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Figure 1.1 Annual energy demand by region 

Chapter 1  
Introduction 

 
1.1 The rise of Electrical Energy Demands 

High population growth over the years and the emergence of large economies 
such as China and India have led to higher demand of natural resources and have 
caused  the world’s energy consumption to skyrocket.  Private and public sectors 
around the world are committed to renewable energy sources to cope with the 
increasing demand.  In the transportation sector, many traditional technologies are 
progressively being shifted toward using cleaner energy with less pollution. This 
includes the shift from fossil fuel to electrical and hybrid energy [1]. 
 
 

 

 

 

 

 

 

 

 

Source: http://static2.businessinsider.com/image/50bd70cc.jpg 
 

The arrival of smartphones and various portable devices have raised electrical 
energy consumption considerably.  As the devices have improved in both speed and 
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computational power and features, demands for energy consumption of these devices 
escalate at a rapid rate.  Unfortunately, the battery technology still cannot cope with 
the energy consumption, especially in a commercial environment. This trend has 
become more apparent as external battery supplies are needed. The gap of energy 
needed and its availability is exemplified in Figure 1.2 

Moreover, a shift from traditional printed media to electronic media is 
prominent and widely adopted now in many countries.  The larger the screen size and 
the faster the CPU mean higher energy consumption and demand. Other Internet-
connected and wearable devices have followed suit. Therefore, methods to minimize 
current power drain are called for [2]. 

Source: http://static2.businessinsider.com/image/1200.jpg 
 

Figure 1.3 shows the significant shift from desktop computers connected to a 
power source to smart mobile/portable devices around the world. This means the 
issue of energy efficiency is much more important than before as the number of 

Figure 1.2 Energy needed and availability 
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portable device users grows very rapidly and has definitely signified toward the next 
emerging technology [3]. 

Source: http://static2.businessinsider.com/image/c000005.jpg 
 
As a consequence, many researches are underway to find ways to save the energy 

needed by electronic devices. Broadly speaking, the research is divided into 2 groups, 
namely, hardware and software. Studies have shown that software is the principal 
factor of energy consumption in computer systems [4]. 

A typical computer program in execution stores, retrieves, and processes variables 
such as local variables, shared variables, and register variables. Heavy use of these 
variables wastes considerable energy.  One remedy is code modification to reorganize 
of original code to properly allocate variables and parameters, thereby balancing the 
distribution of energy consumption.  

This research is specifically targeted on how the software can be designed and 
architected with energy consumption as part of the design.  C Programming Language, 
a widely used and very portable programming language, is used in this investigation. 

Figure 1.3 Global installed base of Desktop PCs + Notebooks PCs vs. Smartphones + 

Tablets, 2009 – 2015E 
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1.2. Objective 

This study focuses on the reduction of energy consumed by computer programs by 
applying code modification to shared variables and register variables. 
 
1.3. Scope of the work 

This research will confine the scope within the following constraints: 
1. Limit to C programming language. 
2. Focus on local stack, register variables, and shared variables. 
3. Use is Intel® Core 2 Duo system running Windows 7 as the working 

environment 
4. The unit of measure is instruction clock cycle.  

 
1.4. Expected Outcomes 

The proposed technique will offer the following benefits 
1. Reduce energy consumption by computer programs, 
2. Improve program performance precipitating from (1), and 
3. Compact program/code organization. 
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Chapter 2  
Related work 

 
2.1 Related work 

Energy consumption is one of the critical factors for modern portable device 
designs.  Often, one of the key performance indicators widely used in the industries is 
energy consumption, i.e. the current drain.  Researches and studies from the academic 
sectors and the industrial sectors have been focusing on improving measurements of 
the energy consumption in hardware or software or a combination of both despite the 
complexity of the systems.  Some research papers discuss source code analysis and 
coding techniques while others focus on better software architecture design.  This 
research also explores different measurement tools. 

Sheayun Lee, Adreads Ermedahl, et al [4] showed a technique for finding an 
accurate energy consumption model at the instruction level using combined  statistical 
analysis technique and empirical method to estimate the energy consumption of an 
instruction.  However, it was necessary to analyze the characteristics of memory 
devices since the energy consumption was also dependent on it.  

Optimization of software solutions called POWERAPI, estimates the power 
consumption of processes and applications according to different dimensions (CPU, 
network, etc.). Adel Noureddine and Aurelien Bourdon [5] used this library to study the 
impact of programming languages and algorithmic choices on energy consumption. 
However, they needed to propose more energy models for other hardware resources 
(such as memory and disk) and used power-aware information to adapt application at 
runtime based on energy concerns. 

PowerScope is an energy profiling tool which was proposed by Jason Flinn and 
M. Satyanarayanan. PowerScope [6] profiles CPU cycles of specific process and 
procedures in software.  The approach utilizes hardware instrumentation to measure 
current levels with kernel software support to perform statistical sampling of system 
activity. It is able to pinpoint the key energy consumption source and hence reduce 
the energy consumption of an adaptive video playing application. However, it needs 
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further exploration and better model of the relationship between energy usage and 
battery life.  

Nadine and Bill [7] proposed Green Tracker, a tool for estimating the energy 
consumption of installed software systems. Green Tracker utilizes a benchmarking test 
to determine which software systems are the most efficient given the user’s current 
computer configuration.   

Thanh Do, Suhib Rawshdeh, et al [8] proposed a tool called PTOP which was a 
process-level power profiling tool. The tool provides the power consumption (in 
Joules) of the running processes.  For each process, it gives the power consumption of 
the CPU, network interface, computer memory, and hard disk. The tool consists of a 
daemon running in kernel space and continuously profiling resource utilization of each 
process. For the CPU, it also uses TDP provided by constructors in the energy 
consumption calculations. It then calculates the amount of energy consumed by each 
application for a period of time.  

Various techniques have been attempted to cope with measuring power 
consumption at instruction level problem. A simple yet effective technique will help 
extend the battery life on mobile devices by controlling data access. Eugene Shih, 
Paramvir Bahl, al et [9] introduced a method to extend the battery lifetime by reducing 
its idle power, the power a device consumed in a standby state. To reduce this, the 
wireless network card was shut down when it was not being used.  

From a software standpoint, proper management of memory allocation and 
access will help reduce the amount of energy consumption [10]. It involves the 
problem of allocating memory to variables in embedded Digital Signal Processing 
software to maximize data transfers from different memory banks to resisters.  

Mike Tien-Chien, L. and V. Tiwaris [10] showed a software analysis tool that had 
a method to compile program into the instruction level and analyzed it at instruction 
level. 

