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CHAPTER I  
INTRODUCTION 

1.1 Overview 

Biosensor applications have recently expanded as the promising tool generating 
a rapid, inexpensive and sensitive response based on colorimetric or fluorescent 
changes, and having multiplex capabilities where many traditional sensing systems 
incapable. It is a tool that converts a biological response from a stimulus into a 
measurable and readable output signal [1] The basic principle of a biosensor is to 
detect a biological recognition and transform it into a type of signal via a transducer. 
Figure 1.1 shows typical elements of biosensor [2]: a) bioreceptors that specifically 
bind to the analyte via utilization of a biochemical mechanism for recognition; b) an 
interface where signal is generated and recognized by the interaction between the 
bioreceptors and the analyte; c) the physical transducer where the transducer signal 
is converted to a measurable signal, as an electrical signal, for data acquisition and 
processing; d) computer software for the data analysis which convert the raw data 
into an easily understandable form; e) the visual display of an outcome - an interface 
to the human operator. Biosensors can be applied to a large variety of samples 
including body fluids, food samples, cell cultures and environmental samples. A 
bioreceptor can be a biological molecular species (such as enzyme, protein, 
antibody, nucleic acid or chemical compounds in biological samples) or a living 
biological system (such as a tissue, microorganism, organelle or cell).The transduction 
may be optical, electrochemical, thermometric, piezoelectric, magnetic and 
micromechanical or combinations thereof. 
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Figure 1.1 Elements and selected components of a typical biosensor  

The biosensor array using spectroscopic techniques is designed to detect 
multiple samples in the presence of several analytes consisting of several hundred 
detectable signals throughout the dataset. Especially with emerging technology, the 
capacity of analytical instruments has been improved to acquire large amounts of 
data rapidly. This leads to very complex datasets which requires powerful data 
acquisition and analysis systems. Thus, the challenge of biosensor array is the way to 
improve discriminatory powers capable to differentiate constituents of interest in 
complex systems. Chemometrics could help to perform data mining to extract useful 
information from the complex spectral datasets. 

1.2 Chemometrics 

Most chemical measurements are inherently multivariate in which data sets 
consisted of many variables with overlapped information obtained from one sample 
in time. The spectroscopy is an obvious example since a spectrum at hundreds of 
wavelengths can be measured on a single sample. The chemical information 
contained in the spectral data is hidden in the band position, the band intensities 
and the bandwidths. Whereas the band positions have information about the 
chemical structures, the intensities of the bands are related to the quantity of the 
compounds in a mixture [3]. The easiest way to determine the content of a chemical 
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compounds is to measure the change of the intensity of a well-resolved band that 
clearly belongs to this compound which is only possible for a pure component. 
However, biological samples retain numerous components giving complex 
spectroscopic spectra which typically composed of broad overlapping spectral bands 
containing chemical, physical, and structural information of all sample components, 
the analytical information contained in spectra is multivariate in nature and, 
sometimes, non-selective. Traditional approaches as univariate can miss much 
information because each variable is considered individually, for example only one 
measurement is carried out on a candidate compound (bond lengths, dipole 
moments, bond angles, etc.). In this instance, chemometric with multivariate 
statistical analysis allows us to explore multiple variables and their correlation 
simultaneously  [4].  

The term “chemometrics” was first introduced by a Swede researcher, Svante 
Wold, and an American researcher, Bruce R. Kowalski in the early 1970s [5] and the 
International Chemometrics Society was established shortly thereafter by them, the 
two pioneers in the field. Since then, chemometrics has been defined in broad terms 
as the science of relating measurements made on a chemical system or process to 
the state of the system via application of mathematical or statistical methods [6]. 

 

Figure 1.2. Principle of Chemometrics [7] 
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Chemometric analysis, the mathematical method of extracting information 
from chemical systems by data-driven means, is a powerful method to extract highly 
correlated data from a large amount of correlated and non-correlated data and to 
group the samples with similar characteristics and then to establish classification for 
samples. By this analysis, both descriptive and predictive issues can be solved. In the 
descriptive approach, properties of the investigated data are extracted in order to 
learn the underlying interrelationships hidden in variables. In the predictive approach, 
the ability of the discriminant to predict the class of an unknown sample will be 
tested by validation technique [8]. 

The analytical information contained in spectroscopic data can be extracted by 
using various multivariate analysis techniques that relate analytical signals to the 
properties of the analytes. These methods encompass descriptive techniques such as 
the principal component analysis (PCA) and canonical correlation analysis (CCA) and 
predictive techniques such as linear discriminant analysis (LDA) and principal 
component regression (PCR). Several multivariate statistical analyses can be applied 
to the spectroscopic dataset as a multivariate data matrix of substances in real 
samples to demonstrate the discriminating ability of the resulting array. To discover 
the relationships among all responses and variables obtained from a sample and 
distinguish them from the interfering signals efficiently, all of the data must be 
processed simultaneously. 

1.2.1. Pattern recognition 

Human’s brain normally has the ability to recognize either tangible or 
intangible objects in the environment and learn to distinguish patterns of interest, 
such as a human face, fingerprint image, a speech signal, or food flavor from what 
they have previously learned or perceived. Pattern recognition in the context of 
chemometrics is an approach to machine intelligence which is based on statistical 
modeling of high-dimensional data that may not be visualized by human’s 
perception. For example, spectroscopy sensor array is a group of sensors (consisting 
of many sensing elements and/or many wavelengths) which provides a dataset of 
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interrelated spectral bands. This spectral dataset has multiple measured variables 
and is beyond human perception. The computer-based pattern recognition can be 
divided into two techniques [9, 10]: (1) supervised classification in which the input is 
identified as a member of a predefined class, and (2) unsupervised classification in 
which the input is assigned to an unknown class. 

1.2.1.1 Unsupervised patter recognition 

An unsupervised method does not require any a priori knowledge 
about the group structure in the data, but instead produce the grouping, i.e. 
clustering, themselves based on similarities and dissimilarities between 
samples. This type of analysis is often very useful at an early stage of the 
investigation to explore subpopulations in a data set, e.g. different freshness 
of products. Cluster analysis can be performed for better visualization using a 
method such as Principal Component Analysis (PCA). 

Principal component analysis (PCA) 

The first step of chemometrics analysis begins with the descriptive 
approach to obtain an overview of all the information in the dataset by 
performing an exploratory analysis in the multivariate space. Principal 
Component Analysis (PCA) is probably the most widespread multivariate 
statistical technique used in this approach [4]. Since PCA is unsupervised 
pattern recognition, it does not require any a priori knowledge about the group 
structure in the data [11, 12], but instead self-organize the grouping, i.e. natural 
clustering. This type of analysis is often very useful at an early stage of the 
investigation to explore subpopulations in a data set, e.g. different freshness of 
a product.  

PCA is the appropriate choice for data investigation by calculating 
orthogonal eigenvectors (principal components, PCs) that lie in the direction 
of the maximum variance within that data set. The first PC contains the 
highest degree of variance and other PCs follow in the order of decreasing 
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variance. PCA may be used to test the quality of the data because it will 
equally and statistically treat all of the data points. Therefore, PCA will define 
the clusters based on their data similarity and would attest to the high 
discriminatory ability of the array. 

The main goal of PCA is to reduce a large number of variables to a 
much smaller number of principal components (PCs) that capture the vast 
majority of variance in the data [13, 14]. This reduces the dimensionality of the 
data considerably, enabling effective perception, visualization, regression and 
classification of multivariate data. With this technique, relationships between 
different parameters (samples and variables) and/or the detection of possible 
clusters within the samples and/or variables can be found. PCA performed on 
biosensor response data makes it possible to draw the similarity maps of the 
samples and to get the response patterns.  

PCA decomposes the data matrix as follows [11]: 

𝐗𝒊𝒋 = T𝐴 . V𝐴
T + E𝑖𝑗 …………………………………………(1.1) 

where 𝐴 is the number of components; T = [t1, t2, … , t𝐴] is the score 

vectors which give the coordinates of samples in the PC space; V = 

[v1, v2, … , v𝐴] is the loadings vectors which indicate the importance of each 

original variable contributing to the principal components; E is the residuals or noise, 
the part of the data which was not explained by the model. 

The steps of the PCs selection are as follows: 

1. The center of the data cloud is determined as the zeroth principal 
component (PC0). 

2. The direction of the maximum data variation is relatively sought toward from 
the centered origin, PC0. This is the PC1. 
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3. If the data are not fully described, more directions (PC2, PC3…) orthogonal to 
the first PC axis (or its earlier PC) are determined in order to describe the maximum 
variation in the residuals. 

 

Figure 1.3. A principal component analysis (PCA) model approximates the variation in 
a multi-dimensional data table by a lower dimensional model plane. The directions 
in the PC score plot correspond to directions in the loading plot, and vice versa [12].  

1.2.1.2 Supervised patter recognition 

  In these methods, each data point is formerly assigned to a definite 
class. The distance between classes characterizes the partition obtained. The validity 
of the method can be verified by comparison of the distances. The distances 
between classes means have to be clearly superior to the distances within classes. 
Another way to validate the discrimination is to test it by cross-validation method 
which the data will be separated into two sets: a training set to elaborate the 
method (calibration), and a test set to validate it. The classification rules are later 
used for allocating new or unknown samples to the most probable subclass. 
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Linear discriminant analysis (LDA) 

LDA is useful whenever these are grounds to postulate the existence of 
a number of groups (categories) into which the samples may be classified by 
modeling the similarities between the data corresponding to the same cluster 
by introducing the group classification of the trials into the data set. The data 
are then used as a training set to generate a linear discriminant (LD) function, 
which describes the best fit parameters to separate different clusters (analytes). 

LDA is supervised where the class membership has to be known in 
advance for the analysis. LDA is similar to PCA because they are both 
considered as a dimension reduction method by determining a smaller 
dimension hyperplane on which the points will be projected from the higher 
dimension. However, whereas PCA selects a direction that retains maximal 
structure among the data in a lower dimension, LDA selects a direction that 
achieves maximum separation among the given classes [15]. LDA is based on 
the determination of linear discriminant functions, which maximize the ratio of 
between-class variance and minimize the ratio of within-class variance, by 

seeking a set of optimal vectors, denoted by 𝑊 =  [𝑤1, 𝑤2, … , 𝑤𝑖]. 

𝐽(𝑊) = 𝑡𝑟 (
𝑊𝑇𝑆𝑏𝑊

𝑊𝑇𝑆𝑤𝑊
) ……………………………………………..(1.2) 

where 𝑆𝐵  is the “between-class scatter matrix”, the distance between the 

centroids of different classes; and 𝑆𝑊 is the “within-class scatter matrix”, the 
accumulated distance of an instance to the centroid of its class. 

The definitions of the scatter matrices are:  

𝑆𝑏 = ∑ 𝑝𝑖(𝑚𝑖 − 𝑚)(𝑚𝑖 − 𝑚 )𝑇  𝐶
𝑖=1  

𝑆𝑊 = ∑ ∑ 𝑝𝑖
𝑛𝑖
𝑗=1 (𝑥𝑖𝑗−𝑚𝑖)(𝑥𝑖𝑗 − 𝑚𝑖  )𝑇  𝐶

𝑖=1  
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where 𝑝𝑖  is the prior probability of the 𝑖𝑡ℎ class, 𝑚𝑖 is the centroid of class 

𝑖, 𝑥𝑖𝑗  is the 𝑗𝑡ℎ sample of class 𝑖 and 𝑛𝑖  is the number of training samples from 

class 𝑖, 𝑚 is the centroid of the global centroid. 

