the ‘Shared variable’ column of Figure 3.3, the variable declaration is moved

out of the main scope to shared variable or global scope. Then the parameters of the

function can be removed.

Local

Shared variable

Register

Declare function

(type,..)

Main function

Declare local variable

Statement

Call function
(argument A,..)

End main

Function (parameter
AN
}

Declare function (type,..)

Declare global variable

Main function
Statement
Call function ()

End main

Function ()}

}

Declare function

(type,..)

Main function

Declare register local
variable

Statement

Call function
(argument A,..)

End main

Function (parameter
A0
}

The Figure 3.4 shows a simplified version of the instruction set and its corresponding

executing cycle.

executing the program is used to illustrate how energy consumption is calculated. In

Figure 3.3 Case 1 Pseudocode - function calls

The number of instructions and the clock cycles consumed in

this case, finding the total number of instructions can be obtained from
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Total number of instructions = n + m

The energy consumption in Joules can be calculated as:

Energy consumption = (n + m) x EPI

Total clock cycle of RT and become

Total clock cycle (RT) = x +y

and L) =a+b
main: Count Clock (RT) Clock (L)
Instruction A 1 1 1
Instruction B 2 2 2
Instruction C n X a
Label:
Instruction D 1 1 1
Instruction E 2 2 2
Instruction F m y b

Figure 3.4 Example of instruction in case (1)

2. Repeated function calls. The objective is to find code segments that exhibit high
energy consumption in a program and the behaviour of the associated
variables/parameters. As such, program improvement can be directed to the right
area where energy consumption can be reduced. This case intentionally

contrives repeated calls to function for this particular purpose.
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In Figure 3.5 the pseudocode shows a loop containing a function inside within

the main function. This will call a function up to n times.

Local

Shared variable

Register

Declare function (type,..

Main

Declare local variable
Statement

Foriton

Call function(argument
End for

End main

Function (parameter A,...

}

A,..)

i

Declare function (type,..)

Declare global variable

Main
Statement
Foriton
Call function()
End for

End main

Function (){

}

Declare function (type,..)

Main

Declare register local
variable

Statement

Foriton

Call function(argument A,...)

End for

End main

Function (parameter A,...{

}

Figure 3.5 Case (2) Pseudocode - Repeated function calls

A similar case study can be seen in Figure 3.6. However, this case considers the loop

depending on how the instruction jump to the next label as shown below.

In this case, the total number of instructions is:

Number of total instruction = n + m + 1 (k)*i

where i is the number of repetitions depending on the conditions.

The energy consumption in Joule can be calculated as

Energy consumption = n + m + 1 (k)*i x EPI

Total clock cycles of RT and L become
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Total clock cycle (RT) = x +y + 1 (2)%i

And L)=a+b+1 (%

Main: Count Clock (RT) | Clock (L)
Instruction A 1 1 1
Instruction B 2 2 2
Instruction C n X a

Label:

Instruction D ! 1 1
Instruction E 2 2 2
Instruction F m y b

Label:

Instruction CMP 1 1 1
Instruction JMP Label 2 2 2
Instruction G k 7 C

Figure 3.6 Example of instruction in case (2)

3. Function calls to function. This case is intended to investigate the cascading
effect of energy consumption consumed by parameter allocation and reference.
The complication of such operations, i.e., stack, shared variable, and register

variable, at the instruction level are systematically measured and compared.

Figure 3.7 shows the pseudocode of function calls to other functions. This
scenario might occur if a program has many subroutines or functions. In this

simple case, function 1 calls function 2.
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Local

Shared variable

Register

Declare function (type,..)

Main function

Declare local variable
Statement

Call function1 (argument A,..

End main
Functionl (parameter A,...{

Call function2(argument A)

Function2 (parameter B,...){

}

Declare function (type,..)

Declare global variable

Main function
Statement
) Call function1()

End main
Function1 ()}

Call function2()

Function2 (){
}

Declare function (type,..)

Main function

Declare register local

variable

Statement
Call functionl(argument A,...)

End main
Functionl (parameter A,.. X

Call function2(argument A)

Function2 (parameter B,...{

}

Figure 3.7 Case (3) Pseudocode - function calls to other functions

Figure 3.8 shows a similar case study. There are more functions to be called which

include function labels.

In this case, finding total number of instructions is

Number of total instruction = n + m + k

The energy consumption in Joule can be calculated as

Energy consumption = (n + m +k) x EPI

Total clock cycles of RT

and L become
Total clock cycle (RT) =x+y + z
And

(L) = a+b+c




Main: Count Clock (RT) | Clock (L)
Instruction A 1 1 1
Instruction B 2 2 2
Instruction C n X a

Label: function
Instruction D 1 1 1
Instruction E 2 2 2
Instruction F m y b

Label: function
Instruction G 1 1 1
Instruction H 2 2 2
Instruction | k z C

Figure 3.8 Example of instruction in case (3)
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4. Nested repeated function calls to function. This case culminates all of the above

complications to demonstrate as close to actual operation as possible.

Figure 3.9 shows pseudocode that contains the loop calls containing a function

call to another function.
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Local

Shared variable

Register

Declare function (type,..)

main function()
Declare local variable
Statement

Foriton

Call functionl (argument

A,..)
End for

End main

Function1
AN
Call
function2(argument B,...)

}

Function2
B,..X
}

(parameter

(parameter

Declare function
(type,..)
Declare global

variable

main function()
Statement
Foriton

Call function1()
End for

End main

Function1 (){
Call function2()

Function2 ()
}

Declare function

(type,..)

main function()

Declare register local
variable

Statement

Foriton

Call function1(argument
A,..)

End for

End main

Function1
AN
Call

(parameter

function2(argument B,...)

}

Function2
B,. X
}

(parameter

Figure 3.9 Case (4) Pseudocode - Nested repeated function

calls to another function

Figsure 3.10 shows a similar case study. This case will considers the number of

repetitions (i) depending on how the instruction jump to the next label as below.
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In this case, the total number of instructions is:
Number of total instruction =n + k+ 1 + (p + m) * i

where i is the number of repetitions depending on the condition.

The energy consumption in Joule can be calculated as:

Energy consumption =n + k + 1 + (p + m) * i x EPI

Total clock cycle of RT and L become

The total clock cycle RT) =x+z+ 1 + (v +y) * |

And L=a+c+1+d+b)*i

Main: Count Clock (RT) | Clock (L)

Instruction A 1 1 1

Instruction B 2 2 2

Instruction C n X a
Label:

Instruction D 1 1 1

Instruction E 2 2 2

Instruction F m y b
Label:

Instruction CMP 1 1 1

Instruction JMP Label 2 2 2

Instruction G k z C

Label:

Instruction H 1 1 1

Instruction | 2 2 2

Instruction J P v d

Figure 3.10 Example of instruction in case (4)
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Figure 3.11 shows sample C code to demonstrate case study 1. This code will be
analyzed to determine the energy consumption and clock speed. In this program,

variable m is declared as a local variable being passed by a function as a parameter.

#include <stdio.h>
int function (int);
int main() {

int m,r;

m = 10;

r = func (m) ;
return 0;

}

int func (int m) {
return m+1;

}

Figure 3.11 Simple C source code using local variable

The C source code is compiled into assembly instructions and is shown in Table 3.3.
The first column lists the instruction set. There is a main function label “ main:” and
function label “ func:” which contains the instructions used inside the function. To
calculate the total number of instructions, just simply count instructions in “_main:”

3

and “ func:” from first to last instruction. There are 13 and 5 instructions in “ _main”
and “ func” functions, respectively. The total number of instructions is 18. In this
research, the experiment used Intel CPU and the EPI value was set to 11 nJ according
to [22] and The energy consumption becomes 18 x 11 = 191 nJ.