David Binkley [11] showed trends of source code analysis to extract information 
from the source code to help a programmer analyze their program’s performance and 
tweak it. There were choices to tweak from changing high level source, recompiling, 
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re-tweaking, or performing the change on the lower-lever assembly code or 
abandoning the tweaking.  

Since C programing language was developed in 1972, the language has been 
widely used and very portable for the majority of hardware platforms today. It is a 
popular language of choice to implement software in embed devices compared to 
ASM. C is a very unique high-level language that still provides low level control 
especially on memory utilization and can generate a compact-size executable which 
is suitable for small memory footprint devices.   

As technology today has come to hand held portable devices, application 
development uses high-level programing language such as Java or Objective C. 
Programmer can still use native code like C because it is better for computationally 
intensive algorithms such as game development and visual computing [12, 13].   

Tim A. Wagner, Vance Maverick, et al [14] conducted research using C language 
as a primary tool for analysing each function in machine language that the GNU C 
Complier generated. 

John Max Skaller [15] discussed the introduction of nested functions into C/C++. 
Nested functions were well understood and their introduction required little effort 
from either compiler vendors or programmers. Nested functions offer significant 
advantages, including rapid prototyping and functional decomposition, as well as gains 
in both processor and programmer performance. 

Yanbing Li and Henkel  J. [16] showed combinations and sequences of 
transformations that yielded the most energy savings under memory size constraints, 
evaluated the impact of transformations, and estimated the energy used by code 
segment that contained repeated loop and procedure calls. 

Tiwari V., Malik S., et al [17] mentioned that power constraints were increasingly 
becoming the critical component of computer design specifications. They described a 
framework for energy estimation of a program using the instruction level power model. 
They showed the average current and the number of cycles for each to determine the 
power used. 

Some research efforts analyse basic aspects of the way programs manipulate 
the runtime stack. Cullen Linn, Saumya Debray, et al [18], and Thomas Reps and Gogul 
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Balakrishnan [19] showed how the runtime stack was used and the stack behaviour of 
a function.  For each function call in C, they showed how stack locations stored values 
of functions and parameters.  

Peter Sestoft [20] investigated when function parameters can be safely 
replaced by global variables. It showed the benefits of using global variables to reduce 
the time and space cost of stack allocation of function parameters whenever possible. 
As function parameters are replaced by global variables, using the stack is more 
expensive in terms of run-time and storage consumption than fixed global allocation. 

Jack W. Davidson and David B. Whalley [21] also mentioned that when using 
registers to store variables, the number of instructions executed was affected by two 
factors. Typically, as more variables were allocated to registers, the number of 
instructions used for saving and restoring registers increased. On the other hand, as 
frequently used variables were allocated to registers, the number of instructions aside 
from those used for saving and restoring registers decreased.  

At a finer grained level, Grochowki and Annavaram [22] analyzed energy per 

instruction (EPI) based on an Intel processor. They described Energy per Instruction 

(EPI) as a measure of the amount of energy expended by a microprocessor for each 

instruction that the microprocessor executed. They explained the factors that affected 

a microprocessor’s EPI and derived a historical comparison of the trends in EPI over 

multiple generation of Intel processors. 
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Chapter 3  
Proposed Methodology 

3.1 Proposed Methodology 

To explore the operating characteristics of parameter and variable allocation at the 
instruction level, a C program is first compiled into assembly code by using a compiler 
to inspect the clock cycle and the number of instructions.  The total number of 
instructions used by the entire program can then be converted to energy consumption, 
which is measured as energy per instruction (EPI). The unit of EPI is expressed in Joules. 

 According to [22], the value of EPI of selected Intel CPU were investigated. The total 
energy consumption of the program can be calculated using the formula below.  

 
Total energy consumption = EPI x Total number of instructions 

 
Figure 3.1 shows a calculation example of the total number of instructions in 

pseudo code of assembly language. The left column shows instruction set which is 
compiled from a C program. Then a simple count is made from first to last 
instructions. The total number of instructions is n + m.  

Label 1: Count 
        Instruction A 1 
        Instruction B 2 
        … … 
        Instruction C n 
   Label 2:  
        Instruction D 1 
        Instruction E 2 
        … … 
        Instruction F m 
Total number of Instructions  n + m 

                   Figure 3.1 Find total of instruction 
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This study uses the total clock cycle for estimating the speed of the program. Each 
machine instruction is examined to determine the number of clock cycles. Each 
instruction has different numbers of clock cycles depending on the type of instruction 
as shown in the example in Table 3.2. Reciprocal throughput (RT) is the average 
number of core clock cycles per instruction for a series of independent instructions of 
the same kind in the same thread [23]. Latency (L) of an instruction is the delay that 
the instruction generates in a dependency chain. The measurement unit is clock cycles 
[23]. The total clock cycles of every instruction can be summed for measuring 
instruction speed. 

 
Table 3.1 Clock cycles for an instruction 

Instruction 
Clock cycle 

(RT) 

Clock cycle      

(L) 

  MOV r,m 1 2 

  PUSH r 1 3 

  POP m 1.5 2 

  INC 0.33 1 

  ADD r,r 0.33 1 

 
This research will focus on finding energy consumption of allocating variable in local, 

shared variable, and register in C programming. The amount of energy consumed by 
local variable allocation is analyzed by comparing shared variable and register memory 
utilization.  For this study, a set of programs that perform the same functionality are 
written in three different ways. Each program uses either local, global, or register 
variables. Figure 3.1 illustrates such an arrangement. 
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 The above study demonstrates the impact of memory utilization to the 
energy consumption as well as the speed of program execution. 

There are two scenarios to be investigated, namely, (1) local variable vs. shared 
variable, and (2) local variable vs. register variable.  A collection of C programs are set 
up to assist in the analysis. The following case studies will be carried out to exercise 
both scenarios. Each case study will show the energy consumption and the total clock 
cycle used. There are 4 cases of programming function deployed in each scenario: 

1. Function calls 
2. Repeated function calls 
3. Function calls to function 
4. Repeated function calls to function 

The explanation of these 4 cases is described in details. 

Figure 3.2 A comparative energy consumed by local variable, shared 

variable and register variable 

C Program 

Shared var 

Assembly 
Instruction 

Energy 
Consumption 

Register var 

Assembly 
Instruction 

Energy 
Consumption 

Local var 

Assembly 
Instruction 

Energy 
Consumption 
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1. Function calls. This is the simplest exercise for parameter allocation, access, and 

retrieval. Normally, a programmer will use local variables declared in the main 
function. These variables will subsequently be passed to other functions in the 
form of parameters. In scenario (1), program modification is done by moving local 
variables to shared variables, thereby no parameter passing is needed. In 
scenario (2), the register keyword is simply added to proper local variables. 