Listed below are the general steps for performing a linear discriminant analysis 
[16]:  

1. Seeking the d-dimensional mean vectors; 

2. Computing the Scatter Matrices   𝑆𝐵  and 𝑆𝑊 ; 

3. Computing the eigenvectors and corresponding eigenvalues for the 
scatter matrices.  

o Solving the generalized eigenvalue problem for the matrix 

𝑆𝑊
−1 𝑆𝐵 to obtain the linear discriminants.; 

o Checking whether the eigenvector-eigenvalue calculation is 
correct and satisfy 

4. Selecting linear discriminants (LD) for the new feature subspace;  

o Sorting the eigenvectors by decreasing eigenvalues 

o Choosing k eigenvectors with the largest eigenvalues 

5. Transforming the samples onto the new subspace. 

o 𝑦 = 𝑊𝑇 × 𝑋 where 𝑥  is a d×1-dimensional vector 

representing one sample, and 𝑦  is the transformed 

𝑘 ×  1 -dimensional sample in the new subspace. 

In LDA, classes are supposed to follow a multivariate normal distribution and 
be linearly separated. LDA can be considered, as PCA, as a feature reduction method 
in the sense that both, LDA and PCA, determine a smaller dimension hyperplane on 
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which the points will be projected from the higher dimension. However, whereas PCA 
selects a direction that aims to retain maximal structure among the data, LDA selects 
a direction that aims to achieve maximum separation among the sample classes [17, 
18] (see Figure 1.4).  
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Figure 1.4. (a) Good class separation. (b) Bad class separation. 

In these methods, each data point is formerly assigned to a definite class. The 
distance between classes characterizes the partition obtained. The validity of the 
method can be verified by comparison of the distances. The distances between 
classes means have to be clearly superior to the distances within classes. As shown 
in Figure 1.5 [19], two classes (red and blue colors) are well separated by a 
projection onto the first LDA basis vector, but poorly separated by a projection onto 
the first PCA basis vector. 

 

Figure 1.5. 2-D 2-class data, along with first LDA basis vector and first PCA basis 
vector  

1.2.2 Feature selection 

Spectroscopic measurements carried out in chemistry or biotechnology usually 
contain both meaningful variables and meaningless noise [20]. Noisy variables 
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increase chances of false classification. The noise reduction by feature selection 
should be taken into account to remove the number of irrelevant or redundant 
variables for improvement of the overall sensor’s quality. The feature selection aims 
to gain a better understanding of the essential features that play an important 
contribution in governing the sensor behavior under investigation [21]. 

The feature selection is usually based on the cross-validation [22] which is a 
procedure to estimate the performance of a model which the data training set is 
divided into two sets: a training set to elaborate the method, and a test set to 
validate it. Leave-one-out routine is a type of the cross-validation where procedure 
consists of removing one sample out of the training set at the time, constructing the 
predictor on the basis only of the rest of the data which will be used as the training 
data, then testing on the removed sample. Since a priori information of sample 
groups is required to perform the predictive analysis, only supervised method is able 
to do.  

1.3 Optical Biosensor Array 

Biosensors can be classified by either a type of bioreceptor or a transducer 
employed. For the optical biosensor, the sensor is based on various technologies of 
optical phenomena (i.e. fluorometric or colorimetric changes) which are a result of 
both interactions of a recognition center binding with target analytes and 
chromophore or fluorophore coupling to the recognition center [1, 23]. 

1.3.1 Fluorescence Biosensor  

Fluorescence is a process in which sensitive molecules emit light from 
electronically excited states induced by absorption of light. The tremendous 
improvements in fluorescence-based techniques can be observed over the last 
decades. Fluorescence sensor techniques can be categorized into three main classes: 
(1) intrinsic fluorescence such as aromatic amino acids, neurotransmitters, porphyrins, 
and green fluorescent protein, are those that occur naturally; (2) extrinsic 
fluorescence in which synthetic dyes or modified biochemicals are added to a 
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specimen to produce fluorescence with specific spectral properties; and (3) 
displacement or differential probes that is the displacement of a fluorogenic 
indicator from an indicator–receptor complex by the analyte [1].  

Some biological samples rely on their intrinsic fluorescence characteristics. For 
example, milk contains intrinsic fluorophores such as vitamin A in fats and amino acid 
residues present and proteins [24, 25]. These Intrinsic fluorophores are sensitive to 
environment and are able to provide information on conformational changes of 
proteins [3, 26]. In addition, tryptophan residues in hydrophobic interior of protein-
containing sample provide fluorescent properties different from residues on a 
hydrophilic surface. However, it is not always the case the intrinsic fluorescence is 
adequate for the desired investigation, extrinsic fluorescent dyes may be used in this 
case. 

There are at least two parameters governing the appearance of fluorescence 
intensity and spectral distribution i.e. the optical density of the sample and the 
geometry of sample illumination. The fluorescence intensities are proportional to the 
sample concentration only in a limited range of optical densities. Figure 1.6 shows 
the effects of optical density on the fluorescence intensity of quinine sulfate 
obtained in a 1-cm2 cuvette that was centrally illuminated [27]. The solid line (——) 
is the measured intensities, while the dashed line (– – –) is the corrected intensities. 
High optical densities of the sample (the absorbance of the sample exceeds 0.1) can 
distort the emission spectra as well as the apparent intensities when it is recorded by 
the conventional right-angle fluorescence measurement from the center of a 
centrally illuminated cuvette (Figure 1.7, top left). A dilution of turbid samples is 
sometime not a proper choice of solution since the organization of the sample 
matrix can be lost, especially in food products. To avoid these problems, front-face 

illumination geometry with the incidence angle of the excitation radiation set at 30 

to 60 performed using either triangular cuvettes or square cuvettes is performed to 
reduce light scattering effects [27] (Figure 1.7). 
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Figure 1.6. Effects of optical density on the fluorescence intensity of quinine sulfate. 

 

 

Figure 1.7. Various geometric arrangements for fluorescence measurement. 

1.3.2 Colorimetric Sensor 

Human’s eye perceive variety of colors derived from the spectrum of light. The 
chemical basis of human vision depends upon the absorption of light 
(electromagnetic radiation) by pigments in the eye. Rod in human’s eye is analogous 
to transducers which transform electromagnetic energy into the chemical energy and 
stimulate an impulse and carry to the brain via the optic nerves [28]. This visible light 
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region for human consists of a spectrum of wavelengths ranging from approximately 
700 nm to approximately 400 nm (Figure 1.8).  

 

Figure 1.8. The electromagnetic spectrum which represents the complete range of 
electromagnetic radiation [29]. 

Table 1.1. The colors of the visible light spectrum [30] 

Color Wavelength Interval Frequency Interval 

Red ~ 700–635 nm ~ 430–480 THz 

Orange ~ 635–590 nm ~ 480–510 THz 

Yellow ~ 590–560 nm ~ 510–540 THz 

Green ~ 560–490 nm ~ 540–610 THz 

Blue ~ 490–450 nm ~ 610–670 THz 

Violet ~ 450–400 nm ~ 670–750 THz 
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Primary colors are sets of fundamental colors that can be simultaneously 
combined to make a useful range of colors. Primary colors (Figure 1.9) can be 
divided into two types: additive and subtractive. 

 

 

Figure 1.9. Subtractive colors combine to form black (left) and additive colors reduce 
to produce white (right) [31].  

The additive primaries are those which are obtained by light: red (R), green (G) 
and blue (B). The sets of RGB colors combine to form white and form the basis of 
screen color such as computer screen, television, scanners, digital cameras and other 
devices that give light. Subtractive primaries are those obtained by the subtraction of 
light: cyan (C), magenta (M) and yellow (Y). These colors combine to form black (or K) 
and is the basis of printing that reflect light rather than emit light. RGB / CMYK color 
models are based on different principle, the spaces of colors in CMYK and RGB are 
different as shown in Figure 1.10. 
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Figure 1.10. A comparison of the chromaticities enclosed by color spaces [32]. 

1.4 Literature reviews  

1.4.1 Fluorescence biosensor array 

In 1997, Dufour et al. [33] applied PCA for discrimination of raw, heated and 
homogenized milks using fluorimetric data. The fluorescence spectra of raw (NHO), 
heated (NHP), homogenized (HOM) and homogenized + heated (HOP) milks were 
recorded using a variable angle front-surface accessory having the incidence angle of 
the excitation radiation set at 56°, in the presence of 1-anilinonaphthalene-8-sulfonic 
acid (ANS) as extrinsic fluorophore. The emission spectra of tryptophan (305-400 nm), 
retinol  (350-500 nm) and ANS (400-600nm) were recorded with excitation 
wavelengths set at 290, 321 and 370 nm, respectively, and the excitation spectra of 
retinol (260-350 nm) and ANS (250-450 nm) were recorded with emission 
wavelengths set at 410 and 466 nm, respectively. Principal component analysis was 
applied to the normalized fluorescence spectral data in order to distinguish between 
milk samples. It was shown that the map defined by principal components 1 and 2 
(Figure 1.11) discriminated NHO, NHP, HOM and HOP samples as a function of 
homogenization and heating, respectively. Notably, the measurements by recording 
the excitation and emission spectra on different wavelengths as used in this study 
are inconvenient for a real application. 
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Figure 1.11.  PCA similarity map defined by the principal components 1 and 2 for the 
data table including tryptophan emission, retinol excitation and ANS excitation 
spectra.  

In 2007, Miranda et al. [34] used functionalized poly(p-phenyleneethynylene)s 
(PPEs) to build a protein sensor array for proteins. These highly fluorescent polymers 
possess various charge characteristics and molecular sizes (Figure 1.12).  

 

Figure 1.12. Chemical structures of PPE polymers (P1-P6) 
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However, they display substantial overlap in their absorption and emission 
spectra. Therefore, the fluorescence response patterns were subjected to linear 
discriminant analysis (LDA). The first three canonical factors contain 65.0, 20.8, and 
7.3% of the variation, respectively, occupying 93.1% of total variation. The patterns 
are clustered into 17 different groups corresponding to the numbers of proteins as 
shown in Figure 1.13, and the cross-validation reveals 100% classification accuracy. 

 

 

Figure 1.13. Canonical score plot for the first three factors of fluorescence response 
patterns obtained with PPE polymer array against 17 protein analytes. 

In 2007, You et al. [35] developed a displacement fluorescent sensor array 
containing six non-covalent gold nanoparticle–fluorescent polymer conjugates 
(Figure 1.14) for the identification of proteins.  
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Figure 1.14. Chemical structure of cationic gold nanoparticles (NP1–NP6) and anionic 

fluorescent polymer PPE-CO2 (m  12, where m refers to the number of repeated 
units in the polymer). 

Seven proteins having diverse molecular weight and isoelectric point (pI) were 
selected as the target analytes in this study. The nanoparticles associated with 
fluorescent dye produce the fluorescence ''switch-off'' and the subsequent binding of 
protein analytes displaces the dyes to generate the fluorescence ''switch-on'' as 
shown in Figure 1.15..  

 

Figure 1.15. Displacement of quenched fluorescent polymer to restore the 
fluorescence signal (dark green strips, fluorescence off; light green strips, fluorescence 
on) by protein analyte (in blue).  

A fluorogenic response patterns were generated from the sensor array obtained 

from the addition of proteins (5 M or A280 = 0.005) to the polymer conjugates. LDA 
was applied to the raw data of fluorogenic response patterns. As shown in Figure 
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1.16, LDA can distinguish each protein response pattern with an accuracy of 100% 
and 94.2% respectively. 

 

Figure 1.16. LDA score plot for the first two factors of fluorescence response 
patterns obtained from the nanoparticle–poly(p-phenyleneethynylene) assembly 
arrays against 7 proteins with identical absorption values of A = 0.005 at 280 nm ( 

left) and the proteins at concentration of 5 M (right). 

In 2014, Wan et al. [36] designed a ‘chemical nose’ sensor array containing 
three quaternized magnetic nanoparticles (q-MNPs)–fluorescent polymer systems for 
bacteria detection. The fluorescence intensity at 538 nm was measured with an 
excitation wavelength of 486 nm. The response intensity of the array differentiates 
upon the level of displacement determined by the relative q-MNP–fluorescent 
polymer binding strength and bacteria cells–MNP interaction (Figure 1.17).  