The last 2 columns “Clock (RT)” and “Clock (L)” represent Reciprocal Throughput
and Latency. The clock value used by each instruction can be taken from reference

data sheets [23]. For example, the mov m,i instruction takes 1 RT clock cycle and L

with 3 clock cycles. In the _main: function, clock (RT) is 11.99 and L is 18. In “_func:”
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clock (RT) is 4.33 and L is 6. The total of clock cycles (RT) and L are 16.65 and 24,
respectively.

Table 3.2 Assembly instruction and number of count

Instruction set Instruction | Clock (RT) | Clock (L)
_main:
push ebp 1 1 3
mov ebp, esp 2 0.33 1
and esp, -16 3 0.33 1
sub esp, 32 4 0.33 1
call ___main 5 2
mov DWORD PTR [esp+28], 10 6 1 3
mov eax, DWORD PTR [esp+28] % 1 2
mov DWORD PTR [esp], eax 8 1 3
call _func 9 2
mov DWORD PTR [esp+24], eax 10 1 3
mov eax, 0 11 0.33 1
leave 12 1
ret 13 1
_func:

push ebp 1 1 3
mov ebp, esp 2 0.33 1
mov eax, DWORD PTR [ebp+8] 3 1 2
pop ebp a4 1
ret 5 1

Total 18 16.65 24

Total Energy Consumption 191 nJ
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Other examples on shared variable and register variable for memory access are
carried out at in a similar manner. The next section will describe an experimental and

its results.
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Chapter 4

Experimental Results and Discussions
4.1 Experimental procedure

A tool called KP program was built to help analyze the test programs. The tool first
reads an input C program submitted by the user under predefined test scenarios. It
locates local variables and function parameters and prompts the user to reallocate or
alter them to shared variables or register variables as mandated by the test scenarios.
A lookup table is created by the tool to hold all the data selected by the user for
reallocation or alteration, whichever applies. The tool then compiles both the original
and the modified C programs to produce assembly output. In so doing, all instructions
are available for determining clock cycles and the EPI equivalent.

Figure 4.1 depicts the design of KP tool. User interface includes: (1) a menu bar for
various functionalities such as reset, compile (2) a browse button for selecting an input
C program file, and (3) an analyze button for analyzing the input program. The left
panel (4) of the tool shows the C program and the right panel (5) shows the assembly
instructions. Results of the analysis are shown at the bottom of the right panel (6). Use

of this tool will be described in the next section.
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&= Kp (== =]
1 File Action Help
Please select your C program
2 3
C Code Assembly Code
Cur Recommendation

Figure 4.1 KP tool functionality

To run test programs, the operating environment set up for the experiment was
hosted by a laptop computer with Intel Core 2 Duo @ 2.00GHz 65 nm, 3 GB RAM
running Windows 7. The tool was coded in C# using Microsoft Visual Studio version
2010. All test programs were compiled into Assembly instructions with MinGW [24]
which is a ported GNU Compiler collections (GCC). All assembly instructions were
based on Intel.

The experiment analyzed 24 sample programs which were divided into 2 sets. In
the first set, there were 12 programs with 3 programs for each of the four cases outlined
in the previous chapter. For the second set, there were also 12 programs containing

more complex code that included more function parameters.

The rationale behind each case study is to determine the amount of energy
consumed by program instructions under different functions and to analyse the

advantages of using each memory access type (local, shared variable, and register).
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The experiment began with simple function calls as seen in case study (1). The tool
analyzed and compared clock cycles used, and the energy consumed in each scenario.

Code analyses are shown below.

4.2 First case study (1) - Function call

The C code uses local variables as shown below.

#include <stdio.h>
int funcl(int, int, int );
int main(void)

int xint,yint,zint,res1;

xint = 5;
yint = 10;
zint = 15;

resl = funcl(xint, yint, zint);
return 0;

}

int funcl(int x, int y, int z){
int temp1,;

templ =x+y +z

return templ,;

}

Figure 4.2. Case 1 - C source code using local variable

The outputs obtained from KP tool are depicted in Figure 4.3
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- KP (=)= =]
File  Action Help
Please select your C program
CMUsers\KrisadaSkyDrive \Documents ' Thesis_bookC: Browse Analyze
#include =stdio.h= _main: A
push ebp
int funci( i\F mov  ebp, esp
and esp, -16
int main(void){ sub esp, 32
call main
int xint,yint,zint,res1; mov  DWORD PTR [esp+23], 5
®int = 5; mov  DWORD PTR [esp+24], 10
yint = 10; mov  DWORD PTR [esp+20], 15
zint = 15; mow eax, DWORD PTR [esp+20,
mow DWORD PTR [esp+8], gax.
1 = funct . mow gax, DWORD PTR [esp+24
res unci( )i mov ~ DWORD PTR [esp+4], eax
. mow gax, DWORD PTR [esp+28
Eeturn 0; mowv DWORD PTR [esp], eax
call _funci
. mow DWORD PTR [esp+16], ea»
int funci( 5L — eax, 0
. leave
int templ; ret
templ = x + v + 2; funcl:
. push ebp
return templ; mow ebp, esp
sub esp, 16
maow gax, DWORD PTR [ebp+12
mow edx, DWORD PTR [ebp+2]
add gax, edx
add eax, DWORD FTR [ebp+16 w
< >
Total instruction: 30
Total clock cycle(RT): 27.31
Total clock cycle(L): 39
Energy Consumption: 330 nl
Loaded File

Figure 4.3 KP running case study 1 - local variable

The C program in this figure the contained 30 instructions that utilized 27.31 clock
cycles (RT) and 39 clock cycles (L). Energy consumption was approximately 330 nJ. In

Figure 4.4 shows the entire instruction set which is compiled from C program.



_main:
push
mov
and
sub
call
mov
mov
mov
mov
mov
mov
mov
mov
mov
call
mov
mov
leave
ret

_funcl:
push
mov
sub
mov
mov
add
add
mov
mov
leave

ret

ebp

ebp, esp

esp, -16

esp, 32

___main

DWORD PTR [esp+28], 5
DWORD PTR [esp+24], 10
DWORD PTR [esp+20], 15
eax, DWORD PTR [esp+20]
DWORD PTR [esp+8], eax
eax, DWORD PTR [esp+24]
DWORD PTR [esp+4], eax
eax, DWORD PTR [esp+28]
DWORD PTR [esp], eax
_funcl

DWORD PTR [esp+16], eax
eax, O

ebp

ebp, esp

esp, 16

eax, DWORD PTR [ebp+12]
edx, DWORD PTR [ebp+8]
eax, edx

eax, DWORD PTR [ebp+16]
DWORD PTR [ebp-4], eax
eax, DWORD PTR [ebp-4]

Figure 4.4 case study 1 - assembly instruction as shown in the KP tool
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From the experiment whose results were shown in Figure 4.3, the KP tool highlights

the C code in the left panel in green colour when the parameters should be removed.
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Figure 4.5 shows the result of this code change where local variables are moved out

of the main function. In other words, these variables now become shared variables.