 

In the ‘Shared variable’ column of Figure 3.3, the variable declaration is moved 
out of the main scope to shared variable or global scope. Then the parameters of the 
function can be removed. 

 

Local Shared variable Register 
Declare function 

(type,..) 
 
Main function 
Declare local variable 
Statement 
Call function 

(argument  A,…) 
End main 
 
Function (parameter 

A,…){ 
} 

Declare function (type,..) 
Declare global variable 

 
Main function 

Statement 
Call function () 
End main 
 
Function (){ 
} 
 

Declare function 
(type,..) 

 
Main function 

Declare register local 
variable 

Statement 
Call function 

(argument  A,…) 
End main 
 

Function (parameter 
A,…){ 

} 
Figure 3.3 Case 1 Pseudocode - function calls 

The Figure 3.4 shows a simplified version of the instruction set and its corresponding 
executing cycle.  The number of instructions and the clock cycles consumed in 
executing the program is used to illustrate how energy consumption is calculated.  In 
this case, finding the total number of instructions can be obtained from 
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Total number of instructions = n + m 

 
The energy consumption in Joules can be calculated as: 

Energy consumption = (n + m) x EPI 
 

Total clock cycle of RT and become 
Total clock cycle (RT) = x + y  
  and                   (L)  = a + b 

 

 
main: Count Clock (RT) Clock (L) 

        Instruction   A 1 1 1 
        Instruction   B 2 2 2 

… … … … 
        Instruction   C n x a 

Label:    
        Instruction   D 1 1 1 
        Instruction   E 2 2 2 

… … … … 
        Instruction   F m y b 

Figure 3.4 Example of instruction in case (1) 

    
2. Repeated function calls. The objective is to find code segments that exhibit high 

energy consumption in a program and the behaviour of the associated 
variables/parameters. As such, program improvement can be directed to the right 
area where energy consumption can be reduced. This case intentionally 
contrives repeated calls to function for this particular purpose. 
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In Figure 3.5 the pseudocode shows a loop containing a function inside within 

the main function. This will call a function up to n times. 

 

Local Shared variable Register 
Declare function (type,..) 
 
Main 
Declare local variable 
Statement 
For i to n  
Call function(argument  A,…) 
End for 
End main 
 
Function (parameter A,…){ 
} 

 

Declare function (type,..) 
Declare global variable 

 
Main 
Statement 
For i to n 
Call function() 
End for 
End main 
 
Function (){ 
} 
 

Declare function (type,..) 
 
Main 
Declare register local 

variable 
Statement 
For i to n 
Call function(argument  A,…) 
End for 
End main 
 
Function (parameter A,…){ 
} 
 

Figure 3.5 Case (2) Pseudocode - Repeated function calls 

 
A similar case study can be seen in Figure 3.6. However, this case considers the loop 

depending on how the instruction jump to the next label as shown below. 
 

In this case, the total number of instructions is: 
 Number of total instruction = n + m + 1 (k)*i 

where i is the number of repetitions depending on the conditions. 
 

The energy consumption in Joule can be calculated as 
Energy consumption = n + m + 1 (k)*i x EPI 

 

Total clock cycles of RT and L become 
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   Total clock cycle (RT) = x + y + 1 (z)*i 
          And               (L) = a + b + 1 (c)*i 

 

Main: Count Clock (RT) Clock (L) 
        Instruction   A 1 1 1 
        Instruction   B 2 2 2 

… … … … 
        Instruction   C n x a 

Label:    
        Instruction   D 1 1 1 
        Instruction   E 2 2 2 

… … … … 
        Instruction   F m y b 
   Label:    
        Instruction CMP 1 1 1 
        Instruction JMP Label 2 2 2 

… … … … 
        Instruction   G k z c 

Figure 3.6 Example of instruction in case (2) 

 

3. Function calls to function. This case is intended to investigate the cascading 
effect of energy consumption consumed by parameter allocation and reference. 
The complication of such operations, i.e., stack, shared variable, and register 
variable, at the instruction level are systematically measured and compared. 

 
Figure 3.7 shows the pseudocode of function calls to other functions. This 
scenario might occur if a program has many subroutines or functions. In this 
simple case, function 1 calls function 2. 
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Local Shared variable Register 

Declare function (type,..) 
 
Main function  
Declare local variable 
Statement 
Call function1 (argument  A,…) 
End main 
 
Function1 (parameter A,…){ 
  Call function2(argument A) 
} 
 
Function2 (parameter B,…){ 
} 

 

Declare function (type,..) 
Declare global variable 

 
Main function 
Statement 
Call function1() 
End main 
 
Function1 (){ 
  Call function2() 
} 
 
Function2 (){ 
} 
 

Declare function (type,..) 
 
Main function 
Declare register local 

variable 
Statement 
Call function1(argument  A,…) 
End main 
 
Function1 (parameter A,…){ 
  Call function2(argument A) 
} 

 
    Function2 (parameter B,…){ 

} 
Figure 3.7 Case (3) Pseudocode - function calls to other functions 

Figure 3.8 shows a similar case study.  There are more functions to be called which 
include function labels. 

 

In this case, finding total number of instructions is 
 Number of total instruction = n + m + k 

 
The energy consumption in Joule can be calculated as 

Energy consumption = (n + m +k) x EPI 
 

Total clock cycles of RT and L become 
Total clock cycle (RT) = x + y + z  

        And             (L)  =  a + b + c 
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Main: Count Clock (RT) Clock (L) 
        Instruction   A 1 1 1 
        Instruction   B 2 2 2 

… … … … 
        Instruction   C n x a 

Label: function    
        Instruction   D 1 1 1 
        Instruction   E 2 2 2 

… … … … 
        Instruction   F m y b 
   Label: function    
        Instruction G 1 1 1 
        Instruction H 2 2 2 

… … … … 
        Instruction   I k z c 

Figure 3.8 Example of instruction in case (3) 

 
4. Nested repeated function calls to function. This case culminates all of the above 

complications to demonstrate as close to actual operation as possible. 
 
 Figure 3.9 shows pseudocode that contains the loop calls containing a function 
call to another function. 
 
 
 
 
 
 
  



 18 

 

 

Figure 3.10 shows a similar case study. This case will considers the number of 
repetitions (i) depending on how the instruction jump to the next label as below. 