 

Figure 1.17. Design of the PFBT conjugated q-MNP system.  
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Two types of bacteria concentrations, 107 cfu mL-1 and OD600 = 0.2 were 
prepared for comparison of the sensor’s effectiveness. The fluorescence response 
data matrices were analyzed by LDA technique relatively low accuracy of 96.8% and 
87.5% respectively (Figure 1.18). 

 

 

Figure 1.18. (left) LDA score plot of q-MNP polymer complex in the presence of 
bacteria (107 cfu mL-1); (right) LDA score plot of q-MNP polymer complex in the 
presence of bacteria (OD600 = 0.2). 

1.4.2 Colorimetric sensor array 

In 2006, Janzen et al. [37] developed a colorimetric sensor array for the 
detection and identification of volatile organic compounds. The array composed of 
chemically responsive dyes which produce digital images as a distinct map showing a 
characteristic fingerprint for each analyte. The digital images are commonly achieved 
with an ordinary flatbed scanner. Figure 1.20 shows the color map which is generated 
by RGB subtraction of the array image before and after exposure for red (R), green (G) 
and blue (B) values. Every spot in the array is described by RGB color values; for an 
eight-bit color scanner, this spans the range of 0-255: i.e., black color is (0, 0, 0) and 
white color is (255, 255, 255). The subtraction of the “before” and “after” images 
yields a vector in 108 dimensions (i.e., 36 changes from six by six array in RGB color 
values). Each vector is ranging from a number of -510 to +510 and usefully visualized 
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as shown in the difference map (Figure 1.19, right), which shows the absolute values 
of the color changes.  

 

Figure 1.19. Image of the 36-dye colorimetric sensor array before exposure (left) and 
after exposure to decylamine (middle) after equilibration at full vapor pressure at 
295 K.  

Figure 1.20 shows 53% of the discriminatory ability of the array captured by 
the first two components. As an inherent consequence, only fair spatial 
discrimination among chemical classes can be observed. The clusters of 
hydrocarbons, thiols, ketones, esters, and aldehydes are significantly overlapped, 
while phosphines cannot be distinguished from aromatic amines. The discrimination 
of analytes into their chemical classes is limited.  

 

Figure 1.20. Two principal components of the colorimetric sensor array from the 
response data averages of the 100 VOCs at 295 K, at their full vapor pressure.  
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In 2011, Hou et al. [38] developed an artificial tongue system through a low-
cost and simple colorimetric sensor array consisting of prophyrin, porphyrin 
derivatives (mainly metalloporphyrins) and chemically responsive dyes capable of 
rapid interaction with proteins. The array produced color patterns in response to 
each protein differently. A colorful difference map was obtained by comparing the 
RGB values of “initial” and “final” images. The color patterns coupled with PCA 
allow the identification of the pure and mixed proteins as shown in Figure 1.21 and 
denatured proteins as shown in Figure 1.22.  

 

Figure 1.21. (A) Color difference maps for 10M individual and mixed proteins; (B) 
PCA score plot for seven individual and mixed proteins. 
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Figure 1.22. (A) Color difference maps for 10M three natural and denatured 
proteins; (B) PCA score plots for six native and denatured proteins. 

1.5 Objectives and scope of the dissertation 

1. To apply chromophore or fluorophore compounds as sensing arrays for 
organic substances in biological samples  

2. To obtain the optimum sensing array through multivariate statistical analyses 
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To achieve the above objectives, the scope of work includes:- 

1. Spectroscopy measurements of the chromophores or fluorophores in 
responses to samples 

2. Chemometric data acquisition and analysis using multivariate statistical 
analyses. 

2.1 A descriptive approach to obtain an overview of all the information in 
the data set 

2.2 A predictive approach to test the discriminating ability of sensor array 

3. Interpretation of the multivariate statistical results obtained from sensing 
array 
 



 

 

CHAPTER II 
 EXPERIMENTAL 

2.1 Fluorescence sensor array  

2.1.1 Materials  

Concanavalin A (ConA, from Jack bean), cytochrome C (CytC, from equine 
heart), histone (His, from calf thymus, type III-S), human serum albumin (HSA), 
lysozyme (Lys, from chicken egg white), myoglobin (Myo, from equine heart) and 

papain (Pap, from papaya latex), -Casein (-CN), -Casein (-CN), -Lactalbumin 

(-LA), -Lactoglobulin (-LG) and 1-Anilinonaphthalene-8-sulfonic acid (1,8-ANS) 
were purchased from Sigma. Bovine serum albumin (BSA) was purchased from Fluka. 
All commercial milk products were purchased from local supermarkets and used 
well before the expiration dates. However, life period of the products was not taken 

into account. All solutions were prepared by using Milli-Q water (18.1 M) as the 
solvent. All chemicals were used as received without further purification.  

Vibrio cholera, Shigella flexneri, , Listeria monocytogenes, Bacillus cereus ATCC 
14579, Salmonella Typhimurium ATCC 11331, Staphylococcus aureus ATCC 25923 
and  Escherichia coli ATCC 25922 were kindly provided by Associate Professor 
Chanpen Wiwat, Faculty of Pharmacy, Mahidol University, Thailand. Enterotoxigenic 
Escherichia coli (ETEC) 290 was kindly provided by Assistant Professor Potjanee 
Srimanote, Faculty of Allied Health Science, Thammasat University, Thailand.  All 
solutions were prepared by using PBS buffer (pH 7.4)  as the solvent. All chemicals 
were used as received without further purification. Fluorescence spectra were 
acquired from a SpectraMax M2 microplate reader (Molecular Devices, Sunnyvale, 
CA) using black polystyrene 96-well microplates. 

 Dendritic polyelectrolyte fluorescence compounds were prepared according to 
previous reports [39-41]. 
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Figure 2.1. Structures of dendritic polyelectrolyte fluorescence compounds 1-6 

2.1.2 Fluorescence sensor study  

2.1.2.1 Fluorescence measurement of proteins  

The stock solutions of all fluorophores (5 µM) were prepared in 10 mM sodium 

phosphate buffer saline (PBS) pH 7.4. The stock solutions of BSA, -CN, -CN, -LA, 

and -LG were prepared in PBS to have the absorbance at 280nm (A280) equal to 
0.4. For the measurement of protein in a cuvette, the protein and fluorophore 
mixture was prepared by mixing the corresponding stock solutions and diluting with 

PBS to afford the final concentration of the fluorophore of 0.2 M and the protein 
concentration with calculated A280 of 0.01. Fluorescence spectra were recorded at 
ambient temperature from 400 to 600 nm at the excitation wavelength of 375 nm.  

1

6

2 3

4 5
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2.1.2.2 Fluorescence measurement of commercial milk samples 
via cuvette 

The commercial milk sample (2 L) was diluted 10,000 times with 10 mM 
PBS prior to the addition of the fluorophore stock solution. The final concentration 

of the fluorophore in the milk samples was 0.01 M. Fluorescence spectra were 
recorded at ambient temperature from 400 to 600 nm at the excitation wavelength 
of 375 nm.  

2.1.2.3 Fluorescence measurement of commercial milk samples 
via microplate  

The fluorophore stock solution was added directly to the commercial milk 

samples (70 L) in the microplate wells to furnish its final concentration of 1M. 
The mixtures were shaken at ambient temperature for 15 min before acquiring the 
spectra. Fluorescence spectra were recorded at ambient temperature from 400 to 
600 nm at the excitation wavelength of 375 nm.  

2.1.2.4 Fluorescence measurement of foodborne pathogens via 
microplate  

The number of bacterial counts (CFU/mL) was estimated from the optical 
density (OD) at 600nm nm, using a calibration line related to the plate counts. For 
the fluorescence measurement, the number of bacterial counts was controlled at 
108 CFU/mL. Fluorescence spectra were recorded at ambient temperature from 400 
to 700 nm at the excitation wavelength of 375 nm. 

2.1.3 Data preparation  

I was calculated from the difference of the fluorescence intensity,  
IE – I0, where IE and I0 were the fluorescence intensity in the presence and absence of 
the samples, respectively. 
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2.2 Colorimetric sensor array 

2.2.1 Materials 

Eight diacetylene monomers (DA), i.e. amphiphilic (1–6) and bolaamphiphilic 
(7–8) compounds were utilized as precursors for preparation of PDA sensing 
elements in the colorimetric sensor array (Figure 2.2). 10,12-pentacosanoic acid 
(PCDA), 10,12-tricosadiynoic acid (TCDA) and 10-undecynoic acid were purchased 
from GFS Chemicals (USA). 6,8-nonadecadiynoic acid (6,8-19DA, 3) was prepared 
according to previous report [42]. 

 

 
Figure 2.2. Structures of diacetylene monomers 1-8 

2.2.1 Colorimetric vesicle-based sensor array 

2.2.1.1 Colorimetric detection of surfactants  

Diacetylene monomer (DA) 1, 4, 5 and 6 were transformed into aqueous sols 
by sonication then followed by UV-irradiation to afford Polydiacetylene (PDA) vesicle 
sols. Three anionic surfactants (SDC, SDS, SDBS), three cationic surfactants (TTAB, 
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DTAB, HTAB), and three nonionic surfactants (TWEEN-20®, Brij®58, TRITON® X-100) 

were used as target analytes. Solutions of surfactant (0, 10, 20, 30, 40 and 50 M) 
were added into each PDA solution at final concentration of 0.1 mM. The resulting 
solutions were stirred for 5 minutes before monitoring by UV-Vis spectrometry. The 
spectra were recorded from 800 to 400 nm with the zero absorbance set at 800 nm. 

The max of the blue and the red phase of each sample were determined at blank (0 

M) and 50 M of surfactant concentration. 

2.2.1.2 Data preparation for vesicle-based colorimetric response 

After collections of the electronic absorption spectra by the UV-visible 
spectrophotometer, the percentage of colorimetric response (%CR) was determined 
based on the difference of blue color fraction according to the following equation:- 

%CR = 100 x (FB0 – FB)/FB0 

where FB0 is the blue color fraction before UV irradiation and FB is the blue 
color fraction after UV irradiation. 

FB is the blue fraction calculated from   Ablue / (Ablue + Ared) where Ablue and Ared 

are the absorbance detected at the max of the blue and the red forms of 
polydiacetylenes respectively. 

2.2.2 Colorimetric paper-based sensor array 

2.2.2.1 Fabrication of PDAs coated paper 

DAs 1-8 were dissolved in THF or chloroform (2% w/v) and dropped on a filter 
paper (Whatman No.1 chromatography paper). In order to create the equal size of DA 

dots, 2 L of the DA solutions were controllably dropped by auto pipette. The 
desired number of repetitions was pursued according to numbers of the DA dots 
casted at different locations on the filter paper. The filter paper was allowed to dry 
at an ambient temperature in the dark for 60 min. Polymerization was carried out 

under a hand-held UV lamp (500 W/cm2) at a wavelength of 254 nm for 1 min. The 
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UV lamp was hung at a height of 10 cm above the filter paper. The DA dots on the 
filter paper turned into blue PDA dots as a result of the UV irradiation. 

2.2.2.2 Preparation of saturated analytes vapor  

Eighteen organic solvents, i.e.  pentane, hexane, cyclohexane, toluene, o-
xylene, benzene, diethyl ether, dichloromethane (DCM), 2-propanol, tetrehydrofuran 
(THF), chloroform (CHCl3), ethanol (EtOH), ethyl acetate (EtOAc), acetone, methanol 
(MeOH), acetonitrile (MeCN), dimethylformamide (DMF) and dimethylsulfoxide 
(DMSO), were selected  as target analytes the in this work. 3 mL of each solvent was 
poured into a chamber and held for 60 minutes in close system to achieve saturated 
the analyte vapor. The filter paper containing blue PDA dots was attached on the 
inner surface of the chamber lid. The lid was then used to close the chamber tightly 
at 30 °C for 60 min.  