#include <stdio.h>
int xint,yint,zint,res1;
void func1(void);

int main(void){

xint = 5;

yint = 10;
zint = 15;
func1();

return 0;

}

void func1(void){
res1 = xint + yint + zint;

}

Figure 4.5 Case study 1 - C source code using shared variable

The KP tool in Figure 4.6 shows the analysis of the modified C program using shared

variable.
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& KP (== |[=]
File  Action Help
Pleaze select your C program
C:A\Users Krisada“SkyDrive \Documents'. Thesis_boolC: Browse Analyze
ginclude =stdio.h=> _main:
push ebp
int xint,vint,zint,res1; mowv ebp, esp
void funcl{void); and e=p, -16
call ____main
int main{void){ mov DWORD PTR _xint, 5
mov DWORD PTR _vint, 10
®int = 5; mov DWORD FTR _zint, 15
yint = 10; call _funci
zint = 15; mowv gax, 0
leave
funci(); ret
_funci:
return 0; push ebp
* mowv ebp, esp
void funcl(wvoid){ mov edw, DWORD PTR _xint
rezl = xint + yint + zint; mowv eax, DWORD PTR _vyint
B add edx, eax
mowv eax, DWORD FTR _zint
add eax, edx
mov DWORD FTR _resl, eax
pop ebp
ret
Total instruction: 21
Total clock cycle(RT): 18.98
Total clock cycle(L): 25
Energy Consumption: 231 nl
Loaded File

Figure 4.6 KP running case study 1 — Shared variable

The program in Figure 4.6 contains 21 instructions that utilize 18.98 clock cycles (RT)
and 25 clock cycles (L) and the energy consumption is about 231 nJ of energy.

Next, the experiment followed scenario 2 where local variables were added using
the keyword register. All these variables were stored in the register as shown in Figure

4.7
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#include <stdio.h>
int funcl(int, int, int );
int main(void){

register int xint,yint,zint;

int resl;
xint = 5;
yint = 10;
zint = 15;

resl = funcl(xint, yint, zint);
return 0O;

}

int funcl(int x, int y, int zX
register int temp1;

templ =x+y +z

return templ;

}

Figure 4.7 Case study 1 - C source code using register

The KP tool in Figure 4.8 shows similar analysis of the previous experiment for the

modified C program using register variables.
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& KP (== |[=]
File  Action Help
Fleasze select your C program
C:A\Users Krisada“SkyDrive \Documents'. Thesis_boolC: Browse Analyze
ginclude =stdio.h=> _main: ~
push ebp
int funcifint , int, int ); mowv ebp, esp
push edi
int main{void){ push esi
push ebx
register int xint,yvint,zint; and esp, -16
int resl; sub esp, 32
wint = 5; call ___main
yint = 10; mowv eba, 5
zint = 15; maov esi, 10
mowv edi, 15
resl = funcl{xint, vint, zint); mov DWORD FTR [esp+2], edi
mov DWORD PTR [esp+4], esi
return 0; mowv DWORD PTR [esp], ebx
3 call _funcl
mowv DWORD FTR [esp+28], eas
int funci(int x, int v, int 2){ maov gax, 0
lea espn, [ebp-12]
register int templ; pop ebx
templ = x + v + ; pop esi
pop edi
return templ; pop ebp
ret
_funci:
push ebp
mov ebp, esp
push ebo W
< >
Total instruction: 35
Total clock cycle(RT): 28.63
Total clock cycle(L): 35
Energy Consumption: 385 nl
Loaded File

Figure 4.8 KP running case study 1 — register variable

The C program in Figure 4.8, contained 35 instructions that utilized 28.63 clock
cycles (RT) and 35 clock cycles (L). Energy consumption was approximately 385 nJ.
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The second case, case (2) was conducted in the same manner the previous case. The

C program using local variables was first tested. Then variables using shared variable

was performed, followed by register variables.

L
File  Action Help

Please select your C program

KP

C\Users Krisada" SkyDrive'\Documents' Thesis_boak\C: Browse

ginclude =<stdio.h=
int funci(int , int, int J;
int main{void){

int xint,vint,zint,res1,i;

xint = 5;
vint = 10;
zint = 15;

for{i=0;i<5;i++)

resl = funcl{xint, yvint, zint);
return 0;

¥ o

int funci(int x, int v, int 2){

int templ;
templ = x + v + z;

return temp1;

Loaded File

_main:

L3:

L2:

_funci:
£

push
mov
and
sub
call
mov
mov
mov
mov
imp

mov
mov
mov
mov
mov
mov
call

mov
inc

cmp
jle
mov
leave
ret

(==
Analyze
ebp
ebp, esp
esp, -16
esp, 48
main

DWORD FTR [esp+40], 5
DWORD PTR [esp+36], 10
DWORD FTR [esp+32], 15
DWORD PTR [esp+44], 0
L2

eax, DWORD FTR [esp+32’
DWORD FTR [esp+8], eax
eax, DWORD FTR [esp+36’
DWORD PTR [esp+4], eax
eax, DWORD FTR [esp+40]
DWORD FTR [esp], eax
_funci

DWORD FTR [esp+28], ear
DWORD PTR [esp+44]

DWORD PTR [esp+44], 4
L3
eax, 0

Total instruction: 124

Total clock cycle(RT): 112.27
Total clock cycle(L): 220
Energy Consumption: 1364 nl

Figure 4.9 KP running case study 2 — local variable

The C program in Figure 4.9 contained 124 instructions that utilized 112.27 clock

cycles (RT) and 220 clock cycles (L). Energy consumption was approximately 1364 nJ.

The C code was modified using shared variable as shown in Figure 4.10.



& KP
File  Action Help

Please select your C program

CAUsershKrisada SkyDrive \Documents' Thesis_bookMC: Browse

]
[

Analyze

zinclude =stdio.h= _main:

int xint,yint,zint,res1;
void funcl(void);

int main(void){
int i;

xint = 5;

vint = 10;

zint = 15;

L3:
for{i=0;i<5;i++)

{

funci(); L2:
}

return 0;

}

void funcl (void){

resl = xint + yint + zint;
_funci:

push
mow
and
sub
call
mow
mow
mow
mow
jmp

call
inc

cmp
jle
mow
leave
ret

push
maow
mow
mow
add

mow
add

mow

.

ebp

ebp, esp

esp, -16

esp, 16

___main

DWORD PTR _xint, 5
DWORD PTR _yint, 10
DWORD PTR _zint, 15
DWORD PTR [esp+12], O
L2

_funcl
DWORD PTR [esp+12]

DWORD PTR [esp+12], 4

L3
eax, 0

ebp

ebp, esp

edx, DWORD PTR _xint
eax, DWORD PTR _yint
edx, eax

eax, DWORD PTR _zint
gax, edx

DWORD PTR _resl, eax
ahn

L

Loaded File

Total instruction: 84

Total clock cycle(RT): 72.27
Total clock cycle(L): 70
Energy Consumption: 924 nl

Figure 4.10 KP running case study 2 — shared variable
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The C program In Figure 4.10 contained 84 instructions that utilized 72.27 clock

cycles (RT) and 70 clock cycles (L). Energy consumption was approximately 924 nJ.

The C code was modified by simply adding the keyword register.



Loaded File

& KP (=)= |
File  Action Help
Please select your C program
CAUsershKrisadaSkyDrive\Documents Thesis_bookC: Browse Analyze
#include =stdio.h= _main: A
push ebp
int funci(int , int , int ); maow ebp, e=p
push ed|
int main(woid){ push esi
push ebx
register int xint,yint,zint,res1; and esp, -16
int i; zsub gsp, 32
call ___main
xint = 5; mow ebx, 5
yvint = 10; mow esi, 10
zint = 15; mow edi, 15
mow DWORD PTR [esp+28], 0
for{i=0;i<5;1++) mp L2
L3:
resl = funcl(ant, yint, zint); mow DWORD PTR [esp+8], edi
T mow DWORD PTR [esp+4], esi
return 0; mow DWORD FTR [esp], ebx
* call _funci
inc DWORD PTR [esp+28]
int funci(int %, int v, int 2)4{ L2:
cmp DWORD PTR [esp+28], 4
register int templ; jle L3
templ = x + v + z; mow eax, 0
lea esp, [ebp-12]
return templ; pop ebx
pop esi
pop edi "
£ >

Total instruction: 116

Total clock cycle(RT): 98.91
Total clock cycle{L): 117
Energy Consumption: 1276 nJ

Figure 4.11 KP running case study 2 — register variable

34

The C program in Figure 4.11 contained 116 instructions that utilized 98.91 clock

cycles (RT) and 117 clock cycles (L). Energy consumption was approximately 1276 nJ.