 
 

Local Shared variable Register 
Declare function (type,..) 
 
main function() 
Declare local variable 
Statement 
For i to n 
Call function1 (argument  

A,…) 
End for 
End main 
 
Function1 (parameter 

A,…){ 
  Call 

function2(argument B,…) 
} 
 
Function2 (parameter 

B,…){ 
} 

Declare function 
(type,..) 

Declare global 
variable 
 

main function() 
Statement 
For i to n 
Call function1() 
End for 
End main 
 
Function1 (){ 
  Call function2() 
} 
 
Function2 (){ 
} 

Declare function 
(type,..) 

 
main function() 
Declare register local 

variable 
Statement  
For i to n 
Call function1(argument  

A,…) 
End for 
End main 
 
Function1 (parameter 

A,…){ 
  Call 

function2(argument B,…) 
} 

 
    Function2 (parameter 
B,…){ 

} 

Figure 3.9 Case (4) Pseudocode - Nested repeated function 

calls to another function 
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In this case, the total number of instructions is: 
 Number of total instruction = n + k + 1 + (p + m) * i 

where i is the number of repetitions depending on the condition. 
 

The energy consumption in Joule can be calculated as: 
Energy consumption = n + k + 1 + (p + m) * i x EPI 

 

Total clock cycle of RT and L become 
The total clock cycle (RT) = x + z + 1 + (v + y) * I  
            And               (L) = a + c + 1 + (d + b) * i 

Main: Count Clock (RT) Clock (L) 
        Instruction   A 1 1 1 
        Instruction   B 2 2 2 

… … … … 
        Instruction   C n x a 

Label:    
        Instruction   D 1 1 1 
        Instruction   E 2 2 2 

… … … … 
        Instruction   F m y b 
   Label:    
        Instruction CMP 1 1 1 
        Instruction JMP Label 2 2 2 

… … … … 
        Instruction   G k z c 
Label:    
        Instruction   H 1 1 1 
        Instruction   I 2 2 2 

… … … … 
        Instruction   J p v d 

Figure 3.10 Example of instruction in case (4) 
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Figure 3.11 shows sample C code to demonstrate case study 1. This code will be 
analyzed to determine the energy consumption and clock speed. In this program, 
variable m is declared as a local variable being passed by a function as a parameter. 

 

The C source code is compiled into assembly instructions and is shown in Table 3.3. 
The first column lists the instruction set. There is a main function label “_main:” and 
function label “_func:” which contains the instructions used inside the function.  To 
calculate the total number of instructions, just simply count instructions in “_main:” 
and “_func:” from first to last instruction. There are 13 and 5 instructions in “_main” 
and “_func” functions, respectively. The total number of instructions is 18. In this 
research, the experiment used Intel CPU and the EPI value was set to 11 nJ according 
to [22] and The energy consumption becomes 18 x 11 = 191 nJ. 

 The last 2 columns “Clock (RT)” and “Clock (L)” represent Reciprocal Throughput 
and Latency. The clock value used by each instruction can be taken from reference 
data sheets [23]. For example, the mov m,i  instruction takes 1 RT clock cycle and L 
with 3 clock cycles. In the _main: function, clock (RT) is 11.99 and L is 18. In “_func:” 

#include <stdio.h> 
int function (int); 
int main( )  { 
int m,r; 
m = 10; 
r = func (m) ; 
return 0; 
} 
int func (int m) { 
return m+1; 
} 

Figure 3.11 Simple C source code using local variable 
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clock (RT) is 4.33 and L is 6. The total of clock cycles (RT) and L are 16.65 and 24, 
respectively. 

Table 3.2 Assembly instruction and number of count 

 

  Instruction set Instruction Clock (RT) Clock (L) 
_main:     
 push ebp 1 1 3 
 mov ebp, esp 2 0.33 1 
 and esp, -16 3 0.33 1 
 sub esp, 32 4 0.33 1 
 call ___main 5 2  
 mov DWORD PTR [esp+28], 10 6 1 3 
 mov eax, DWORD PTR [esp+28] 7 1 2 
 mov DWORD PTR [esp], eax 8 1 3 
 call _func 9 2  

 mov DWORD PTR [esp+24], eax 10 1 3 
 mov eax, 0 11 0.33 1 
 leave  12 1  
 ret  13 1  
_func:     
 push ebp 1 1 3 
 mov ebp, esp 2 0.33 1 
 mov eax, DWORD PTR [ebp+8] 3 1 2 
 pop ebp 4 1  
 ret  5 1  

  Total  18 16.65 24 
Total Energy Consumption 191 nJ           
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Other examples on shared variable and register variable for memory access are 

carried out at in a similar manner. The next section will describe an experimental and 

its results. 
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Chapter 4  
Experimental Results and Discussions 

4.1 Experimental procedure  

A tool called KP program was built to help analyze the test programs. The tool first 
reads an input C program submitted by the user under predefined test scenarios. It 
locates local variables and function parameters and prompts the user to reallocate or 
alter them to shared variables or register variables as mandated by the test scenarios. 
A lookup table is created by the tool to hold all the data selected by the user for 
reallocation or alteration, whichever applies. The tool then compiles both the original 
and the modified C programs to produce assembly output. In so doing, all instructions 
are available for determining clock cycles and the EPI equivalent.  

Figure 4.1 depicts the design of KP tool. User interface includes: (1) a menu bar for 
various functionalities such as reset, compile (2) a browse button for selecting an input 
C program file, and (3) an analyze button for analyzing the input program. The left 
panel (4) of the tool shows the C program and the right panel (5) shows the assembly 
instructions. Results of the analysis are shown at the bottom of the right panel (6). Use 
of this tool will be described in the next section. 



 24 

 

Figure 4.1 KP tool functionality 

 
To run test programs, the operating environment set up for the experiment was 

hosted by a laptop computer with Intel Core 2 Duo @ 2.00GHz 65 nm, 3 GB RAM 
running Windows 7. The tool was coded in C# using Microsoft Visual Studio version 
2010. All test programs were compiled into Assembly instructions with MinGW [24] 
which is a ported GNU Compiler collections (GCC). All assembly instructions were 
based on Intel. 

The experiment analyzed 24 sample programs which were divided into 2 sets. In 
the first set, there were 12 programs with 3 programs for each of the four cases outlined 
in the previous chapter. For the second set, there were also 12 programs containing 
more complex code that included more function parameters.  