2.2.2.3 Image processing methods for screening 

The photographic images of the PDAs dots were recorded to monitor the color 
changes via scanner and digital camera. For the digital camera, the images were 
captured at the distance of 30 cm. Each image of PDA dots was saved in TIF format 
and cropped into a size of 0.5 x 0.5 cm2. 

2.2.2.4 Data preparation 

Raw color images (TIF format) - the mean intensity in the red, green, blue 
channel was recorded and converted into RGB numerical values with three numeric 
values ranging from 0 to 255. RGB values generated from the digital and scanned 
images were quantified using 8-bit Adobe Photoshop®. 8-bit digital image encodes 
pixel color values by devoting 8 bits to each of the red (255, 0, 0), green (0, 255, 0) 
and blue (0, 0, 255) components to create the maximum number of 256 colors (8 
bit). 

A three-dimensional vector (R, G, B) of each PDA sensor was determined 
from the RGB values before and after the exposure of VOCs to vapor.  
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 RGB value = (RGB value of VOCs) – (RGB value of blank) 

whereas; R = red, G = green and B = blue values.  

The RGB of 12 replicated measurements were averaged and standard errors 
of each data set were determined. 

2.3 Data analysis using multivariate statistical analysis 

The data obtained from the sensor measurement results were arranged as p x 
n data matrices; where p corresponds to the repetitions treated as objects (row) and 

n corresponds to the measurement results (e.g., I, %CR or RGB) treated as 
variables (column).  Multivariate statistical analyses were performed on the p x n 
data matrices using Unscrambler® 9.7 or XLStat® 2010.  

2.3.1 Descriptive data analysis 

Principal component analysis (PCA) was performed on all of the data matrices 
as the descriptive data analysis to achieve an overview of all the information in the 
dataset.  

2.3.2 Predictive data analysis 

Linear discriminant analysis (LDA) was performed on all of the data matrices to 
classify samples to different classes and to test the discriminating ability of sensor 
array. Factorial discriminant analysis (FDA) was performed on the selected PCs 
obtained from the PCA technique to quantify the classification accuracy. 

Full cross-validation with a leave-one-out technique was applied to PCA, FDA 
and LDA models to assess the performance of each model based on the 
classification validity and accuracy of the samples in the validation set. In the cross-
validation, a sample in p was randomly removed from the data set and LDA was 
used to determine the centroid coordinate for each known class of the rest of the 
samples (p-1). The removed sample was then classified to the group of which 
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centroid closest to the sample score coordinate. The procedure was repeated until 
all samples were classified. The ratio of the numbers of the samples correctly 
predicted by LDA to the total numbers of the samples defined the accuracy 
percentage. 

2.3.3 Feature Selection  

Feature selection was performed based on full cross-validation with a leave-
one-out technique applied to PCA and LDA models for dimensionality reduction by 
removing sensing elements with low contribution from the array. 
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CHAPTER III 
RESULTS AND DISCUSSION 

3.1 Fluorescence Sensor Array  

Fluorescence technique has been a detection method of choice due to its high 
sensitivity and vast potential for selectivity enhancement. Many biological molecules 
are able to luminesce or fluoresce from natural intrinsic fluorescent probes, e.g. 
tryptophan or natural fluorescent proteins, involving delocalized electrons in 
aromatic molecules. Conjugation of extrinsic fluorophore with the target 
biomolecules is an alternative approach, the quality of information provided by 
fluorescence measurements can be clearly improved. [43]. Phenyleneethynylene is 

an important class of -conjugated molecules currently applied as fluorescent 
transducers in various optical sensing systems [44, 45]. Recently, dendritic 
fluorophores composed of phenyleneethynylene repeating units with various charges 
are developed as a biosensor array.  

3.1.1 Fluorescence sensor array for protein discrimination 

A sensor array composed of fluorescent compounds 1-5 having various 
interaction sites, created by different combinations of cationic trimethylammonium, 
anionic carboxylate and non-ionic methyl ester on the peripheries, was initially 
developed to investigate the fluorescence responses toward a set of eight 
commercially available proteins Bovine Serum Albumin (BSA, pI = 4.8, 66.3 kDa), 
tetrameric Concanavalin A (ConA, pI = 5.5, 106 kDa), Cytochrome C (CytC, pI = 10.7, 
12.3 kDa), Histone (His, pI = 10.8, 21.5 kDa), Human Serum Albumin (HSA, pI = 5.2, 
69.4 kDa), Lysozyme (Lys, pI = 11.0, 14.4 kDa), Myoglobin (Myo, pI = 7.2, 17.0 kDa), 
and Papain (Pap, pI = 9.6, 23.0 kDa) [34]. These proteins were selected based on the 
variation of isoelectric points (pI) and molecular weights.  
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The addition of these proteins into solutions of the fluorophores was 
conducted to observe the fluorogenic response changes. As shown in Figure 3.1, 
different fluorescence patterns were visualized. 

 

Figure 3.1. Cropped photographic images of the fluorophore solutions (2.0 μM) in 
phosphate buffer saline (10 mM, pH 7.4) mixed with each of protein solution (A280 = 
0.1) under black light. 

Fluorescence intensities obtained from nine replicated measurements for each 
pair of protein and fluorophore were used to construct a histogram plot as shown in 
Figure 3.2. 

Control BSA ConA CytC His HSA Lys Myo Pap
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Figure 3.2. Histogram of logarithmic values of relative intensity (log I/I0) at 460 nm 

(ex = 375 nm) of fluorophore solutions (0.20 M) in phosphate buffer saline (10 
mM, pH 7.4) mixed with each of protein solution (A280 = 0.01). 

3.1.1.1 Multivariate statistical analysis 

Although the histogram in Figure 3.2 already showed differentiable patterns of 
the fluorogenic responses toward the eight protein analytes, computational pattern 

recognition of these multidimensional dataset (5 fluorophores  8 proteins  9 
replicates) can be further realized using multivariate statistical analyses. In this work, 
an unsupervised PCA method was first applied to the dataset of fluorescent intensity 

differences (I) at 460 nm without defining classes of protein samples. The PCA 
transformed the data set into principle component (PC) scores based on their 

pattern similarity [13, 46]. The same methodology was applied to data matrices of I 
at various wavelengths ranging from 430 to 520 nm to generate PCA score plots as 
shown in Figure 3.3.  
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Figure 3.3. PCA score plot of I obtained from the data set of 5 fluorophores  8 

protein samples  9 replicates measured at 430 nm (a), 460 nm (b), 490 nm (c), 500 
nm (d), 510 nm (e) and 520 nm (f).  

The next step is to test the discriminating ability of the array by factorial 
discriminant analysis (FDA). FDA is a supervised method [25, 47, 48] which was 
applied on the PC scores of the selected PCs using a leave-one-out cross-validation 
to check whether the classification accuracy is acceptable. The cross-validation is a 
technique applied to the samples whose category is known and are divided into two 
sets: a training set and a prediction (or evaluation) set. The samples in the training set 
are used to develop classification/prediction rule; the category of the samples in the 
prediction set is evaluated by the rules thus obtained and the percentage of the 
correct classification achieved gives the predictive ability. The subdivision between 
training and evaluation set will be made by using a leave-one-out routine, which one 

a)

b)

c)

d)

e)

f)
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observation will be left out of the set at the time and the rest of the data will be 
used as a training set.  

The leave-one-out cross validation cannot be applied directly to PCA due to 
the fact that PCA itself is not a supervised method.  FDA with cross-validation will be 
applied to test the discriminating ability of the sensor array. Initially, a step-wise 
discriminant analysis will be performed to select the PCs that are most relevant for 
discrimination of variables corresponding to the sample groups which are initially 
defined. FDA will be applied on the selected PC scores to test the discriminating 
ability by the cross validation technique, i.e. each data point will be reallocated 
within the various sample groups, distances between the data point and the various 
centers of gravity of each group is calculated, and the data point will be assigned to 
the one which the distance is shortest. The comparison of the assignment group with 
the real group is an indicator of the quality of the discrimination. 

Based on PCA scores of the first two PCs at various wavelengths ranging from 
430 to 520 nm, the percentage of classification accuracy obtained from FDA revealed 
that the data at 500 nm provided the highest accuracy at 98.61% (Table 3.1). Figure 

3.3d showed the PC score plot of I measured at 500 nm having a total variance of 
99.55% in which PC1 and PC2 contributed 96.72% and 2.83%, respectively. 
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Table 3.1. Variance contribution of the first two PCs and classification accuracy 

obtained from PCA and FDA on the fluorescent intensities (I) measured at various 
wavelengths. 

Wavelength      
(nm) 

PCA FDA 

PC1 (%) PC2 (%) 
Sum of 
%PCs 

% Classification accuracy 

430 98.49 1.01 99.50 95.83 

460 97.44 2.11 99.55 95.83 

490 96.82 2.75 99.57 95.83 

500 96.72 2.83 99.55 98.61 

510 96.45 3.07 99.52 97.22 

520 96.15 3.31 99.46 98.61 

3.1.1.1.1 Feature selection 

Since every variable sensing element in the array may not be significant for the 
discrimination of the analytes, some of the elements may generate noise or 
redundancy that possibly lead the adversely affect to the analysis. For practical way 
of sensor array, the lower number of sensing elements that impart satisfactory 
analysis performance is desirable. In our attempt to reduce the sensing elements, 
PCA loading plot was analyzed in order to identify the importance of each individual 
fluorophore toward each PC. The plot obtained from the measurement at 500 nm 
(Figure 3.4) showed that 5 was the main contributor to PC1 while 2 was the main 
contributor to PC2. Consequently, 2 and 5 as the most important sensing elements 
were selected for further investigation.  
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Figure 3.4. PCA loading plot of I measured at 500 nm obtained from the data set 

of 5 fluorophores  8 protein samples  9 replicates. 

The PCA score plot of the data obtained from these two selected sensing 
elements (2 and 5) showed in Figure 3.5a. The FDA cross-validation results also 
revealed 100% classification accuracy for these two sensing elements which is higher 
than the sensor array obtained from five fluorophores. The results ascertained that 
noise and redundant data were removed from the array. It is also importance to note 
that this sensor array can even discriminate between the two proteins with amino 
acid sequence homology such as BSA and HSA. 
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Figure 3.5. PCA score plot of I measured at the excitation wavelength of 500 nm 
obtained from the dataset of the reduced sensing elements composing of (a) 2 and 
5, and (b) 1 and 5. 

To prove our proposition on the benefits of charge variation leading to the 
selection of the most suitable fluorophores 2 and 5, the PCA was again performed 
on the data obtained from a reduced array comprising the fluorophores 1  and 5, 

which represent usual fluorophores with all negatively (3Cˉ) or all positively (3N+) 
charged groups. It can be seen in Figure 3.5b that clusters of two out of eight 
proteins, Myo and Pap, were located awfully close to each other. The discrimination 
ability of this array was confirmed by the FDA with leave-one-out cross-validation on 
the first two PC scores which gave only 97.22% accuracy. This is lower than 100% 

a)

b)
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classification accuracy obtained from the 2+5 array. The results highlighted the 
benefits of the charge variation in the development of high performance protein 
sensing arrays. 

3.1.2 Fluorescence sensor array for milk discrimination 

Further, the discrimination ability of a set of fluorophores 1-5 was 
systematically investigated to identify commercial milk samples according to their 
thermal treatments. The analytical power of the sensor array was evaluated through 
a sequence of three classes of samples, in the order of degree of complexity and 
similarity, starting from pure milk proteins, following by commercial milk obtained 
from different sources, and finally on commercial cow milk samples undergone 
different thermal treatments. 