4.4 Third case study (3) - Function calls Function

The third case (3) was carried out in the same manner as previous cases. The C

program using local variables was first tested. The program was then modified using

shared variable and register variables.



tempZ =a+ b + o
return temp2;

}

Loaded File

- KP (==
File  Action Help
Please select your C program
CAUsers'\Krisada"Sky DriveDocuments Thesis_book"C: Browse Analyze
#include <stdio.h= _main: ~
push ebp
int funcl{int , int, int J; mov ebp, esp
int func2(int , int , int J; and esp, -16
sub esp, 32
int main{void){ call ___main
mov DWORD FTR [esp+28], 5
int xint,yint,zint,res1; mov DWORD PTR [esp+24], 10
mowv DWORD FPTR [esp+20], 15
wint = 5; mov eax, DWORD PTR [esp+20
vint = 10; mov DWORD PTR [esp+&], eax
zint = 15; mov eax, DWORD FTR [esp+24.
mov DWORD FTR [esp+4], eax
resl = funcl(xint, yint, zint); mov eax, DWORD PTR [esp+28.
mov DWORD FTR [esp], eax
return 0; call _funci
mov DWORD FTR [esp+16], ea»
int funcl{int x, int v, int 2){ mov eax, 0
leave
int templ; ret
int num; _funcl:
num = 2; push ebp
templ = num * funcz{x, v, z); mov ebp, esp
return templ; sub esp, 40
T mov DWORD FTR [ebp-12], 2
mov eax, DWORD FTR [ebp+16
int func2(int a, int b, int c){ mov DWORD FTR [esp+2], eax
mov eax, DWORD PTR [ebp+12 w
int temp?2; < Tt T T Tt - 3

Total instruction: 46
Total clock cycle(RT): 42.97
Total clock cycle(L): 80

Energy Consumption: 506 nJ

Figure 4.12 KP running case study 3 — local variable
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The C program in Figure 4.12 contained 46 instructions that utilized 42.97 clock

cycles (RT) and 80 clock cycles (L). Energy consumption was approximately 506 nJ.

The C code was modified using shared variable as shown in Figure 4.13
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- KP (=)= =]
File  Action Help
Please select your C program
CMUsers\KrisadaSkyDrive \Documents ' Thesis_bookC: Browse Analyze
#include =stdio.h= _main: A
push ebp
int xint,yint,zint,num,temp2,res1; mow ebp, esp
void funcl{void); and esp, -16
int func2(woid); call ___main
mow DWORD PTR _xint, 5
int main{wvoid){ maow DWORD PTR _yint, 10
mow DWORD PTR _zint, 15
xint = 5; call _funcl
yvint = 10; mow eax, 0
zint = 15; leave
ret
funci(); _funci:
push ebp
return 0; Mo ebp, esp
T sub esp, 8
Moy DWORD PTR _num, 2
void funcl{void){ call _funcz
num = 2; mow edx, DWORD PTR _num
resl = num * func2(); imul eax, edx
T mow DWORD PTR _resl, eax
leave
int func2(void){ ret
temp2 = xint + yint + zint; _func2:
return temp2; push ebp
T mow ebp, esp
mow edx, DWORD PTR _xint
mow eax, DWORD PTR _yint
add edx, eax o
[Tl aaw MWhDMN DT =imt
Total instruction: 32
Total clock cycle(RT): 29.64
Total clock cycle(L): 48
Energy Consumption: 352 nl
Loaded File

Figure 4.13 KP running case study 3 — shared variable

The C program in Figure 4.13 contained 32 instructions that utilized 29.64 clock
cycles (RT) and 48 clock cycles (L). Energy consumption was approximately 352 nJ.
The C code was modified by adding the keyword register in Figure 4.14
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- KP (=)= =]
File  Action Help
Please select your C program
CMUsers\KrisadaSkyDrive \Documents ' Thesis_bookC: Browse Analyze
#include =stdio.h= _main: A
push ebp
int funci(int , int, int J; mow ebp, esp
int funcz(int , int, int J; push edi
push esi
int main(void){ push ebx
register int wint,yint,zint,res1; and esp, -16
sub esp, 16
xint = 5; call ___main
yvint = 10; mow ebx, 5
zint = 15; mow esi, 10
mow edi, 15
resl = funcl(xint, yint, zint); mow DWORD PTR [esp+8], edi
mow DWORD PTR [esp+4], esi
return 0; mowv DWORD PTR [esp], ebx
T call _funci
Moy eax, 0
int funci(int x, int v, int 2)4{ lea esp, [ebp-12]
pop ebx
register int num,tempi; pop esi
num = 2; pop edi
templ = num * func2(x,v,z); pop ebp
return tempi; ret
B _funcil:
push ebp
int funcz(int a, int b, int c){ mow ebp, esp
push ebx
register int temp2; sub esp, 20 W
temp2 =a+ b+ c; < T »
return temp2;
: Total instruction: 52
Total clock cycle(RT): 44.28
Total clock cycle(L): 72
Energy Consumption: 572 nl
Loaded File

Figure 4.14 KP running case study 3 — register variable

The original C program in the Figure 4.14 contained 52 instructions that utilized
44.28 clock cycles (RT) and 72 clock cycles (L). Energy consumption was approximately
572 nJ.

4.5 Fourth case study (4) - Nested repeated Function calls

The fourth case (4) performed repeated function calls. The C program using local
variables was first tested and then modified using shared variable and register

variables.
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] KP (=] = |[=]

File  Action Help

Please select your C program

C:JUsers'Krisada SkyDrive \Documents' Thesis_book C- Browse Analyze

zinclude «stdio.h= A |_main: h
push ebp

int funcii 1 mod'«' ebp, esp

: . an esp, -16

int func2( 1 =ub ESD: 8
call main

int main(void){ mov  DWORD PTR [esp+40], 5

mow DWORD FTR [esp+36], 10
mow DWORD FTR [esp+32], 15
mow DWORD PTR [esp+44], 0

int xint,yint,zint,res1,i;

xint = 5; ]
yint = 10; L3 imp L2
zint = 15; '

mow eax, DWORD PTR [esp+32
Qi< mow DWORD FTR [esp+8], eax
]_C{DH:' 0ji=5ji++) mow eax, DWORD PTR [esp+36
mow DWORD PTR [esp+4], eax

resl = funci( 1 mov  eax, DWORD PTR [esp+40’
¥ mow DWORD FTR [esp], eax
return 0; call _funct
mow DWORD PTR [esp+28], ea»
int funci( M inc DWORD PTR [esp+44]
L2:
!nt templ; cmp DWORD PTR [esp+44], 4
int num; jle L3
num = 2; mow eax, 0
templ = num * func2( iF leave
return templ; ret
1 _funci: . . W
£ >
int func2( §E
Total instruction: 194
int temp2; Total clock cycle(RT): 185.24
temp2 =a+ b + c; Total clock cycle(L): 384
[Eturn temp2; v |Energy Consumption: 2134 nl
Loaded File

Figure 4.15 KP running case study 4 — local variable

The C program in Figure 4.15 contained 194 instructions that utilized 185.24 clock
cycles (RT) and 384 clock cycles (L). Energy consumption was approximately 2134 nJ.