 
The rationale behind each case study is to determine the amount of energy 

consumed by program instructions under different functions and to analyse the 
advantages of using each memory access type (local, shared variable, and register). 

1 

2 3 

4 5 

6 
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The experiment began with simple function calls as seen in case study (1). The tool 
analyzed and compared clock cycles used, and the energy consumed in each scenario. 
Code analyses are shown below. 
 
4.2 First case study (1) - Function call 

The C code uses local variables as shown below. 
 

The outputs obtained from KP tool are depicted in Figure 4.3 
 

#include <stdio.h> 
int func1(int, int, int ); 
int main(void){ 
int xint,yint,zint,res1; 
xint = 5; 
yint = 10; 
zint = 15; 
res1 = func1(xint, yint, zint); 
return 0; 
} 
int func1(int x, int y, int z){ 
int temp1; 
temp1 = x + y + z; 
return temp1;  
} 

Figure 4.2. Case 1 - C source code using local variable 
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Figure 4.3 KP running case study 1 - local variable 

 

The C program in this figure the contained 30 instructions that utilized 27.31 clock 
cycles (RT) and 39 clock cycles (L). Energy consumption was approximately 330 nJ. In 
Figure 4.4 shows the entire instruction set which is compiled from C program. 
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_main: 
 push ebp 
 mov ebp, esp 
 and esp, -16 
 sub esp, 32 
 call ___main 
 mov DWORD PTR [esp+28], 5 
 mov DWORD PTR [esp+24], 10 
 mov DWORD PTR [esp+20], 15 
 mov eax, DWORD PTR [esp+20] 
 mov DWORD PTR [esp+8], eax 
 mov eax, DWORD PTR [esp+24] 
 mov DWORD PTR [esp+4], eax 
 mov eax, DWORD PTR [esp+28] 
 mov DWORD PTR [esp], eax 
 call _func1 
 mov DWORD PTR [esp+16], eax 
 mov eax, 0 
 leave 
 ret 
_func1: 
 push ebp 
 mov ebp, esp 
 sub esp, 16 
 mov eax, DWORD PTR [ebp+12] 
 mov edx, DWORD PTR [ebp+8] 
 add eax, edx 
 add eax, DWORD PTR [ebp+16] 
 mov DWORD PTR [ebp-4], eax 
 mov eax, DWORD PTR [ebp-4] 
 leave 
 ret 

 
Figure 4.4 case study 1 - assembly instruction as shown in the KP tool 

From the experiment whose results were shown in Figure 4.3, the KP tool highlights 
the C code in the left panel in green colour when the parameters should be removed. 
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Figure 4.5 shows the result of this code change where local variables are moved out 
of the main function. In other words, these variables now become shared variables. 

 
 

 

 
The KP tool in Figure 4.6 shows the analysis of the modified C program using shared 

variable. 
 
 
 
 

#include <stdio.h> 
int xint,yint,zint,res1; 
void func1(void); 
int main(void){ 
xint = 5; 
yint = 10; 
zint = 15; 
func1(); 
return 0; 
} 
void func1(void){ 
res1 = xint + yint + zint; 
} 

Figure 4.5 Case study 1 - C source code using shared variable 
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Figure 4.6 KP running case study 1 – Shared variable 

 
The program in Figure 4.6 contains 21 instructions that utilize 18.98 clock cycles (RT) 

and 25 clock cycles (L) and the energy consumption is about 231 nJ of energy.  
Next, the experiment followed scenario 2 where local variables were added using 

the keyword register. All these variables were stored in the register as shown in Figure 
4.7 
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The KP tool in Figure 4.8 shows similar analysis of the previous experiment for the 

modified C program using register variables. 
 
 
 
 
 

#include <stdio.h> 
int func1(int , int , int ); 
int main(void){ 
register int xint,yint,zint; 
int res1; 
xint = 5; 
yint = 10; 
zint = 15; 
res1 = func1(xint, yint, zint); 
return 0; 
} 
int func1(int x, int y, int z){ 
register int temp1; 
temp1 = x + y + z; 
return temp1;  
} 

Figure 4.7 Case study 1 - C source code using register 

variables 
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Figure 4.8 KP running case study 1 – register variable 

 
The C program in Figure 4.8, contained 35 instructions that utilized 28.63 clock 

cycles (RT) and 35 clock cycles (L). Energy consumption was approximately 385 nJ.  
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4.3 Second case study (2) - Repeated Function calls 

The second case, case (2) was conducted in the same manner the previous case. The 
C program using local variables was first tested. Then variables using shared variable 
was performed, followed by register variables. 
 

 
Figure 4.9 KP running case study 2 – local variable 

 
The C program in Figure 4.9 contained 124 instructions that utilized 112.27 clock 

cycles (RT) and 220 clock cycles (L). Energy consumption was approximately 1364 nJ. 
The C code was modified using shared variable as shown in Figure 4.10. 
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Figure 4.10 KP running case study 2 – shared variable 

 
The C program In Figure 4.10 contained 84 instructions that utilized 72.27 clock 

cycles (RT) and 70 clock cycles (L). Energy consumption was approximately 924 nJ.  
The C code was modified by simply adding the keyword register. 
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Figure 4.11 KP running case study 2 – register variable 

 
The C program in Figure 4.11 contained 116 instructions that utilized 98.91 clock 

cycles (RT) and 117 clock cycles (L). Energy consumption was approximately 1276 nJ.  
 

4.4 Third case study (3) - Function calls Function 

The third case (3) was carried out in the same manner as previous cases. The C 
program using local variables was first tested. The program was then modified using 
shared variable and register variables. 
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Figure 4.12 KP running case study 3 – local variable 

The C program in Figure 4.12 contained 46 instructions that utilized 42.97 clock 
cycles (RT) and 80 clock cycles (L). Energy consumption was approximately 506 nJ.  

The C code was modified using shared variable as shown in Figure 4.13 
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Figure 4.13 KP running case study 3 – shared variable 

 
The C program in Figure 4.13 contained 32 instructions that utilized 29.64 clock 

cycles (RT) and 48 clock cycles (L). Energy consumption was approximately 352 nJ.  
The C code was modified by adding the keyword register in Figure 4.14 
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Figure 4.14 KP running case study 3 – register variable 

 
The original C program in the Figure 4.14 contained 52 instructions that utilized 

44.28 clock cycles (RT) and 72 clock cycles (L). Energy consumption was approximately 
572 nJ.  
 