3.1.2.1 Discrimination of pure milk proteins 

Five proteins i.e. -casein (-CN, pI = 4.1, 23-27 kDa), -casein (-CN, pI = 4.5, 

24 kDa), -lactalbumin (-LA, pI = 4.2-4.5, 69 kDa), -lactoglobulin ( –LG, pI = 5.3, 
36 kDa) and bovine serum albumin (BSA, pI = 4.7, 66.3 kDa) were selected as the 
samples for testing the discrimination power of fluorophores 1-5 sensing array. The 
fluorescence responses of the fluorophores upon mixing with the proteins were 
measured in cuvette and were tabulated as the intensity difference (∆I). Principal 
component analysis (PCA) was used to analyze the dataset of the fluorescence 
responses to realize any possible hidden patterns of variables in the samples. As an 
unsupervised pattern recognition, PCA is the dimensionality reduction method 
applied to unlabeled data matrix while retaining important information and intrinsic 
variance presenting in the original data as much as possible [13, 14, 17, 49]. In this 

case, PCA transformed the dataset of 90,225 I values (5 proteins × 3 samples × 3 
repetitions × 5 flurophores × 401 wavelengths) into scores of uncorrelated variables 
called principal components (PC) for all 45 observations (5 proteins × 3 samples × 3 
repetitions). The first two components, PC1 and PC2, accounted for 99.22% of the 
total variance where the first PC contains the highest degree of data variance and 
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other PCs follow in the order of decreasing variance. The PC score plot (Figure 3.6a) 
of distinctly showed five clusters of the data corresponding to 5 types of the milk 
proteins tested. As an unsupervised method, the clusters of data generated by PCA 
are based only on their similarities and differences perceived by the sensing 
elements. Therefore, the correct projection of data clusters by PCA indicates a good 
level of discriminating ability of the fluorophores on the milk proteins. The PCA 
loading plot (Figure 3.6b) was then used to determine the contribution of the 
original variables (fluorophores and wavelengths) to PC1 and PC2. The loading plot 
showed that 1 and 5 contributed the most to PC1 and PC2 respectively. The 
fluorophore 2 gave only moderate contributions to both PCs while 3 and 4 gave 
insignificant contributions to the PCs. Thus, two out of five fluorephores, 1 and 5, 
were selected for further investigation to identify types of commercial milk samples. 
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Figure 3.6. (a) PCA score plot and (b) PCA loading plot of ∆I values of fluorophores 
1-5 upon mixing with each pure milk protein. 

3.1.2.2 Discrimination of commercial milk from different sources 

Six types of commercial milk i.e. pasteurized cow milk, UHT cow milk, sterilized 
cow milk, corn milk, soy milk and fermented cow milk were selected as samples for 
testing of discriminating ability of our sensor array. It has been reported that each 

type of milk contains different major proteins i.e. casein in cow milk [50], -
conglycinin and glycinin in soy milk [51], zien in corn milk [52] and casein probiotic 
bacteria in fermented cow milk [53]. To reduce the effects from turbidity, all samples 
were diluted 10,000 times before mixing with two fluorophores 1 and 5. The 
fluorescence responses were measured in a conventional cuvette. The data matrix 
containing 14,436 ∆I values (6 milk samples x 3 repetitions x 2 fluorophores x 401 
wavelengths) was analyzed by PCA. The two-dimension PC score plot exhibited a 
cluster map of the milk samples in which six different types of milk can be correctly 
classified (Figure 3.7). The soy milk and corn milk had negative PC1 and PC2 
coordinates in the left lower quadrant, the fermented milk had positive PC1 but 
negative PC2 coordinates in the left upper quadrant whereas all cow milk samples 
had positive PC1 coordinates, vertically distributed in the upper and lower right 
quadrant. The results demonstrated that the fluorescence spectra reflected the 
physico-chemical characteristics of the milk in relation to their sources i.e. plants (soy 
and corn milks), animals (cow milks) and fermentation (fermented milk). The variation 
in fluorogenic responses could be attributed to the difference in protein constituents 
in different milk types that interact with the fluorophores.  
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Figure 3.7. PCA score plot of ∆I values in the range of 400-600 nm for 6 types of 
commercial milk. 

3.1.2.3 Discrimination of cow milk according to the thermal 
processes 

Since milk in some types can often be easily distinguished by human sensory 
including texture, odor or taste. For example, unique beany flavor of soy milk makes 
its odor or taste distinctive from cow milk, while fermentation causes acidic taste. A 
more challenge is taken into the identification of different types of cow milk 
according to their thermal treatments. Thermal treatments induce significant changes 
in milk constituents especially in the protein structures [54-57] which are hardly 
perceived by human sensory attributes. Degree of the changes depends on both 
temperature and time of the thermal treatments which inevitably affect nutritional 
quality including immunological sensitizing capacity of milk [58, 59],.  

One of limitation in conventional right-angle fluorescence spectroscopy is the 
use of low optical densities of the sample with the absorbance not exceeding 0.1. 
The dilution of turbid samples is not only tedious for a large number of samples but 
the results obtained on diluted milk may not represent all the information present in 
the original milk samples. Many studies overcame these drawbacks by using the 
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front-face geometric arrangements for fluorescence measurement of which the 
excitation radiation can be set at various angles, depending on surface of the 
samples, to avoid or minimize reflected light, scattered radiation and depolarization 
phenomena [3, 25]. In this study, 96-well plate was used since the light passes 
through near the vertical axis of the highly absorbent sample solutions and is 
measured at an angle of less than 90 degrees. The use of microplate fluorescence 
spectrometry is also more conveniently and effectively applicable for a large 
numbers of samples. 

Four types of thermally treated cow milk i.e. pasteurized, sterilized, UHT and 
recombined milk were selected for this investigation. The recombined milk used in 
this study was the UHT processed milk obtained from the combination of fresh milk 
and dried milk powder. A rather harsh thermal process such as spray- or drum-drying 
is usually applied in commercial milk powder production [60, 61]. The fluorescence 
response (∆I) spectra of 1 and 5 in the presence of milk samples are shown in Figure 
3.8. Strong fluorescence enhancement of 1 was apparent for pasteurized and UHT 
milk (denoted as P and U in Figure 3.8a) and moderate enhancement was observed 
for sterilized milk and recombined milk (denoted as S and R). Figure 3.8b showed 
strongest fluorescence enhancement of 5 with pasteurized milk and a little lower 
enhancement with UHT milk. In contrast, sterilized milk and recombined milk 
induced slight fluorescence quenching (negative values). For statistical analysis, 
fluorescence spectra were acquired from 9 observations (3 packages of each type of 

milk  triplicates for the sample of each package). The PCA applied to the 
fluorescent intensity differences dataset gave a two-dimensional score plot of the 
first two PCs as shown in Figure 3.8c. As anticipated in accordance to the 
fluorescence responses described above, only 2 groups of samples was classified by 
the PCA; one on the left was sterilized and recombined milk samples, and the other 
on the right was pasteurized and UHT milk samples.  
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Figure 3.8. Fluorescence responses (∆I) of fluorophore (a) 1 and (b) 5 upon addition 
of pasteurized (P), sterilized (S), UHT (U) and recombined (R) milk; (c) PCA score plot 
of the fluorescence responses of 9 measurements (3 packages x 3 replicates) of each 
type of milk. Oval outlines indicate groups of milk samples of the same thermal 
treatment. 
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Although the structural changes of milk proteins under thermal treatment has 
not been completely realized at a molecular level, studies on heat stability of milk 

proteins shows that a prolong exposure to the temperature over 100 C can cause 
coagulation of casein [68]. Therefore, casein, as a major protein in cow milk, is better 
preserved in its natural form under pasteurization and UHT processes [62-64] 

because pasteurization (63 C for 30 min or 72 C for 15 seconds) and UHT (133 C 
for 1 second) applied relatively milder conditions comparing with the sterilization 

(120 C for 30 minutes) and powdering (harsher condition depending on the product 
specification) processes. The degree of casein denaturation is higher under 
sterilization and powdering processes. The difference in the fluorescence responses 
of 1 and 5 in this case is thus likely associated with the difference in degree of casein 
denaturation. 

To increase the performance of milk discrimination, two more fluorescence 
compounds, i.e. 2 and 6 were added into the array. Compound 2 was selected as it 
was the third contributor to the PC scores previously observed in the protein 
discrimination (Figure 3.6b). 6 which has a smaller molecular size was also added for 
diversifying fluorescence response patterns. It can be clearly seen from the 
fluorescence responses of 2 and 6 to pasteurized milk were different from those to 
UHT milk (Figure 3.9a and 3.9b). The sterilized milk and recombined milk, previously 
indistinguishable by 1 and 5, also became differentiable by the responses of 2 and 6. 
These additional spectroscopic data could help discriminating the pasteurized milk 
from UHT milk and the sterilized from recombined milk. The PCA of the fluorescence 
responses of 1, 2, 5 and 6 confirmed that four clusters of the PC scores 
corresponding to four types of the thermally processed milk were well resolved 
(Figure 3.9c). 
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Figure 3.9. Fluorescence responses (∆I) of fluorophore (a) 2 and (b) 6 upon addition 
of pasteurized (P), sterilized (S), UHT (U) and recombined (R) milk; (c) PCA score plot 
of the fluorescence responses of 9 obersvations (3 packages x 3 replicates) of each 
type of milk. Oval outlines indicate groups of the milk samples of the same thermal 
treatment. 
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In order to test if the variation in dairy manufacturing process causes any effect 
on the discrimination ability of the sensor array, milk samples of different brands and 
production lots of each thermal treatment was analyzed by the fluorophore array 
constituted of 1, 2, 5 and 6. In this study, 3 brands x 3 lots x 3 packages of each 
thermally processed milk were collected from local supermarkets. The total of 324 

observations (108 samples  3 replicates) of pasteurized, sterilized, UHT and 
recombined milks, were analyzed. Upon addition of milk sample to the solutions of 

1, 2, 5 and 6, the dataset of 159,408 I values (108 samples x 3 repetitions x 4 
fluorophores x 41 wavelengths ) were analyzed by PCA to give only two clusters of 
samples on PC score plot on PC1 and PC2 (Figure 3.10).  

 

 

Figure 3.10. PCA score plot of the fluorescence responses of 108 milk samples from 
pasteurized (P), UHT (U), sterilized (S) and recombined (R) milks.  

According to Figure 3.9, the cores of pasteurized and UHT milks scattered on 
the right-hand side, while those of sterilized milks and recombined milks on the left-
hand side. The large scattering clusters observed in each type of thermal-processed 
milk indicated significant variation in manufacturing that reduce the discrimination 
ability of the PCA method. This is not totally surprising since the PCA is an 
unsupervised technique which expresses the data in such a way as to highlight 
similarities without real intention to discriminate the sample types. Therefore, PCA 
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may not necessarily show the differences between the different types of sample 
groups. In contrast to PCA, linear discriminant analysis (LDA) is a supervised technique 
which has its direct aim to classify the pre-identified sample group by using linear 
combination of data by maximizing the between-classes variance and minimizing the 
within-classes variance [17, 35, 65]. With the class information given during training, 
LDA thus normally give better discrimination ability comparing with PCA. LDA was 
therefore applied to the same spectroscopic data matrix of 108 samples. The first 
two discriminant variance (LD1 and LD2) accounted for 90.61% and the two-
dimension score plot showed 4 well defined clusters in accordance with different 
thermal-processed milks (Figure 3.11). The leave-one-out cross-validation of the LDA 
scores also revealed a classification accuracy of 100%. 

 

Figure 3.11. LDA score plot of first two discriminant factors (LD1 and LD2) obtained 
from fluorescence responses data of 108 milk samples from pasteurized (P), UHT (U), 
sterilized (S) and recombined (R) milk. Oval outlines indicate groups of milk samples 
of the same thermal treatment at 99% confidence level. 