The C code in Figure 4.18 was now modified to use shared variable.
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& KP (=)= =]
File  Action Help
Please select your C program
CMUsers\KrisadaSkyDrive \Documents ' Thesis_bookC: Browse Analyze
#include =stdio.h= _main: A
push ebp
int xint,yint,zint,num,temp2,res1; mow ebp, esp
void funcl{void); and esp, -16
int func2(wvoid); sub esp, 16
call ___main
int main{wvoid){ maow DWORD PTR _xint, 5
int i; mow DWORD PTR _vint, 10
mow DWORD PTR _zint, 15
xint = 5; mow DWORD PTR [esp+12], O
vint = 10; imp L2
zint = 15; L3:
call _funci
for{i=0;i<5;i++) inc DWORD PTR [esp+12]
{ L2:
funci(); cmp DWORD PTR [esp+12], 4
B jle L3
mow eax, 0
return 0; leave
ret
_funci:
void funcl (void){ push ehp
num = 2; mow ebp, esp
resl = num * func2(); sub esp, 8
} mowv DWORD PTR _num, 2
call _func2
int func2(void){ mow edx, DWORD PTR _num
temp2 = xint + yint + zint; imul eax, edx
return temp2; mow DWORD FTR _resl, eax -
} lazira
Total instruction: 139
Total clock cycle{RT): 125.57
Total clock cycle(L): 220
Energy Consumption: 1529 nJ
Loaded File

Figure 4.16 KP running case study 4 — shared variable

The C program in Figure 4.16 contained 139 instructions that utilized 125.57 clock
cycles (RT) and 220 clock cycles (L). Energy consumption was approximately 1529 nJ.

Finally, the C code was modified using register variables as seen in Figure 4.17.
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register int temp2;
temp2 =a + b + g;
return temp2;

¥

Loaded File

= KP (=12
File  Action Help
Please select your C program
C:WUsers\Krisada"Sky Drive \Documents* Thesis_bookC: Browse Analyze
#include =stdio.h= A |_main: A
push ebp
int funcifint , int, int J; mowv ebp, esp
int funcz(int , int, int J; push edi
push es
int main{void){ push ebx
register int xint,yint,zint,res1; and esp, -16
int i; sub esp, 32
call ___main
xint = 5; mov eho, 5
yint = 10; mov esi, 10
zint = 15; mov edi, 15
mov DWORD PTR [esp+28], 0
for(i=0;i<5;i++) imp L2
L3:
resl = funcl(xint, vint, zint); mowv DWOQORD FTR [esp+8], edi
3 mowv DWORD PTR [esp+4], esi
return 0; mowv DWORD FTR [esp], ebx
¥ call _funcl
int funcifint x, int v, int 2){ inc DWORD FTR [esp+28]
L2:
register int num,tempi; cmp DWORD PTR [esp+28], 4
num = 2; jle L3
templ = num * func2(x,v,z); mov gax, 0
return templ; lea esp, [ebp-12]
pop ebx
pop es
int funcz(int a, int b, int ¢){ pop edi W
L4 >

Total instruction: 191

Total clock cycle(RT): 175.56
Total clock cycle(L): 318
Energy Consumption: 2101 nJ

Figure 4.17 KP running case study 4 — register variable

The C program in Figure 4.17 contained 191 instructions that utilized 175.56 clock

cycles (RT) and 318 clock cycles (L). Energy consumption was approximately 2101 nJ.

The tables below are the results from the first set experiments, categorized in 5

groups: 1) Number of instructions, 2) Energy consumption by allocation scheme, 3)

Number of clock cycle (reciprocal throughput (RT)), 4) Number of clock cycle (latency

(L)), and 5) Number of clock cycle (RT + L). The given scenarios are compared in

pairwise, namely, Shared variable Vs Local, Register Vs Local, and Shared variable Vs

Register).



Table 4.2 Energy consumption (nJ) by allocation schemes

Table 4.1 Number of instructions

Case Local Shared Register
1 30 21 35
2 124 84 116
3 46 32 52
a4 194 139 191
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C Shared VS Register Shared VS
ase Local Shared Register
Local VS Local Register
1 330 231 385 -30.00 % +16.67 % -40.00 %
2 1364 924 1276 -32.26 % -6.45 % -27.59 %
3 506 352 572 -30.43 % | +13.04 % -38.46 %
a4 2134 1529 2101 -28.35 % -1.55 % -27.23 %
Table 4.3 Number of clock cycle (RT) by allocation schemes
Shared VS Register Shared VS
Case Local Shared Register
Local VS Local Register
1 27.31 18.98 28.63 -30.50 % +4.83 % -33.71 %
2 112.27 12.27 98.91 -35.63 % -11.90 % -26.93 %
3 42.97 29.64 43.95 -31.02 % +2.28 % -32.56 %
a4 185.24 125.57 175.56 -32.21 % -5.23 % -28.47 %




Table 4.4 Number of clock cycle (L) by allocation schemes
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Shared VS Register Shared VS
Case| Local Shared Register
Local VS Local Register
1 39 25 35 -35.90 % -10.26 % -28.57 %
2 220 70 117 -68.18 % -46.82 % -40.17 %
3 80 48 70 -40.00 % -10.00 % -33.33 %
a4 384 220 318 -41.02 % -14.75 % -30.82 %
Table 4.5 Number of clock cycle (RT + L) by allocation schemes
Shared VS Register Shared VS
Case| Local Shared Register
Local VS Local Register
1 66.31 43.98 63.63 -33.68 % -4.04 % -30.88 %
2 332.27 142.27 21591 -57.18 % -35.02 % -34.11 %
3 122.97 77.64 113.95 -36.86 % -7.34 % -31.86 %
4 569.24 345.57 493.56 -39.29 % -13.29 % -29.98 %

Results from the Table 4.1 shows that in case (1) - function calls, shared variable

utilizes only a few number of instructions (21) while register variable uses a larger
number instructions (35). In case (4) - repeated function calls to function, shared
variable utilizes fewer instructions than others (139).

In Table 4.2, shared variable of case (1) exhibits a sizable savings (-30%), while
register variable shows a slightly higher consumption (+16.67%) than that of the local
variable. When comparing shared variable with register variable, it can be seen that
shared variable consumes less energy than register variable (-40%).

The results are different for repeated function calls (case 2), where shared
variable saves energy consumption (-32.26%), and register variable consumes less
energy than the original local variable (-6.45%), and shared variable saves more energy
(-27.59%) compared to register variable. As programs become more complicated,

savings on energy consumption are even more noticeable. The function calls to other
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functions (case 3) exhibits such benefits. Shared variable saves over -30.43% when
compared to local variable, while the number on register variable shows slightly higher
consumption (+13.04%) than local variable. Shared variable saves -38.46% energy
compared to register variable. For repeated function calls to other functions (case 4),
the numbers shows that shared variable uses -28.35%, while register variable uses -
1.55% and -27.23% when comparing shared variable with register variable.

Table 4.3 summarizes all the statistics taking only clock cycle (RT) factor into
account. Similar to previous tables, all variables are compared. In case (1), shared
variable is faster than local variable by -30.50%, register is slightly slower than local
variable by about +4.83%, while shared variable is faster than register variable by -
33.71%. When looking at case 4 which contains repetitions, the shared variable is still
faster than local variable (-32.21%), while register variable is faster than local variable
(-5.23%)

Table 4.4 shows clock cycle latency (L). In case (1), local variable has the
highest latency at about 39 cycles. Register is next at 35 cycles, and shared variable is
last at 25 cycles. Shared variable have fewer latency clock cycles (-35.90%) than local
variable, and register variable is even less at 10.26%. The results show that shared
variable is -28.57% when compared with register.

Table 4.5 shows the total clock cycle (L + RT). In case (1), Shared variable uses
-33.68% less than local variable and less than register -30.88%. Register variable also

expends less clock cycles (-4.04%) than local variable.
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Figure 4.18 Comparison of number of instruction (V) for all cases (X)

Figure 4.18 plots the results of Table 4.1 that shared variable surpasses other

schemes in all cases.
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Figure 4.19 Comparison of energy consumption (Y) for all cases (X)

Figure 4.19 plots the results of Table 4.2 that shared variable consumes the lowest

all cases, while the original local variable takes the highest in case (1) and (3).
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Figure 4.20 Comparison of clock cycle (RT) (Y) for all cases (X)

Figure 4.20 corresponds to Table 4.3. Note that local variable has the highest clock

values in case (1) and (3), while shared variable has the lowest values in every case.
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Figure 4.21 Comparison of clock cycle (L) (Y) for all cases (X)

Figure 4.21 corresponds to Table 4.4. Note that local variable has the highest clock

latency values in all cases.
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Figure 4.22 Comparison of clock (RT + L) (Y) for all cases (X)
Figure 4.22 corresponds to Table 4.5. Note that local variable has the highest RT+L

values in all cases.