4.5 Fourth case study (4) – Nested repeated Function calls 

The fourth case (4) performed repeated function calls. The C program using local 
variables was first tested and then modified using shared variable and register 
variables. 
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Figure 4.15 KP running case study 4 – local variable 

 

The C program in Figure 4.15 contained 194 instructions that utilized 185.24 clock 
cycles (RT) and 384 clock cycles (L). Energy consumption was approximately 2134 nJ.  

The C code in Figure 4.18 was now modified to use shared variable. 
 



 39 

 

Figure 4.16 KP running case study 4 – shared variable 

 
The C program in Figure 4.16 contained 139 instructions that utilized 125.57 clock 

cycles (RT) and 220 clock cycles (L). Energy consumption was approximately 1529 nJ.  
Finally, the C code was modified using register variables as seen in Figure 4.17.  
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Figure 4.17 KP running case study 4 – register variable 
 
The C program in Figure 4.17 contained 191 instructions that utilized 175.56 clock 

cycles (RT) and 318 clock cycles (L). Energy consumption was approximately 2101 nJ.  
The tables below are the results from the first set experiments, categorized in 5 

groups: 1) Number of instructions, 2) Energy consumption by allocation scheme, 3) 
Number of clock cycle (reciprocal throughput (RT)), 4) Number of clock cycle (latency 
(L)), and 5) Number of clock cycle (RT + L). The given scenarios are compared in 
pairwise, namely, Shared variable Vs Local, Register Vs Local, and Shared variable Vs 
Register). 
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Table 4.1 Number of instructions 

Case Local Shared Register  

1 30 21 35 
2 124 84 116 
3 46 32 52 
4 194 139 191 

 

   

Table 4.2 Energy consumption (nJ) by allocation schemes 

Case Local Shared Register  
Shared VS 

Local 
Register 
VS Local 

Shared  VS 
Register 

1 330 231 385 -30.00 % +16.67 % -40.00 % 
2 1364 924 1276 -32.26 % -6.45 % -27.59 % 
3 506 352 572 -30.43 % +13.04 % -38.46 % 
4 2134 1529 2101 -28.35 % -1.55 % -27.23 % 
 

Table 4.3 Number of clock cycle (RT) by allocation schemes 

Case Local Shared Register  
Shared VS 

Local 
Register 
VS Local 

Shared VS 
Register 

1 27.31 18.98 28.63 -30.50 % +4.83 % -33.71 % 
2 112.27 72.27 98.91 -35.63 % -11.90 % -26.93 % 
3 42.97 29.64 43.95 -31.02 % +2.28 % -32.56 % 
4 185.24 125.57 175.56 -32.21 % -5.23 % -28.47 % 
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Table 4.4 Number of clock cycle (L) by allocation schemes 

Case Local Shared Register  
Shared VS 

Local 
Register  
VS Local 

Shared VS 
Register 

1 39 25 35 -35.90 % -10.26 % -28.57 % 
2 220 70 117 -68.18 % -46.82 % -40.17 % 
3 80 48 70 -40.00 % -10.00 % -33.33 % 
4 384 220 318 -41.02 % -14.75 % -30.82 % 

 
Table 4.5 Number of clock cycle (RT + L) by allocation schemes 

Case Local Shared Register  
Shared VS 

Local 
Register  
VS Local 

Shared VS 
Register 

1 66.31 43.98 63.63 -33.68 % -4.04 % -30.88 % 
2 332.27 142.27 215.91 -57.18 % -35.02 % -34.11 % 
3 122.97 77.64 113.95 -36.86 % -7.34 % -31.86 % 
4 569.24 345.57 493.56 -39.29 % -13.29 % -29.98 % 

 
 

Results from the Table 4.1 shows that in case (1) - function calls, shared variable 
utilizes only a few number of instructions (21) while register variable uses a larger 
number instructions (35). In case (4) – repeated function calls to function, shared 
variable utilizes fewer instructions than others (139).  

In Table 4.2, shared variable of case (1) exhibits a sizable savings (-30%), while 
register variable shows a slightly higher consumption (+16.67%) than that of the local 
variable. When comparing shared variable with register variable, it can be seen that 
shared variable consumes less energy than register variable (-40%).  

The results are different for repeated function calls (case 2), where shared 
variable saves energy consumption (-32.26%), and register variable consumes less 
energy than the original local variable (-6.45%), and shared variable saves more energy 
(-27.59%) compared to register variable. As programs become more complicated, 
savings on energy consumption are even more noticeable. The function calls to other 
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functions (case 3) exhibits such benefits. Shared variable saves over -30.43% when 
compared to local variable, while the number on register variable shows slightly higher 
consumption (+13.04%) than local variable. Shared variable saves -38.46% energy 
compared to register variable. For repeated function calls to other functions (case 4), 
the numbers shows that shared variable uses -28.35%, while register variable uses -
1.55% and -27.23% when comparing shared variable with register variable. 

Table 4.3 summarizes all the statistics taking only clock cycle (RT) factor into 
account. Similar to previous tables, all variables are compared. In case (1), shared 
variable is faster than local variable by -30.50%, register is slightly slower than local 
variable by about +4.83%, while shared variable is faster than register variable by -
33.71%. When looking at case 4 which contains repetitions, the shared variable is still 
faster than local variable (-32.21%), while register variable is faster than local variable 
(-5.23%) 

Table 4.4 shows clock cycle latency (L). In case (1), local variable has the 
highest latency at about 39 cycles. Register is next at 35 cycles, and shared variable is 
last at 25 cycles. Shared variable have fewer latency clock cycles (-35.90%) than local 
variable, and register variable is even less at 10.26%. The results show that shared 
variable is -28.57% when compared with register. 

Table 4.5 shows the total clock cycle (L + RT). In case (1), Shared variable uses 
-33.68% less than local variable and less than register -30.88%. Register variable also 
expends less clock cycles (-4.04%) than local variable. 
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Figure 4.18 Comparison of number of instruction (Y) for all cases (X) 

Figure 4.18 plots the results of Table 4.1 that shared variable surpasses other 
schemes in all cases. 

 
 

 
 

Figure 4.19 Comparison of energy consumption (Y) for all cases (X) 

Figure 4.19 plots the results of Table 4.2 that shared variable consumes the lowest 
all cases, while the original local variable takes the highest in case (1) and (3). 
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Figure 4.20 Comparison of clock cycle (RT) (Y) for all cases (X) 

Figure 4.20 corresponds to Table 4.3. Note that local variable has the highest clock 
values in case (1) and (3), while shared variable has the lowest values in every case. 