3.1.2.4 Variable selection and reduction 

After the successful discrimination of the thermally processed milks via LDA 
technique, the next step is aimed boost the performance of the sensor array without 
deteriorating its performance removing the irrelevant or noise variables from the 
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array [66]. The LDA correlation plot against wavelength (Figure 3.12) was used to 
identify the importance of each individual fluorophore at each wavelength to each 
linear discriminant factor (LD). The correlation plot showed that 6 yielded the highest 
discriminant factor for both LD1 and LD2 while 1 and 5 yielded high discriminant 
factors for only LD1. Since 2 gave the lowest discriminant factor, this sensing element 
was again removed from the array for further investigation.  

 

 

Figure 3.12. LDA correlation plot of (a) first discriminant factor (LD1) and (b) second 
discriminant factor (LD2) of fluorescence responses of 1, 2, 5 and 6 to milk samples 
at each emission wavelength. 

The LDA with cross validation were performed for the arrays of 1+5+6 and 5+6 
comparing with the original array of 1+2+5+6. The classification accuracy of the 
three-fluorophore array (1+5+6) but not the two-fluorophore array (5+6) was 
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comparable to that of the four-fluorophore array (1+2+5+6) throughout the whole 
wavelength range of 400-600 nm (Figure 3.13). The results confirm that 2 can be 
removed from the sensor array without losing its discrimination power. 

 

.  

Figure 3.13. Comparison of classification accuracy obtained from leave one out 
cross-validation method of the LDA of fluorescence responses of the sensor arrays 
consisting of four (1+2+5+6), three (1+5+6) and two (5+6) fluorophores. 

From the Figure 3.13, it can be observed that that the highest classification 
accuracy was obtained in the wavelength range of 420-560 nm. The LDA score plot 
of the data obtained from 1+5+6 in the emission range of 420-560 nm showed that 
the first two LDs contained 91.10% of the variance and the 108 milk samples could 
be 100% accurately classified according to their thermal treatment (Figure 3.14a).   

1-Anilinonaphthalene-8-sulfonic acid (1,8-ANS) is known to bind the 
hydrophobic pockets of proteins and frequently used in fluorescence spectroscopy. 
It was previously used along with intrinsic amino acid residues of milk protein such as 
tryptophan and retinol for classification of milk samples according to their molecular 
structure of proteins and fats [3, 33]. However, the drawback of this technique is that 
multiple excitations and emission spectra acquisitions at the corresponding 
wavelengths are required. This study used only a single excitation wavelength and 
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acquired the emission spectra in a single range by using the optimized set of 
fluorophores (1+5+6) as the sensing elements. To verify the benefits of the proposed 
approach in utilizing multiple fluorophores, 1,8-ANS was used as the sensing element 
and LDA was performed on its ∆I in its emission band from 420 to 560 nm (Figure 
3.14b). The cross-validation yielded from the LDA gave only 97% classification 
accuracy which is lower when comparing with 100% obtained from our optimized 
sensor array. This confirmed a superior result from our sensor array. 

 

 

Figure 3.14. LDA score plot obtained from fluorescence responses of (a) 1+5+6 array 
and (b) 1,8-ANS in emission range of 420-560 nm. Oval outlines indicate groups of the 
milk samples of same thermal treatment at 99% confidence level. 
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3.1.3 Fluorescence sensor array for pathogen discrimination 

Safe and sufficient food is a fundamental human need. Foodborne diseases are 
a global health concern encompassing millions of people. A wide spectrum of 
illnesses is the result of ingestion of foodstuffs majorly contaminated by microbial 
pathogens. In the past decade, serious outbreaks of foodborne disease have been 
reported on every part of the world which not only adversely affect people’s 
morbidity and mortality, but also have negative economic consequences for society, 
organizations, public and private, communities and individuals. The term “foodborne 
disease” has been traditionally defined as illnesses caused by microorganisms, with 
often acute reactions, such as diarrhea. World Health Organization (WHO) estimates 
that worldwide foodborne and waterborne diarrheal diseases kill about 2.2 million 
people annually (WHO, 2013). Conventional and standard bacterial detection 
methods such as culture and colony counting methods may take up to a few days to 
yield a result, while immunology-based methods and polymerase chain reaction 
based methods, require extensive sample preparation [67, 68]. Eight bacteria i.e. 
Vibrio cholera (Gram-negative, curved rod shape), Shigella flexneri (Gram-negative, 
rod shape), Bacillus cereus (Gram-positive, rod shape), enterotoxigenic Escherichia 
coli and Escherichia coli (Gram-negative, rod shape), Listeria monocytogenes (Gram-
positive, rod shape), Salmonella Typhimurium (Gram-negative, rod shape) and 
Staphylococcus aureus (Gram-positive, round shape) were selected to represent 
foodborne pathogens used for testing the discrimination power of the fluorophores 
1, 2, 5 sensor array. 

The fluorescence responses of the fluorophores upon mixing with the solution 
containing pathogens (108 cfu/well) were measured in the range of 400-700 nm using 
the excitation wavelength at 375 nm by a microplate fluorometer. Data matrix of the 
intensity differences (∆I) at all wavelengths were prepared and analyzed by 
multivariate statistical analyses. 
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Table 3.2.. Pathogenic microorganisms responsible for foodborne illness [67, 69-71]. 
Microorganism Gram Shape Food Sources Predominant Symptoms 

Vibrio cholerae Negative Curved 
rod 

Marine foods and 
environmental waters 

abdominal discomfort and 
diarrhea Vomiting also occurs 

Shigella flexneri Negative Rod Salads (potato, tuna, 
shrimp, macaroni, and 
chicken), milk and dairy 
products, and poultry 

Abdominal pain, cramps, 
diarrhea, fever, vomiting, 
blood, pus, or mucus in 
stools, tenesmus (straining 
during bowel movements). 

Bacillus cereus Positive Rod Meats, milk, vegetables, 
fish, rice, pasta, and 
cheese, stews, gravies, 
vanilla sauce. 

Vomiting, abdominal cramps, 
diarrhea, nausea. 

Listeria 
monocytogenes 

Positive Rod Soft cheese, raw milk, 
improperly processed 
ice cream, raw leafy 
vegetables; ready-to-eat 
deli meats, raw meat 
and poultry 

Fever, muscle aches, and 
nausea or diarrhea. Pregnant 
women may have mild flu-
like illness, and infection can 
lead to premature delivery. 
Elderly patients may have 
bacteremia or meningitis. 

Salmonella 
Typhimurium 

Negative Rod Contaminated egg; 
poultry; meat; dairy 
foods and fruit juice; 
raw fruits and 
vegetables 

Fever, headache, shivering, 
loss of appetite, malaise, 
constipation, and muscular 
pain 

Staphylococcus 
aureus 

Positive Round Raw milk, cheese, meat 
and meat products, 
salads, cream-filled 
bakery products and 
dairy products 

Nausea, vomiting, retching, 
diarrhea, abdominal pain, 
prostration 

Enterotoxigenic 
Escherichia coli 
(ETEC) 

Negative Rod Contaminated water 
and food in developing 
countries 

Diarrhea among children and 
travelers in developing 
countries 

Escherichia coli 
 

Negative Rod Food or water 
contaminated with 
human feces 

Harmless to harmful 
depending on strains. Some 
cause food poisoning or food 
contamination 
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In this study, PCA was applied to convert the fluorescence dataset with 42 
original variances (3 flurophores × 14 wavelengths) into PC scores of PC1 and PC2 
which accounted for 97.7% of the total variance. The PC score plot (Figure 3.15) of 
all 168 samples (8 bacterial samples × 21 repetitions) on PC1 and PC2 coordinates 
gave four distinctive clusters of Vibrio cholera, Staphylococcus aureus, 
enterotoxigenic Escherichia Coli and Bacillus cereus distributing on the right half of 
the plot, while Shigella flexneri, Escherichia coli, Listeria monocytogenes and 
Salmonella Typhimurium cannot be discriminated and gathered as one cluster on 
the left half. PCA, as a unsupervised statistical method which condense large 
amounts of data into fewer latent variables, while preserving intrinsic variance of the 
original data as much as possible, is likely to recognize the similarity of bacteria cell 
envelope and shape as 3 out of 4 bacteria in the bunched cluster, Shigella flexneri, 
Escherichia coli and Salmonella Typhimurium are Gram-negative and rod shape. In 
Gram-negative bacteria, the surface of the outer membrane is composed 
predominantly of lipopolysaccharides [72], amphiphatic molecules which could be 
bound with a set of the fluorophores. The only Gram-positive bacterium in the 
bunch is Listeria monocytogenes. Not surprisingly, Listeria monocytogenes is unique 
among other Gram-positive bacteria due to its possession of lipopolysaccharide at its 
cell surface which makes it resemble structure and function of the Gram-negative 
bacteria [73, 74]. ETEC is not bunched with Escherichia coli cluster on the left side of 
the PC score plot since PC scores of ETEC are at the lower right quadrant. ETEC is a 
Gram-negative rod-shaped bacterium that produces more enterotoxin causing 
secretion of large amounts of fluids and electrolytes which is a cause of diarrhea [72, 
75-77]. ETEC typically adhere to host cells via filamentous bacterial surface structures 
known as colonization factors (CFs) [78, 79] which possesses Coli Surface Antigen 
(CS), an antigen located in the outer surface coat. CS expressing charged residues at 
cell surface of ETEC makes its fluorescent pattern distinguished from Escherichia coli. 
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Figure 3.15. PCA score plot of ∆I values of fluorophores 1-3 upon mixing with each 
bacteria sample 

Since PCA is an unsupervised method, the generated clusters of data are based 
on their similarities and differences perceived by the sensing elements without the 
consideration of analytes class labels [14]. The results described above showed that 
PCA did not have enough discrimination performance in some pathogens. The 
supervised LDA which normally gives better discrimination ability comparing with PCA 
was then performed for further investigation in this study. 

In order to achieve an optimum classification capacity of our sensor array, we 
applied the LDA analysis onto the same spectroscopic data matrix as done with the 
PCA. LDA is probably the most frequently used supervised pattern recognition 
method for the food analysis [17]. LDA is based on the determination of linear 
discriminant functions, which will find the directions (axes) that maximize the linear 
separation among the multiple groups of analytes [35, 65]. 

The fluorescence data matrix of 7,056 I values (3 flurophores × 14 
wavelengths × 8 bacterial samples × 21 repetitions) was converted by LDA to linear 
discriminant scores. The three-dimension plot showed 8 well defined clusters with 
no overlap between the groups corresponding to the bacterial pathogens (Figure 
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3.16a). The first three discriminant factors (F1, F2 and F3) contain 58.08, 27.69, and 
8.69% respectively, occupying 94.46% of total variation. The leave-one-out cross-
validation of the LDA scores also revealed a classification accuracy of 100%. 

 
 

Figure 3.16. LDA score plot of first three discriminant factors (F1, F2 and F3) obtained 

from fluorescence responses data of bacteria samples (a);  LDA loading plot of I 
values of fluorophores 1, 2, 5 upon mixing with each bacteria sample (b). 

3.1.3.1 Variable selection and reduction 

Part of the motivation of this work was to apply a set of our fluorescence 
compounds as a rapid detection method. Reducing sensing elements, by removing 
either the fluorescence compounds or detection wavelengths, as minimal as 
possible, is one way to do so. In addition, the removal of irrelevant or noise variables 
should improve the performance of the sensor array because not every variable 
would be always significant for the discriminating ability. The LDA correlation plot 
(Figure 3.16b) was used to identify the importance of each individual fluorophore at 
each wavelength to each of the first two linear discriminant factors (F1 and F2). 
Figure 3.16b shows that 5 gives the lowest contribution to both F1 and F2 while 1 
and 2 contribute more to both F1 and F2. Fluorophore 5 was thus removed from the 
array. The LDA with leave-one-out cross-validation was again applied to the dataset 
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without the fluorescence responses of 5 to test the discrimination performance of 
the array after the noise reduction.  