1
local shared
Total Instruction 30 21
Total Energy 330 231
Consumption
Total Clock (RT)  27.31 18.98
Total Clock (L) 39 25
Total Clock (RT +
L) 66.31 43.98
2500
2000
1500
1000
500
A R
local shared register

1

B Total Instruction

2 3
register local shared register local shared
35 124 84 116 46 32
385 1364 924 1276 506 352
28.63 112.27 72.27 9891 4297 29.64
35 220 70 117 80 48
63.63 332.27 142.27 21591 122.97 77.64

B Total Energy Consumption

Table 4.6 Showing all results from 4 cases

shared shared

register local
2 3

Total Clock (RT)

Figure 4.23 corresponds to Table 4.6

register

® Total Clock (L)

a7

4
register local shared register
52 194 139 191
572 2134 1529 2101
4395 185.24 125.57 175.56
70 384 220 318

113.95 569.24 345.57 493.56

local

local shared

register
4

¥ Total Clock (RT +L)
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4.6 Discussion

The results obtained from the KP tool did not come as a surprise, as they were well-
established programming facts. The findings merely reinstated local, register, and
shared variable scoping principles. From the findings, shared variable reduced energy
consumption by approximately 30% in simple function calls, and around 30% in
nested function calls. Register variables, on the other hand, were effective only when
repetitive accesses were required. However, it was not as efficient as shared variable.
Energy consumption comparison between shared variable and register variables
reveals that the former saved approximately 40% and 27% in simple function calls
and nested function calls, respectively.

Table 4.6 and Figure 4.23 show an interesting finding that is rarely stated in the
literature regarding total energy consumption of different methods of variable scoping.
This experiment found that local variable consumed the most energy. From the
instruction level, it was apparent that stack process took considerable clock cycles
which resulted in high latency and energy consumption.

The shortfall of shared variable is due to memory access protection as it violates
information hiding principles in Software Engineering. The side effect of shared access
is what programmers should heed and practice with care. This is a tradeoff of using
shared variable over local variable during software design. Programmers have to
choose which direction will go, either saving energy consumption or preserve software
engineering principle. As such, they can choose proper variable type to access memory.
An straightforward example is the use of global static variable to make a variable
visible, yet prevents accidental access by code due to naming conflicts.

Another example is register variable that is often applied to repetitive accesses of
memory to reduce the energy consumption on stack pushes and pops in typical
parameter passing mechanisms.

To further reatfirm the above finding, the second set of programs were
experimented. They were more complicated, more parameter and more loops. The
tables below show the results from the second set of experiments. All sample C code

can be found in the Appendix A.



Table 4.8 Energy consumption by allocation scheme (set 2)

Table 4.7 Number of instructions (set 2)

Case Local Shared Register
1 37 29 a1
2 313 243 290
3 56 29 61
a4 495 374 481
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C Shared VS | Register VS | Shared VS
ase Local Shared Register
Local Local Register
1 407 319 451 -21.62 % 10.81 % -29.27 %
2 3443 2673 3190 -22.36 % -7.35 % -16.21 %
3 616 319 671 -48.21 % 8.93 % -52.46 %
4 5445 4114 5291 -24.44 % -2.83 % -22.25 %




Table 4.9 (RT) Number of clock cycle by allocation scheme (set 2)
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Shared VS Register Shared VS
Case Local Shared Register
Local VS Local Register
1 30.13 23.47 31.12 -22.10 % 3.29 % -24.58 %
2 243.39 180.09 215.08 -26.01 % -11.63 % -16.27 %
3 48.12 33.46 49.77 -30.47 % 3.43 % -32.77 %
a4 414.29 287.59 385.88 -30.58 % -6.86 % -25.47 %
Table 4.10 (L) Number of Clock cycle by allocation scheme (set 2)
Shared VS Register Shared VS
Case| Local Shared Register
Local VS Local Register
1 62 a4 54 -29.03 % -12.90 % -18.52 %
2 559 389 472 -30.41 % -15.56 % -17.58 %
3 98 60 88 -38.78 % -10.20 % -31.82 %
a4 892 603 765 -32.40 % -14.24 % -21.18 %
Table 4.11 (RT + L) Number of clock cycle (set 2)
Shared VS Register Shared VS
Case| Local Shared Register
Local VS Local Register
1 92.13 67.47 85.12 -26.77 % -7.61 % -20.74 %
2 802.39 569.09 687.08 -29.08 % -14.37 % -17.17 %
3 146.12 93.46 137.77 -36.04 % 571 % -32.16 %
a4 1306.29 890.59 1150.88 -31.82 % -11.90 % -22.62 %
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Figure 4.24 Comparison of number of instruction (Y) for all cases (X)

Figure 4.23 corresponds to Table 4.6. Note that shared variable has the lowest

values in every case.
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Figure 4.25 Comparison of energy consumption (Y) for all cases (X)

Figure 4.23 corresponds to Table 4.7. Note that shared variable has the lowest

values in every case.
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Figure 4.26 Comparison of clock cycle (RT) for all cases (X)

Figure 4.23 corresponds to Table 4.8. Note that register variable has lower values

than local variable for cases (2) and (4).
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Figure 4.27 Comparison of clock cycle (L) (Y) for all cases (X)

Figure 4.23 corresponds to Table 4.9. Note that local variable has the highest values

in every case.
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Figure 4.28 Comparison of clock cycle (L+RT) (Y) for all cases (X)
Figure 4.23 correspond to Table 4.10. Note that local variable has the highest values

in every case. All the results from set 2 are similar to the previous discussion.
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Chapter 5

Conclusion and future work

5.1 Conclusion and future work

This thesis investigates energy consumption and clock cycle used by local variable,
register variable, and shared variable in C programs. Experiments were conducted on
24 C sample programs in 2 scenarios and 4 case studies by means of the KP tool. The
results shows that shared variable significantly consumes the least energy over local
and register variables for all 4 cases. Nevertheless, the gains from shared variable could
possibly be offset by violation penalties of “good” software engineering practices, e.g.,
side effects, information hiding, portability, etc. The issue at hand is whether software
engineering or energy consumption is crucial to producing theoretically sound or
environmentally conscious products.