 
 

 
 

 

Figure 4.21 Comparison of clock cycle (L) (Y) for all cases (X) 
 

Figure 4.21 corresponds to Table 4.4. Note that local variable has the highest clock 
latency values in all cases. 
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Figure 4.22 Comparison of clock (RT + L) (Y) for all cases (X) 

Figure 4.22 corresponds to Table 4.5. Note that local variable has the highest RT+L 
values in all cases. 
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Table 4.6 Showing all results from 4 cases 

 1 2 3 4 

 local shared register local shared register local shared register local shared register 

Total Instruction 30 21 35 124 84 116 46 32 52 194 139 191 
Total Energy 
Consumption 

330 231 385 1364 924 1276 506 352 572 2134 1529 2101 

Total Clock (RT) 27.31 18.98 28.63 112.27 72.27 98.91 42.97 29.64 43.95 185.24 125.57 175.56 

Total Clock (L) 39 25 35 220 70 117 80 48 70 384 220 318 
Total Clock (RT + 
L) 66.31 43.98 63.63 332.27 142.27 215.91 122.97 77.64 113.95 569.24 345.57 493.56 
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Figure 4.23 corresponds to Table 4.6 
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4.6 Discussion 

The results obtained from the KP tool did not come as a surprise, as they were well-
established programming facts. The findings merely reinstated local, register, and 
shared variable scoping principles. From the findings, shared variable reduced energy 
consumption by approximately 30% in simple function calls, and around 30% in 
nested function calls. Register variables, on the other hand, were effective only when 
repetitive accesses were required. However, it was not as efficient as shared variable. 
Energy consumption comparison between shared variable and register variables 
reveals that the former saved approximately 40% and 27% in simple function calls 
and nested function calls, respectively. 

Table 4.6 and Figure 4.23 show an interesting finding that is rarely stated in the 
literature regarding total energy consumption of different methods of variable scoping. 
This experiment found that local variable consumed the most energy. From the 
instruction level, it was apparent that stack process took considerable clock cycles 
which resulted in high latency and energy consumption.  

The shortfall of shared variable is due to memory access protection as it violates 
information hiding principles in Software Engineering. The side effect of shared access 
is what programmers should heed and practice with care. This is a tradeoff of using 
shared variable over local variable during software design. Programmers have to 
choose which direction will go, either saving energy consumption or preserve software 
engineering principle. As such, they can choose proper variable type to access memory. 
An straightforward example is the use of global static variable to make a variable 
visible, yet prevents accidental access by code due to naming conflicts. 

Another example is register variable that is often applied to repetitive accesses of 
memory to reduce the energy consumption on stack pushes and pops in typical 
parameter passing mechanisms. 

To further reatfirm the above finding, the second set of programs were 
experimented. They were more complicated, more parameter and more loops. The 
tables below show the results from the second set of experiments. All sample C code 
can be found in the Appendix A. 
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Table 4.7 Number of instructions (set 2) 

Case Local Shared Register  

1 37 29 41 
2 313 243 290 
3 56 29 61 
4 495 374 481 

 

   

Table 4.8 Energy consumption by allocation scheme (set 2) 

Case Local Shared Register  
Shared VS 

Local 
Register VS 

Local 
Shared  VS 

Register 
1 407 319 451 -21.62 % 10.81 % -29.27 % 
2 3443 2673 3190 -22.36 % -7.35 % -16.21 % 
3 616 319 671 -48.21 % 8.93 % -52.46 % 
4 5445 4114 5291 -24.44 % -2.83 % -22.25 % 
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Table 4.9 (RT) Number of clock cycle by allocation scheme (set 2) 

Case Local Shared Register  
Shared VS 

Local 
Register 
VS Local 

Shared VS 
Register 

1 30.13 23.47 31.12 -22.10 % 3.29 % -24.58 % 
2 243.39 180.09 215.08 -26.01 % -11.63 % -16.27 % 
3 48.12 33.46 49.77 -30.47 % 3.43 % -32.77 % 
4 414.29 287.59 385.88 -30.58 % -6.86 % -25.47 % 

 

Table 4.10 (L) Number of Clock cycle by allocation scheme (set 2) 

Case Local Shared Register  
Shared VS 

Local 
Register  
VS Local 

Shared VS 
Register 

1 62 44 54 -29.03 % -12.90 % -18.52 % 
2 559 389 472 -30.41 % -15.56 % -17.58 % 
3 98 60 88 -38.78 % -10.20 % -31.82 % 
4 892 603 765 -32.40 % -14.24 % -21.18 % 

 
Table 4.11 (RT + L) Number of clock cycle (set 2) 

Case Local Shared Register  
Shared VS 

Local 
Register  
VS Local 

Shared VS 
Register 

1 92.13 67.47 85.12 -26.77 % -7.61 % -20.74 % 
2 802.39 569.09 687.08 -29.08 % -14.37 % -17.17 % 
3 146.12 93.46 137.77 -36.04 % -5.71 % -32.16 % 
4 1306.29 890.59 1150.88 -31.82 % -11.9 0 % -22.62 % 
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Figure 4.24 Comparison of number of instruction (Y) for all cases (X) 
 

Figure 4.23 corresponds to Table 4.6. Note that shared variable has the lowest 
values in every case. 

 

Figure 4.23 corresponds to Table 4.7. Note that shared variable has the lowest 
values in every case. 

 
 

Figure 4.25 Comparison of energy consumption (Y) for all cases (X) 
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Figure 4.26 Comparison of clock cycle (RT) for all cases (X) 

 
Figure 4.23 corresponds to Table 4.8. Note that register variable has lower values 

than local variable for cases (2) and (4). 
 
 

 
Figure 4.27 Comparison of clock cycle (L) (Y) for all cases (X) 

Figure 4.23 corresponds to Table 4.9. Note that local variable has the highest values 
in every case. 
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Figure 4.28 Comparison of clock cycle (L+RT) (Y) for all cases (X) 

Figure 4.23 correspond to Table 4.10. Note that local variable has the highest values 
in every case. All the results from set 2 are similar to the previous discussion. 
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Chapter 5  
Conclusion and future work 

5.1 Conclusion and future work 

This thesis investigates energy consumption and clock cycle used by local variable, 
register variable, and shared variable in C programs. Experiments were conducted on 
24 C sample programs in 2 scenarios and 4 case studies by means of the KP tool. The 
results shows that shared variable significantly consumes the least energy over local 
and register variables for all 4 cases. Nevertheless, the gains from shared variable could 
possibly be offset by violation penalties of “good” software engineering practices, e.g., 
side effects, information hiding, portability, etc. The issue at hand is whether software 
engineering or energy consumption is crucial to producing theoretically sound or 
environmentally conscious products.  
The KP tool greatly helps identify code fragment to reduce the energy consumption 

from the programming point of view. However, it is currently limited to basic analysis. 