Figure 3.17 shows the two-dimension LDA score plot for the sensor arrays of 1 
and 2 with the first two discriminant factors (F1 and F2) contained about 86% of the 
variance. All 8 bacteria strains could be 100% accurately classified. The result 
confirms that the fluorescence dataset from 1 and 2 contains highly correlated 
variables which enable effective classification of multivariate data. Fluorophore 5 can 
be removed from the sensor array for the benefit of the discrimination power by 
reducing fluorescence measurements as well as the dimension of LDA score plot. 

 

 

Figure 3.17. LDA score plot of first two discriminant factors (F1 and F2) obtained 

from I values of fluorophores 2 and 5 upon mixing with each bacteria sample. Oval 
outlines indicate groups of bacteria sample at 95% confidence level 

3.2 Colorimetric Sensor Array  

Polydiacetylene (PDA) is conjugated polymer capable of responding to external 
stimuli by color changes. The dramatic blue to red color changes can be displayed 
according to its unique chromic properties induced by various external stimuli 
including light (photochromism) [80], heat (thermochromism) [81], mechanical stress 
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(mechanochromism) [82], solvents (solvatochromism) [83] and binding of specific 
chemical or biological agents (affinochromism /biochromism) [84]. The diacetylene 
lipid is one of the most useful monomers for preparation of PDA sensors due to its 
efficiency to form nano-vesicles homogenously dispersed in aqueous media which is 
suitable for biological and environmental sensing applications. Two series of 
diacetylene monomers, amphiphilic and bolaamphiphilic diacetylene, were selected 
for this colorimetric sensor study.  

3.2.1 Colorimetric vesicle-based sensor array 

Anionic Surfactant is a common ingredient in a variety of applications, 
especially in household products and industrial applications including cleaning 
agents and emulsifiers in cosmetics, pharmaceutical products and chemical reaction 
processes. Since anionic surfactants are classified as water pollutants by EU-EPA, 
rapid and accurate detection method of pollutant contamination in water is one of 
the key tasks of environmental monitoring. Colorimetric sensor array constitutes of 
diacethylene monomers 1, 4, 5 and 6. 

To test the sensing ability of these PDA with surfactants, the panels each type 
of surfactants (50 µM) was added to all prepared PDA sols including poly (PCDA) and 
the results are presented in Figure 3.18. The blue PDA sol prepared from PCDA did 
not exhibit any color change upon mixing with anionic (SDC, SDS, and SDBS) and 
nonionic (Tween-20®, Brij®58P, and Triton®X-100) surfactants. For the cationic 
surfactants, DTAB and HTAB induced the sol to form blue precipitation whereas HTAB 
turns blue color to unusual yellowish green without any precipitation. It is important 
to note that PDA sols obtained from 4, 5 and 1+6 mixture exhibited the color 
transition from blue to red selectively to the anionic surfactant.  
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Figure 3.18. Photograph images of PDA sols (0.1 mM) in the absence (Blank) and 
presence of each surfactant at a concentration of 50 mM. 

The colorimetric change of PDA sols in response to surfactants was also 
monitored by means of UV-visible signals. The addition of anionic surfactants, SDC, 
SDS, and SDBS to the PDA sols yielded the simultaneous effect of the decrease of 
the UV absorption at 640 nm and the increase in the absorption at 540 nm as shown 
in Figure 3.19. The vivid color can be observed in the mixing between SDS and PDA 

sols derived from 4, 5, and 1+6 even at the low concentration below 10 M, while 
SDC and SDBS caused the obvious color change at the concentration range of 20-40 

M.  
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Figure 3.19. UV/Vis spectra and photographs of PDA sols (0.1 mM) derived from a) 4, 
b) 5 and c) 1+6 mixture in the presence of various amounts of SDC, SDS, and SDBS at 
room temperature showing their diverse colorimetric transitions. 

The addition of cationic surfactants, TTAB, DTAB, HTAB and Triton®X-100 at a 

concentration of 50 M, to PDAs derived from 4, 5, and 1+6 were also performed in 
order to investigate the selectivity of our sensor. Figure 3.20 showed the no 
significant color changes monitored by UV-visible spectrophotometer at the 
absorption wavelength of 640 nm. However, UV-visible spectrum of Tween-20®, and 

Brij®58P at a concentration of 50 M showed minor change (Figure 3.21).  

 a) 

b) 

c) 

4 4 4
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Figure 3.20. UV-visible spectrums of 4, 5, and 1+6 with TTAB, DTAB, and HTAB 

 

Figure 3.21. UV-visible spectrums of 4, 5, and 1+6 with Tween-20®, Brij®58P, and 
Triton®X-100 
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In order to confirm the degree of color change of PDA in the presence of 
various surfactants, the data from PDAs absorbance spectrums of surfactants at the 

concentration of 50 M were converted to colorimetric response (% CR). The 
conversion percentage of the blue to red phase absorption and the histogram of the 
average % CR determined from nine replicates (3 samples × 3 measurements) of the 
PDA/surfactant mixtures were presented in Figure 3.22. The anionic surfactants (SDC, 
SDS, and SDBS) induced strong color transition of PDAs 4, 5, and 1+6 provide more 
than 50% CR which support the results from naked eye observation. Tween-20® and 
Brij®58P also provide color change at he %CR in the range between 10-50%. The % 
CR of PDA/surfactant mixtures showed differentiable patterns of the responses for 
three anionic surfactants suggesting a possibility of surfactant identification. Since 
these PDA sols showed different colorimetric sensitivity toward different types of 
anionic surfactants demonstrated by the %CR, this suggested that they should also 
be potentially useful for constructing a sensor array for the identification of common 
anionic surfactants and some nonionic surfactants. 

 

Figure 3.22. Histogram of % CR obtained from nine replicated measurements of nine 
mixtures of 4, 5 and 1+6 (0.10 mM) and SDC, SDS, SDBS, TTAB, DTAB, HTAB, Tween-
20®, Brij®58P and Triton® X-100 (50 µM). 
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3.2.1.1 Multivariate statistical analysis 

Although, the Figure 3.22 showed the color pattern for the sensing of anionic 
surfactants, the multidimensional data matrix (3 PDAs × 3 surfactants × 9 replicates) 
was further statistically analyzed by PCA. PCA transformed the dataset of % CR 
values into PC scores in which PC1 and PC2 accounted for 94.2 and 5.3% of total 
variance, respectively, as shown in PCA score plot (Figure 3.23). The PCA score plot 
showed clear clusters of SDC, SDS, SDBS, Tween-20®, and Brij®58P, but overlap for 
the rest of surfactants. The result from Figure 3.23 confirms that structurally diverse 
amino containing PDAs were useful for the detection and identification of the 
common anionic surfactants and some nonionic surfactants, but not the cationic 
surfactants. 

 

 

Figure 3.23. PCA score plot of % CR obtained from nine replicated measurements of 
nine mixtures of 4, 5 and 1+6 (0.10 mM) and SDC, SDS, SDBS, TTAB, DTAB, HTAB, 
Tween-20®, Brij®58P and Triton® X-100 (50 µM). 

3.2.2 Colorimetric paper-based sensor array for VOCs discrimination 

Volatile organic compounds (VOCs) are large group of carbon-based chemicals 
having a high vapor pressure that easily evaporate at room temperature. These 
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compounds affect the environment and health risk concerns. Along with carbon, 
they contain elements such as hydrogen, oxygen, fluorine, chlorine, bromine, sulfur 
or nitrogen. Volatile organic compounds are released from various sources such as 
vehicle exhaust, vapors from industrial facilities or biological sources mainly from 
plants which may cause outdoor air pollution. They are also released from 
decorative paints, varnishes and vehicle refinishing which make poor indoor air 
quality. 

Polydiacetylene (PDA) is one among stimulus-responsive colorimetric 
substances [85] which possesses unique chromic properties that can be developed 
into practical colorimetric transducers in biosensors. The solvent-dependent color 
transition of PDA molecules is known to vary according to the PDA structure [83, 86] . 
Eighteen VOCs were selected as analytes in this study pentane, hexane, cyclohexane, 
toluene, o-xylene, benzene, ethyl ether, dichloromethane (DCM), 2- propanol, 
tetrehydrofuran (THF), chloroform (CHCl3), ethanol (EtOH), ethyl acetate (EtOAc), 
acetone, methanol (MeOH), acetonitrile (MeCN), dimethylformamide (DMF), 
dimethylsulfoxide (DMSO). The paper based PDA colorimetric sensor array prepared 
by diacetylene monomers 1-8 was incubated with each vapor of VOCs. The images 
of color changes acquired by scanner and digital camera in TIF format were depicted 
in Figure 3.24. 
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Figure 3.24. (a) Scanned images and (b) photographs of the paper-based PDA sensor 
array prepared from diacetylene monomers 1-8 before and after 60 min exposure to 
saturated vapors of volatile organic solvents at 30 °C. All images were acquired at 
150 dpi. 

Since the input devices of this study are scanner and digital camera, RGB color 
model was selected. TIF image files were converted to RGB values by 
AdobePhotoshop®. The colorimetric response of the PDA sensor can be quantified 
by a color change profile determined by subtracting the RGB values of the images 
before and after exposure of each PDA with VOCs vapor. Figure 3.25 shows the 
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quantitative color change profile of paper-based PDA sensor array prepared from 
diacetylene monomers 1-8. 
 

 

Figure 3.25. Quantitative color change profile of paper-based PDA sensor array 
prepared from diacetylene monomers 1-8 after 60 min exposure to saturated vapors 

of volatile organic solvents at 30 °C obtained from (a) scanner and (b) digital 
camera. Error bars represent standard deviations of the intensity of each polymer. 

3.2.2.1 Multivariate Data analysis 

Even though the histogram of color change profile as shown in Figure 3.18 
demonstrated differentiable pattern of chromic change toward each VOC, 
computationally based discipline such as PCA is always a good choice to pursue to 
discover latent information from the data. To carry out this analysis, the data matrix 

of RGB color values from cropped images was prepared to generate a set of 5,184 
colorimetric data (18 VOCs x 12 replicates x 8 polymers x 3 values of each RGB) and 

applied to PCA. The two-dimension PCA score plots of RGB color values derived 
from scanned images and photographs of the paper-based PDA sensor array were 
shown in Figure 3.25a and Figure 3.25b, respectively.  
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Figure 3.26. PCA score plot of paper-based 1-8 PDAs sensor array derived from (a) 
scanner and (b) digital camera, upon exposure to 18 solvents. Each data point 
represents an average of RGB value obtained from 12 replications. 

PCA score plot from scanner (Figure 3.26a) showed that the first component 
(PC1) accounts for 47.33% of variance, while the second component (PC2) accounts 
for 14.62%, providing the sum of these two PCs of 61.95%. FDA is applied on 
selected principal component (PC) scores to test the discriminating accuracy of the 
sensor array. An accuracy levels of 100% obtained from FDA is achieved from the 
first two PC scores indicating an excellent discerned among 18 vapors of VOCs. On 
the other hand, PCA score plot from digital camera (Figure 3.26b) displayed the first 
component (PC1) accounts for 35.01% of variance, while the second component 
(PC2) accounts for 16.72%, providing the sum of these two PCs of 51.73%. An 
accuracy levels of 97.69% obtained from FDA was achieved from the first two PC 
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scores in Figure 3.26b. Not surprisingly, one drawback of the digital cameras is that 
the intensity of digital images is affected by lighting condition consequently resulting 
in lower discrimination power of the sensor. 