The KP tool greatly helps identify code fragment to reduce the energy consumption
from the programming point of view. However, it is currently limited to basic analysis.
Future study will improve the tool to be able to analyze complicated C programs in

wider research contexts.
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Appendix A

Set 2 - Sample programs

Program 1

#include<stdio.h>

int findInterest(int,int,int);

int main()

{

int amount,rate,time,res;
amount = 500;

rate = 5;

time = 2;

res = findinterest(amount,rate,time);
}

int findInterest(int a, int r, int t){
int si;

si = (a*r*t)/100;

return si;

}

Program 2

#include<stdio.h>
void findInterest(void);
int amount,rate,time,si;
int main()

{

int res;

amount = 500;

rate = 5;

time = 2;

findinterest();

}

void findInterest(){

si = (@amount * rate * time)/100;

}




Program 3

Program 4

#include<stdio.h>

int findInterest(int,int,int);

int main()

{

register int amount,rate,time;
int res;

amount = 500;

rate = 5;

time = 2,

res = findinterest(amount,rate,time);
}

int findinterest(int a, int r, int t){
int si;

si=(a*r*t)/100;

return si;

}

#include<stdio.h>
int findinterest(int,int,int);
int main()
{
int amount,rate,time,res,i;
amount = 500;
rate = 5;
time = 2,
for(i=0;i<10;i++)X
res = findinterest(amount,rate,time);
}
}
int findinterest(int a, int r, int t{
int si;
si=(a*r*t)/100;
return si;

}
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Program 5

#include<stdio.h>

void findInterest(void);

int amount,rate,time,si;

int main()

{

int i;

amount = 500;

rate = 5;

time = 2;

for(i=0;i<10;i++)X
findinterest();

}

}

void findInterest(}

si = (amount * rate * time)/100;

}

Program 6

#include<stdio.h>

int findInterest(int,int,int);

int main()

{

register int amount,rate,time;
int res,i;

amount = 500;

rate = 5;

time = 2;

for(i=0;i<10;i++)X

}

}

int findinterest(int a, int r, int t){
register int si;
si=(a*r*t)/100;

return si;

}

res = findinterest(amount,rate,time);
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Program 7

#include<stdio.h>
int findInterest(int,int,int,int);

int amount(int,int);

int main()

{

int rate,time,vall,val2,res;
rate = 5;

time = 2;

vall = 300;

val2 = 200;

res = findinterest(rate,time,vall,val2);
}

int findinterest( int r, int t,int v1,int v2)X
int si, sum;

sum = amount(vl,v2);

si = (sum * r * t)/100;

return si;

}

int amount (int v1,int v2)

{

int total;

total = vl + v2;

return total;

}

Program 8

#include<stdio.h>

void findInterest(void);

void amount(void);

int rate,time,vall,val2,total,si;
int main()

{

int res;

rate = 5;

time = 2;

vall = 300;




Program 9

val2 = 200;
findinterest();

}

void findinterest( ){
amount();

si = (total * rate * time)/100;

}

void amount ()

{

total = vall + val2 ;
}

#include<stdio.h>
int findInterest(int,int,int,int);

int amount(int,int);

int main()

{

register int rate,time,vall,val2;
int res;

rate = 5;

time = 2;

vall = 300;

val2 = 200;

res = findinterest(rate,time,vall,val2);
}

int findInterest( int r, int t,int v1,int v2){
int si, sum;

sum = amount(vl,v2);

si = (sum * r * 1)/100;

return si;

}

int amount (int v1,int v2)

{

int total;

total = vl + v2;

return total;

}
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Program 10

#include<stdio.h>
int findInterest(int,int,int,int);

int amount(int,int);

int main()

{

int rate,time,vall,val2res,i;
rate = 5;

time = 2;

vall = 300;

val2 = 200;

for(i=0;i<10;i++){
res = findInterest(rate,time,vall,val2);
}
}
int findInterest( int r, int t,int v1,int v2){
int si, sum;
sum = amount(v1,v2);
si = (sum * r * £)/100;
return si;
}
int amount (int v1,int v2)
{
int total;
total = vl +v2;
return total;

}

Program 11

#include<stdio.h>

void findInterest(void);

void amount(void);

int rate,time,vall,val2,total,si,i;
int main()

{

int res;

rate = 5;
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time = 2;

vall = 300;

val2 = 200;

for(i=0;i<10;i++)X
findinterest();

}

}

void findinterest( ){

amount();

si = (total * rate * time)/100;

}

void amount ()

{

total = vall + val2;
}

Program 12

#include<stdio.h>
int findinterest(int,int,int,int);
int amount(int,int);
int main()
{
register int rate,time,vall,val2;
int res,i;
rate = 5;
time = 2;
vall = 300;
val2 = 200;
for(i=0;i<10;i++)}
res = findinterest(rate,time,vall,val2);
}
}
int findInterest( int r, int t,int v1,int v2){
register int si, sum;
sum = amount(vl,v2);
si = (sum * r * £)/100;
return si;

}




int amount (int v1,int v2)
{

register int total;

total = vl +v2;

return total;

}
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Abstract. Energy consumption around the world increases exponentially. One of the causes to blame
is electronic devices such as personal computers. embedded devices, and smartphones. To reckon
with reducing energy consumption involves efficient hardware and software. This research focuses on
the software part, in particular, how to write a program that is energy efficient. The proposed
technique is based primarily on local variable reallocation in C programs to exploit the advantages of
shared memory and register variable. We analyze the amount of energy consumed at instruction level.
Our findings reveal that shared memory is the best choice at the price of memory access protection.
The benefits are fewer redundant allocations and memory accesses, thereby less energy will be
consumed.

Introduction

Nowadays, energy consumplion is one the most concerned issue world-wide. Various electronic
devices such as personal computers, smartphones, and embedded devices are the major culprits of
high energy sources. Computer programs will play a central role in all relating applications, What
follows is the enormity of energy consumed by these devices. There are many ways to reduce the
energy consumption on computers attributed by hardware and software. Studies have shown that
software is a principal factor on energy consumption in computer systems [1]. Unfortunately, some
programmers may only concern about running time or resource utilization of the program and ignore
about energy perspective.

A typical computer program in execution stores, retrieves, and processes variables such as local
variables, shared memories, and register variables. Heavy use of these variables wastes considerable
energy. One remedy is reorganization of the original code to properly allocate variables and
parameters, thereby balancing the distribution of energy consumption. This research will address such
a compelling issue to demonstrate how the problem can be alleviated.

The organization of this paper is as follows. Section 2 discusses related researches on saving energy
consumption of computers. Section 3 describes the proposed approach to appropriate suitable
variables for energy saving. In Section 4, a small research tool was built for the experimental purpose
to identify the energy consumption at instruction level. Section 5 discusses comparative results
obtained from the experiment. Some final thoughts on the trade-oft and future work are also given.

Related Work

Saving energy on electronic devices has been the focus of today’s green technology. Many research
endeavors have been carried out which can be classified into 2 types, namely, hardware and software.
Various techniques have been attempted to cope with such problems. A simple, effective, and popular
technique is turning off power in wireless card when it is not used [4]. From software standpoint.
properly managed of memory allocation and access will help reduce the amount of energy
consumption [7]. At a finer grained level, Grochowki and Annavaram [3] analyzed energy per



instruction (EP1) based on Intel processor. Tools for instruction power analysis [5] or energy aware
that help developers determine the energy consumed by their programs under development [6] are
also available. All these techniques will be further explored in the next section.

Proposed Approach

In C programming language. a local stack is used to store local variables and parameters when a
function is called. Access to the variables goes through push/pop operations. Energy consumption
oceurs during the stack process, This usage is further worsening in repeated calls, whereby power
drains are inevitable. The excessive energy consumption of stack use can be reduced by code
modification to reallocate these local variables to shared memories and register variables, wherever
deemed appropriate. In so doing, repetitive accesses to data will lessen stack process considerably,
thereby energy consumption is reduced. By the same token, moving local variables to register
variables will also accomplish similar energy savings since data access can be done faster and register
variables expend less access effort than stacks.

To explore the operating characteristic of parameter and variable allocation at instruction level, a C
program is first compiled into assembly code. Each machine instruction is examined to determine the
number of clock cycles used [1], depending on types of instruction. For instance, PUSH takes one
clock eyele but consumes 3 latency cyeles. Measurement is performed in reciprocal throughput (RT)
and latency, RT is the average number of core clock cycles per instruction for a series of independent
instructions of the same kind in the same thread [1]. Latency of an instruction is the delay that the
instruction generates in a dependency chain. The total clock cyeles of every instruction used by the
entire program can then be converted o energy consumption [3], which is measured as energy per
instruction (EP1). The unit of energy from the average EP1 is expressed in nano Joule.