Future study will improve the tool to be able to analyze complicated C programs in 

wider research contexts.
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APPENDIX 

 



Appendix A 
Set 2 – Sample programs 
Program 1 

 
 
Program 2 
 

#include<stdio.h> 
int findInterest(int,int,int); 
int main() 
{ 
int amount,rate,time,res; 
amount = 500; 
rate =  5; 
time = 2; 
res = findInterest(amount,rate,time); 
} 
int findInterest(int a, int r, int t){ 
int si; 
si = (a * r * t)/100; 
return si; 
} 

#include<stdio.h> 
void findInterest(void); 
int amount,rate,time,si; 
int main() 
{ 
int res; 
amount = 500; 
rate =  5; 
time = 2; 
findInterest(); 
} 
void findInterest(){ 
si = (amount * rate * time)/100; 
} 
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Program 3 

 
Program 4 

#include<stdio.h> 
int findInterest(int,int,int); 
int main() 
{ 
register int amount,rate,time; 
int res; 
amount = 500; 
rate =  5; 
time = 2; 
res = findInterest(amount,rate,time); 
} 
int findInterest(int a, int r, int t){ 
int si; 
si = (a * r * t)/100; 
return si; 
} 

#include<stdio.h> 
int findInterest(int,int,int); 
int main() 
{ 
int amount,rate,time,res,i; 
amount = 500; 
rate =  5; 
time = 2; 
for(i=0;i<10;i++){ 
 res = findInterest(amount,rate,time); 
} 
} 
int findInterest(int a, int r, int t){ 
int si; 
si = (a * r * t)/100; 
return si; 

} 
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Program 5 

 

Program 6 

#include<stdio.h> 
void findInterest(void); 
int amount,rate,time,si; 
int main() 
{ 
int i; 
amount = 500; 
rate =  5; 
time = 2; 
for(i=0;i<10;i++){ 
 findInterest(); 
} 
} 
void findInterest(){ 
si = (amount * rate * time)/100; 
} 

#include<stdio.h> 
int findInterest(int,int,int); 
int main() 
{ 
register int amount,rate,time; 
int res,i; 
amount = 500; 
rate =  5; 
time = 2; 
for(i=0;i<10;i++){ 
 res = findInterest(amount,rate,time); 
} 
} 
int findInterest(int a, int r, int t){ 
register int si; 
si = (a * r * t)/100; 
return si; 
} 
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Program 7 

 

Program 8 

#include<stdio.h> 
int findInterest(int,int,int,int); 
int amount(int,int); 
int main() 
{ 
int rate,time,val1,val2,res; 
rate = 5; 
time = 2; 
val1 = 300; 
val2 = 200; 
res = findInterest(rate,time,val1,val2); 
} 
int findInterest( int r, int t,int v1,int v2){ 
int si, sum; 
sum = amount(v1,v2); 
si = (sum * r * t)/100; 
return si; 
} 
int amount (int v1,int v2)  
{  
int total;  
total = v1 + v2 ;  
return total;  
} 

#include<stdio.h> 
void findInterest(void); 
void amount(void); 
int rate,time,val1,val2,total,si; 
int main() 
{ 
int res; 
rate = 5; 
time = 2; 
val1 = 300; 
val2 = 200; 
 
findInterest(); 
 
} 
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Program 9 

val2 = 200; 
findInterest(); 
} 
void findInterest( ){ 
amount(); 
si = (total * rate * time)/100; 
} 
void amount ()  
{  
total = val1 + val2 ;  
} 

#include<stdio.h> 
int findInterest(int,int,int,int); 
int amount(int,int); 
int main() 
{ 
register int rate,time,val1,val2; 
int res; 
rate = 5; 
time = 2; 
val1 = 300; 
val2 = 200; 
res = findInterest(rate,time,val1,val2); 
} 
int findInterest( int r, int t,int v1,int v2){ 
int si, sum; 
sum = amount(v1,v2); 
si = (sum * r * t)/100; 
return si; 
} 
int amount (int v1,int v2)  
{  
int total;  
total = v1 + v2 ;  
return total;  
} 
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Program 10 

 

Program 11 

#include<stdio.h> 
int findInterest(int,int,int,int); 
int amount(int,int); 
int main() 
{ 
int rate,time,val1,val2,res,i; 
rate = 5; 
time = 2; 
val1 = 300; 
val2 = 200; 
for(i=0;i<10;i++){ 
 res = findInterest(rate,time,val1,val2); 
} 
} 
int findInterest( int r, int t,int v1,int v2){ 
int si, sum; 
sum = amount(v1,v2); 
si = (sum * r * t)/100; 
return si; 
} 
int amount (int v1,int v2)  
{  
int total;  
total = v1 + v2 ;  
return total;  
} 

#include<stdio.h> 
void findInterest(void); 
void amount(void); 
int rate,time,val1,val2,total,si,i; 
int main() 
{ 
int res; 
rate = 5; 
time = 2; 
val1 = 300; 
val2 = 200; 
for(i=0;i<10;i++){ 
 findInterest(); 
} 
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Program 12 

time = 2; 
val1 = 300; 
val2 = 200; 
for(i=0;i<10;i++){ 
 findInterest(); 
} 
} 
void findInterest( ){ 
amount(); 
si = (total * rate * time)/100; 
} 
void amount ()  
{  
total = val1 + val2 ;  
} 

#include<stdio.h> 
int findInterest(int,int,int,int); 
int amount(int,int); 
int main() 
{ 
register int rate,time,val1,val2; 
int res,i; 
rate = 5; 
time = 2; 
val1 = 300; 
val2 = 200; 
for(i=0;i<10;i++){ 
 res = findInterest(rate,time,val1,val2); 
} 
} 
int findInterest( int r, int t,int v1,int v2){ 
register int si, sum; 
sum = amount(v1,v2); 
si = (sum * r * t)/100; 
return si; 
} 
int amount (int v1,int v2)  
{  
register int total;  
total = v1 + v2 ;  
return total;  
} 
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int amount (int v1,int v2)  
{  
register int total;  
total = v1 + v2 ;  
return total;  
} 



Appendix B 
Conference Paper - 2014 International Conference on Computer, Network Security 
and Communication Engineering (CNSCE 2014) ISBN: 978-1-60595-167-6 p.712-716 
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