3.2.2.2 Variable selection and reduction 

The performance of the array can be improved nom-informative sensing 
elements are reduced. This reduction would make the sensor more practically 
applicable. The plot of loading factors from PCA performed on RGB values of the 
scanned images was used to determine which individual PDA sensor provides most 
contribution to the total variance (Figure 3.27).  

 

Figure 3.27. PCA loading plots of the eight element sensors in the developed arrays 

Figure 3.27 showed that sensors 2, 3 and 8 had higher influence in PC1 and 
PC2 than those sensors 1, 4, 5, 6 and 7 of which the loading coordinates appear 
close to the origin point. Therefore, three PC score plots of the data from each pair 
of sensing elements selected from sensors 2, 3 and 8 were generated. Again, FDA 
with cross validation was applied to test the classification accuracy of the PCA score 
plots obtained from each pair of sensors. Interestingly, 2+8 (Figure 3.28a) and 3+8 
(Figure 3.28b) sensor pairs provided the classification accuracy of 100% while the 
2+3 (Figure 3.28c) sensor pair gave a lower accuracy only at 88.43%. 
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These outcomes imply that the combination of the sensors from amphiphilic (2 or 3) 
and bolaamphiphilic monomers (8) is preferred for greater sensitivity variance toward 
the VOCs detection when comparing with the sensor pair containing only amphiphilic 
monomers (2+3 pair). The high sensitivity variance in turn benefits the discriminating 
efficiency of the sensor array. 

 

Figure 3.28. PCA score plot of RGB color changes obtained from the paper-based 
PDA sensor array prepared from (a) 2 and 8; (b) 3 and 8; (c) 2 and 3 after exposure to 
18 VOC vapors 
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3.2.2.3 Colorimetric paper-based sensor array for automotive fuel 
discrimination  

Automotive fuel consists mostly of organic compounds obtained by the 
fractional distillation of petroleum. However, due to high consumption of the world’s 
gasoline, some alternatives are derived from non-fossil sources such as agricultural 
crops. In Thailand, for example, many types of automotive fuel have been 
commercially available such as gasoline octane 91 (B91), 10% ethanol blended 
gasoline widely known as gasohol octane 91 and 95 (G91 and 95), 20% ethanol 
blended gasoline (E20), diesel (D) and biodiesel (B5). Authentication of these fuels is 
of economic, legal and safety-critical importance. Counterfeit fuels are almost 
impossible to be perceived by consumers. Therefore, the scope of the study in the 
PDA sensor array was extended to detect commercial automotive fuels. 

Subject to the government regulations, fuel dyes must be added to 
differentiate types of gasoline for prohibiting misuse and piracy (Figure 3.29). 
However, naked-eye color detection cannot investigate chemical components of the 
gasoline. 

 

Figure 3.29. The commercial gasoline in various grades from Petroleum Authority of 
Thailand (A) and Esso company (B).  

Ten automotive fuels from two petroleum companies, Petroleum Authority of 
Thailand (A) or Esso Company (B), were selected in this study, Gasohol 95 (G95), 
Gasohol 91 (G91), Gasoline 91 (B91), Diesel (D), E20 and Biodiesel (B5). Gasohol is 
gasoline (90%) blended with ethanol (10%). Diesel is a fractional distillate of 
petroleum fuel oil which is specifically used in diesel engines. E20 is a blend of 20% 
ethanol and gasoline 80%. Biodiesel refers to a diesel from natural sources, e.g. 

G95(A)     G95(B)    G91(A)    G91(B)    B91(A)    B91(B)     E20(A)    D(A)        D(B)      B5(A)
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vegetable oil or animal fat consisting of long-chain alkyl esters. The term B5 refers to 
5% of biodiesel in 95% petroleum diesel.  

Ten fuels were tested with the PDA sensors by the same methodology as 
those performed with the VOC vapors described above. Figure 3.30 showed the 
scanned image of PDA paper-based array exposed to 10 gasoline vapors. Strong color 
change observed for the Gasohol 91, Gasohol 95 and E 20 can be explained by the 
fact that the content of EtOH played an important role in the color transition of array 
of PDA paper. The color change profiles of scanned images (before and after 
exposure with 10 gasoline vapors) were also prepared as the histogram as shown in 
Figure 3.31. 

 

Figure 3.30. Scanned images of the PDA-based paper colorimetric sensor array 
prepared from diacetylene monomers 1-8 after exposure to vapors of gasoline.  
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Figure 3.31. RGB color change profile of paper-based PDA sensor array prepared from 
diacethylene monomers 1-8 after exposure to saturated vapors of automotive fuels 

PCA was applied to the dataset containing RGB of 2,160values (10 gasoline × 
9 repeats × 8 PDAs × 3 values of each RGB). Figure 3.32 showed the PCA score plot 
having a total variance of 91.14% obtained from the first two PCs in which PC1 and 
PC2 accounted for 80.20% and 11.74%, respectively. As can be seen in Figure 3.32, 
gasoline of each company was discriminated according to their types. This color 
pattern induced by different properties of each gasoline imparts special properties to 
fuel in order to gain optimal engine performance. It should be note that the cluster 
of B5 (A), D (A) and D (B) are closely located which can indicate that they have similar 
chemical and physical properties.  5% of biodiesel in B5 cannot make it distinct from 
the conventional diesel. 
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Figure 3.32. PCA score plot of RGB data set obtained from paper-based PDA sensor 
array derived from diacetylene monomers 1-8 upon exposure to 10 gasoline. Each 
data point represents an average of RGB value obtained from 9 replications. 

Even PDAs 2, 3 and 8 were formerly identified as the most informative sensing 
elements for the identification of VOC vapors, photo images in Figure 3.30 showed 
that 8 was insensitive to all type of fuels. Therefore, 2 and 3 were selected as the 
set of reduced variables to test if the discrimination ability can be improved. PCA was 

again performed on RGB data set obtained from paper-based PDA sensor array 
derived from diacetylene monomers 2 and 3. Figure 3.33 showed the PC score plot 
yielded from the analysis.  
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Figure 3.33. PCA score plot of RGB color changes obtained from the paper-based 

PDA sensor array derived from 2 and 3 upon exposure to automotive fuels (2 PDAs  

3 replicates  10 automotive fuels  3 measurements of each RGB). 

A total variance of 97.54% in the PCA score plot was obtained from the first 
two PCs in which PC1 and PC2 accounted for 84.52% and 13.02%, respectively. The 
plot also showed well-separated clusters of diesel (D), biodiesel (B5), E20, gasohol 
(H), gasoline (G) confirming the high fuel discrimination ability of sensors 2 and 3. 
  

-60

-50

-40

-30

-20

-10

0

10

20

30

-150 -100 -50 0 50 100

P
C

2
 (

1
3

.0
2

%
)

PC1 (84.52%)

G95 A G95 B G91 A G91 B

B91 A B91 B E20 A D A

D B B5 A



 

 

79 

CHAPTER IV 
CONCLUSION 

In view of the increasing global market demands in chemical biosensor [87], 
rapid detection and identification in different areas of applications has expanded 
considerably over the last few years. This work has shown that optical spectroscopic 
sensors and multivariate statistical analyses can be applied successfully for 
discriminating chemicals and biological samples. A fluorescence sensor array with 
synthetic fluorophores was been systematically developed for the identification of 
commercial milk samples according to their thermal treatment processes. The array 
and analysis method were sequentially tested against samples in the order of degree 
of protein complexity and similarity. The sequence of the samples started from 
randomly selected pure proteins, then pure milk proteins, followed by commercial 
milk samples obtained from different sources, and finally on commercial cow milk 
samples undergone different thermal treatments. At the beginning, multivariate 
statistical analyses, principal component analysis (PCA) and factorial discriminate 
analysis (FDA), were applied for pattern recognition of the fluorescence responses 
and capable to discover similarities within proteins with wide range of molecular 
weights and isoelectric points, milk proteins as well as milks from different sources. 
However, PCA failed to classify cow milk samples with different thermal treatments 
while linear discriminant analysis (LDA) provided excellent classification with 100% 
accuracy, even when the milk samples were derived from different manufacturers. A 
fluorescence sensor array composed of only the two fluorophores has been also 
applied for discriminating 8 strains of foodborne pathogens. LDA was also more 
powerful in recognizing the similarities within the group of bacteria samples induced 
by fluorophore/cell surface interactions. Notably, the discrimination of ETEC and 
E.coli can be observed via this technique due to CS expressing charged residues at 
ETEC cell surface resulting in fluorescent pattern distinguished from E. coli.  

Multivariate statistical analyses applied in sensor array based on colorimetric 
reponses of polydiacethylene were also developed for identification of anionic 
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surfactant and volatile organic compounds (VOCs). The results of PCA performed on 
colorimetric response (%CR) clearly showed discrimination of anionic surfactants 
(SDC, SDS and SDBS) from other classes of surfactants at micro molar concentration 

level (50 M). In addition, a paper-based polydiacetylene colorimetric sensor array 
prepared from amphiphilic and bolaamphiphilic diacetylene monomers for 
identification of VOCs in vapor phase has also been developed. Fingerprint pattern of 
the irreversible color change pattern as measured by RGB values were analyzed by 
PCA to distinguish all 18 VOCs tested. This paper-based sensor is also capable to 
classify various types of automotive fuels including gasoline, gasohol and diesel. 

This study demonstrated that the recent advances in optical sensor arrays 
coupled chemometric tool can be systematically optimized for wider range of 
electronic tongue and electronic nose applications for classification and identification 
of complex mixtures in environmental science and biotechnology industries. 
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Table A1. Proteins structures, molecular weight and isoelectric point 
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Table A2. Milk proteins structures, molecular weight and isoelectric point 

 
Proteins Mw (kDa) pI 

BSA 66.3 4.8 

-Casein 23-27 4.1 

-Casein 24 4.5 

-Lactalbumin 36 4.2-4.5 

-Lactoglobulin 14.4 5.3 

 

Table A3. Composition of cow milk proteins 
 

 grams/ liter % of total protein 

Total Proteins 33 100 

Total Caseins 26 79.5 

-  s1 casein 10 30.6 

 s2 casein 2.6 8.0 

-  casein 9.3 28.4 

-  casein 3.3 10.1 

Total Whey Proteins 6.3 19.3 

 lactalbumin 1.2 3.7 

 lactoglobulin 3.2 9.8 

BSA 0.4 1.2 

Immunoglobulins 0.7 2.1 

Proteose peptone 0.8 2.4 
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Figure A1 LDA score plot obtained from fluorescence responses in emission range of 
420-560 nm of (a) 6 at 99.07 % correct classification and (b) 1,8-ANS at 97.84 % 
correct classification. Oval outlines indicate groups of the milk samples of same 
thermal treatment at 99% confidence level 
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Figure A2 LDA score plot of first two discriminant factors (F1 and F2) obtained from 

I values of fluorophores 1, 2 and 5 upon mixing with each bacteria sample 

 
 

Figure A3. PCA score plot obtained from %CR of 3 anionic surfactants at a 

concentration of 10 M 
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Figure A4. PCA score plot obtained from %CR of 3 anionic surfactants at a 

concentration of 20 M 
 

 
  

Figure A5. PCA score plot obtained from %CR of 3 anionic surfactants at a 

concentration of 30 M 
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Figure A6. PCA score plot obtained from %CR of 3 anionic surfactants at a 

concentration of 40 M 
 

 

Figure A7. PCA score plot obtained from %CR of 3 anionic surfactants at a 

concentration of 50 M 
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Figure A8. PCA score plot of paper-based 1-8 PDAs sensor array derived from (a) RGB 
value and (b) CMYK value from scanner upon exposure to 18 solvents. Each data 
point represents an average of color values obtained from 12 replications. 
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Figure A9. PCA score plot of paper-based 1-8 PDAs sensor array derived from (a) RGB 
value and (b) CMYK value from digital camera upon exposure to 18 solvents. Each 
data point represents an average of color values obtained from 12 replications. 
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