In this study, we will compare the amount of energy consumed by an original local variable
allocation with that of shared memory and register variable by arranging the same program code in
three respective forms, namely. local, shared memory (global), and register variables. Fig. | illustrates
such an arrangement.

" O programing register var ]-I—[  programing Local var ]—P[  programing Shared memory ]
h 4 ¥
Y ¥

(s Commpin. ) (e Consmpion

Fig. 1. A comparative energy consumed by local variable, shared memory and register vanable,

Two scenarios will be investigated, namely, (1) local variable vs, shared memory or LS, and (2)
local variable vs. register variable or LR. A collection of C programs are set up to assist in the
analysis. The following case studies will be carried out to exercise both scenarios:

I. Function calls. It is the simplest exercise on parameter allocation, access, and retrieval.
Normally, a programmer will use local variables declared in the main function. These variables will
subsequently be passed to other functions in the form of parameters. For the first scenario, program
modification is done by moving local variables to shared memories, thereby no parameter passing is
needed. For the second scenario, the register keyword is simply added to proper local variables.

2. Repeated function calls. The ohjective is to find code segments that exhibit high energy
consumption in a program and behavior of the associated variables/parameters. As such, program
improvement can be directed o the right code segments where heavy energy consumptions will be
reduced. As a conseguence, this case intentionally contrives repeated calls to function for this
particular purpose.

3. Function calls to function. This case is intended to investigate the cascading effect of energy
consumption consumed by parameter allocation and reference. The complication of such operations,
i.e., stack, shared memory, and register variable, at the instruction level are systematically measured
and compared.
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4. Nested repeated function calls to function, This case culminates all of the above complications to
demonstrate as close W actual operation as possible.
Tab.1 illustrates a straightforward comparison of the case studies under both scenarios.
Tab, 1. Example of pseudocode in repeated function calls,

Local variahle Shared memory Register variable
maing)y | ar A oain)
car A main register var A
ffor n times for n times for m times
functioni A ) function ) function{ A}
kend for nd for nd for
) I I
[function{ para A) unctioni) function(para A)

Experimental and Results

We built a tool called KP program to help analyze the test programs. The tool first read an input C
program submitted by the user under the above two scenarios. It located local variables and prompted
the user to reallocate or alter them to shared memories or register variables. A lookup table was
created by the ol 1 hold all the data selected by the user for shared variable reallocation or register
variable alteration. The tool then compiled both original and modified C programs to produce
assembly instructions for determining clock cycles and EPI equivalent. The operating environment
was hosted by a laptop computer with Intel Core 2 Duo @ 2.00GHz 65 nm, 3 GB RAM running
Windows 7. The tool was coded in C# using Microsoft Visual Studio. All test programs were
compiled with MinGW which was a ported GNU compiler collection (GCC).

Code analyses are shown in Fig, 2-3. Fig. 2 depicts KP tool running the original program for
repeated function calls (case 2). All variables are locally declared. Fig. 3 shows the reallocation from
local variables to shared memories. The numbers of instructions to be executed is less than the
original version. Alteration of local variables to register variables is straightforward.

- =1 - ]

e

F:ig. 2, KP tool mnning case 2 —local variahle .

Fig, 3, KP tool running case 2 scenario | —shared memory.

The rationale behind each case study was to determine the amount of energy consumed by program
instructions under different functions. We began with simple function calls {case 1). The twol
analyzed and compared clock cycles used. and the energy consumed by each scenario. For example,
the original C program contained 30 instructions that utilized 27.31 clock cycles and 300.41 nJ of
energy. Under the first scenario (LS), the number of instructions, clock cycles, and energy consumed
were 21, 18.98, and 208.78, respectively. Similarly, statistics of the second scenario (LR) came out to
be 35, 28.63. and 314.93, respectively. Obviously. shared memories exhibited a sizable savings
{-30.50%% ), while register variables showed a slightly higher consumption (+4.60%) than that of the
local variables. The story was different for repeated function calls (case 2), where shared memories
continued to saving energy consumption (-33.60%), and register variables gained on the original local
variables (-11.90%). As programs became more complicated, savings on energy consumed were even
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more noticeable. The function calls to function (case 3) exhibited such benefits. Shared memory
savings went from -30.50% to -31.00%, while the numbers on register variable were down from
+4.60% to +2.90%. For nested repeated function calls to function (case 4), the numbers were even

more interesting. Shared mem

ies showed -34.10%, while register variables were -7.00%. Tab. 2 and

3 summarize all the statistics taking only RT factor into account, while Tab. 4 incorporates additional
latency factor. Fig. 4 shows the total clock cycles used in all 4 cases. A similar pattern is obtained by

total number of instructions as shown in |

ig. 5.

Tab.2. (ET) Instruction elock eveles and number of instructi
Instruction Clock Cyele | Number of Instruction
Case Local |Register hﬁ:;:‘;[d} Local [Register h?immtf}
1 2731 ) 28.63 | 14498 | 30 35 21
2 [112.27] 9891 | 7227 | 124 | 116 84
3 [ 4297 | 4428 | 2964 | 46 52 32
4 [I9RST(177.06 | 12557 | 204 | 204 139

{nano Joule).

. 3. (RT) Energy consumption by allocation scheme

Tab. 4. (RT+Latency ) Energy consumpdion by

allocation scheme {nano Toule).

2 lg zle [ ¢
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S K = Z E 223 = = i 224 & ki P =
1| 30041 | 314585 | 20878 | <305 | +4 B3g4] | BO993 | 53B.78 | -35.8 151 =334
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212349 | 108800 | 79497 | <356 | -119 36549 | 23750 | 15649 | <570 | 3500 | 340
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3 47267 | 4RTO08 | 32604 | 310 | +2.90 135206 | 12790 | 85404 | 368 -33.2
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Fig. 4. Total number of clock cyeles (Y-uxis) for all cases

Discussion

(X-amxis).

ke

Fig 3. Total number of instructions { Y-axis) for all cases

(X-axis),

The results obtained from our KP tool did not come as a surprise, as they were well-established
programming facts. Our findings merely reinstated local, register, and shared memory variable
scoping principles. From our findings, shared memory reduced energy consumption by approximately
30% in simple function calls, and 35% in nested function calls. Register variable, on the other hand,

was elfective only when repetitive ac

ses were called for, It was however not as efficient as shared

memory. Energy consumption comparison between shard memory and register variable reveals that
the former saves approximately 33% and 25% in simple function calls and nested function calls,

respectively.

An interesting finding that is not stated in many literatures is the total energy consumption of
different variable scoping. We found that local variables consumed the most energy. From the
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instruction level, it was apparent that stack process took considerable clock cyeles which resulted in
high latency and energy consumption. Fig. 6 illustrates the results obtained in Tab. 3, while Fig. 7
shows the results from Tab. 4. The shortfall of shared memory is due W0 memory access protection as
it violates information hiding principle in Software Engineering. The side effect of shared access is
what programmers should heed and practice with care.
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Fig. 6. Comparison of energy consumption (Y) for all Fig. 7. Comparison of energy consumption (Y) for all
cases (X, cases (X,

Conelusion and Future Work
We investigated energy consumption used by local variable, register variable, and shared memory in
C programs. Experiments were conducted in 2 scenarios by means of a KP tool. We found that shared
memory significantly saved the most energy consumption over local and register variables, Under
repetilive accesses, register variable provided considerable reduction of energy consumption.
However, the outcomes were not any surprised, The gains from shared memory could possibly be
offset by violation penalty of “good” software engineering practice, e.g., side effects, information
hiding, portability, etc. The issue at hand is whether software engineering or energy consumption is
crucial to producing theoretically sound or envirenmentally conscious products,

The KP tool greatly helps identify code fragment to reduce the energy consumption from
programming point of view. However, it is currently limited to basic analysis, We plan to improve our
tool to be able to analyze complicated C programs in wider research aspects.
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